Supporting Information

Structure-activity relationship studies of tetrahydroquinolone free fatty acid receptor 3 modulators

Elisabeth Rexen Ulven^{†,‡,*}, Tezz Quon[¥], Eugenia Sergeev[¥], Natasja Barki[¥], Matjaz Brvar[‡], Brian D. Hudson[¥], Palash Dutta[†], Anders Højgaard Hansen[‡], Line Ø. Bielefeldt[‡], Andrew B. Tobin[¥], Christine J. McKenzie[‡], Graeme Milligan[¥], Trond Ulven[†]

[†]Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark

[‡]Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

*Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom

*E-mail: eru@sund.ku.dk

Table of contents

Crystallographic data for (R) -1 and (R,S) -1	2
Molecular modeling of hFFA3	10
Stability of 57 in DMSO	11
Counterscreen data on 1, 16, 57 and 63	12

Crystallographic data for (*R*)-1 and (*R*,*S*)-1 (*R*,*S*)-1

Figure S2. Two views, 90° rotated from each other, of the H-bonded ribbons in (R,S)-1 running parallel with *c*-axis. The *S* centers are colored pink the *R* centers are colored purple. Only the major position (76%) for the disordered aromatic methyl groups was used in the preparation of the images.

Table S1. Crystal data and structure refinement for (R,S)-1

Table 51. Crystal data and structure rem	icilient 101 (N,S)-1
Empirical formula	$C_{22}H_{22}N_2O_3$
Formula weight	362.41
Temperature/K	293(2)
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ /c
a/Å	17.6367(2)
b/Å	7.53560(10)
c/Å	14.3717(2)
a/°	90
β/°	111.5790(10)
$\gamma/^{\circ}$	90
Volume/Å ³	1776.17(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.355
μ/mm ⁻¹	0.732
F(000)	768.0
Crystal size/mm ³	$0.159 \times 0.082 \times 0.049$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	10.788 to 133.202
Index ranges	$-20 \le h \le 20, -8 \le k \le 8, -17 \le l \le 17$
Reflections collected	36815
Independent reflections	$3132 [R_{int} = 0.0364, R_{sigma} = 0.0139]$
Data/restraints/parameters	3132/0/273
Goodness-of-fit on F ²	0.876
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0471, wR_2 = 0.1302$
Final R indexes [all data]	$R_1 = 0.0490, wR_2 = 0.1318$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.30

Table S2. Bond Lengths for (R,S)-1

Aton	n Aton	n Length/Å	Atom Atom Length/Å
01	C1	1.235(2)	C8 C15 1.498(3)
N1	C5	1.369(2)	C9 C14 1.504(3)
N1	C9	1.404(2)	C10 C13 1.348(3)
C1	C2	1.515(3)	C11 C12 1.344(3)
C1	C6	1.441(3)	C12 C13 1.432(3)
02	C10	1.373(2)	C16 C17B 1.396(3)
02	C11	1.375(2)	C16 C21B 1.387(3)
N2	C15	1.347(3)	C16 C17A1.396(3)
N2	C16	1.433(2)	C16 C21A1.387(3)
C2	C3	1.520(3)	C18 C19 1.386(3)
03	C15	1.227(2)	C18 C17B 1.395(3)
C3	C4	1.519(3)	C18 C17A1.395(3)
C4	C5	1.499(2)	C19 C20 1.381(4)
C5	C6	1.365(3)	C20 C21B 1.386(3)
C6	C7	1.512(2)	C20 C21A1.386(3)
C7	C8	1.525(3)	C21B C22B 1.579(11)
C7	C10	1.502(3)	C17A C22A 1.518(3)
C8	C9	1.343(3)	

Table S3. Bond Angles for (R,S)-1 Atom Atom Atom Angle/°

N1	C9	121.80(16)
C1	C2	120.00(17)
C1	C6	121.87(17)
C1	C2	118.11(16)
O2	C11	106.51(15)
N2	C16	125.14(17)
C2	C3	113.01(16)
C3	C2	110.40(16)
C4	C3	111.36(15)
C5	C4	116.79(16)
C5	N1	119.85(16)
C5	C4	123.26(17)
C6	C7	119.66(16)
C6	C1	120.53(16)
C6	C7	119.77(16)
C7	C8	110.46(15)
C7	C6	112.11(15)
C7	C8	110.40(15)
C8	C7	120.32(16)
C8	C15	125.53(17)
	N1 C1 C1 C1 C2 C2 C3 C4 C5 C5 C5 C5 C5 C5 C6 C6 C6 C6 C7 C7 C7 C7 C7 C8 C8	N1 C9 C1 C2 C1 C2 O2 C11 N2 C16 C2 C3 C3 C2 C4 C3 C5 C4 C6 C7 C6 C7 C7 C8 C7 C8 C8 C7 C8 C15

Atom Atom Angle/°

C13	C10	C7	133.99(18)
C12	C11	O2	110.52(17)
C11	C12	C13	106.09(17)
C10	C13	C12	107.15(17)
N2	C15	C8	116.82(16)
03	C15	N2	122.37(17)
03	C15	C8	120.79(17)
C17B	C16	N2	121.05(18)
C21B	C16	N2	117.54(19)
C21B	C16	C17B	121.29(18)
C17A	C16	N2	121.05(18)
C21A	C16	N2	117.54(19)
C21A	C16	C17A	121.29(18)
C19	C18	C17B	121.1(2)
C19	C18	C17A	121.1(2)
C20	C19	C18	120.2(2)
C19	C20	C21B	119.8(2)
C19	C20	C21A	119.8(2)
C18	C17B	C16	117.8(2)
C16	C21B	C22B	126.2(4)

C15	C8	C7	114.07(15)	C20	C21B C16 119.8(2)
N1	C9	C14	112.77(16)	C20	C21B C22B 113.6(4)
C8	C9	N1	119.45(17)	C16	C17A C22A 124.46(19)
C8	C9	C14	127.67(17)	C18	C17AC16 117.8(2)
O2	C10	C7	116.24(16)	C18	C17A C22A 117.7(2)
C13	C10	O2	109.72(17)	C20	C21AC16 119.8(2)

Table S4. Hydrogen Bonds for (*R*,*S*)-1

DHA d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N1 H1 O1 ¹ 0.91(3)	1.95(3)	2.857(2)	174(2)

¹+X,1/2-Y,-1/2+Z

Structure of (R)-1

Figure S5. Two views, 90° rotated from each other, of the H-bonded ribbons in (R)-1 running parallel with a-axis. The *R* centers are represented as balls and colored purple. The furanyl rings are all behind the plane of the H-bonded ribbons in the top image.

the *c*-axis).

Table S5 Crystal data and structure refinement for (R)-1.

Table 55 Crystal uata and structure rel	
Identification code	cmck2_twin1_hklf4_a
Empirical formula	$C_{22}H_{22}N_2O_3$
Formula weight	362.41
Temperature/K	293(2)
Crystal system	triclinic
Space group	P1
a/Å	7.1817(3)
b/Å	7.4711(3)
c/Å	16.6298(4)
$\alpha/^{\circ}$	87.768(3)
β/°	87.408(3)
$\gamma/^{\circ}$	87.615(3)
Volume/Å ³	889.98(6)
Ζ	2
$\rho_{calc}g/cm^3$	1.352
µ/mm ⁻¹	0.730
F(000)	384.0
Crystal size/mm ³	$0.134 \times 0.085 \times 0.033$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	11.864 to 152.862
Index ranges	$-8 \le h \le 8, -9 \le k \le 9, -20 \le l \le 20$
Reflections collected	16586
Independent reflections	$6283 [R_{int} = 0.0454, R_{sigma} = 0.0384]$
Data/restraints/parameters	6283/3/507
Goodness-of-fit on F ²	0.989
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0371, wR_2 = 0.0936$
Final R indexes [all data]	$R_1 = 0.0410, wR_2 = 0.0952$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.22
Flack parameter	0.04(12)

Table S6. Bond Lengths for (*R*)-1

1 and	c so. Dona Lengens for (K)-1	
Atom	Atom Length/Å	Atom Atom Length/Å
C1B	O1B 1.244(3)	C7A C10A 1.499(4)
C1B	C2B 1.501(4)	C6B C7B 1.512(4)
C1B	C6B 1.444(4)	C8A C9A 1.357(4)
N1B	C5B 1.364(4)	C8A C15A1.493(4)
N1B	C9B 1.402(4)	C7B C8B 1.532(3)
C1A	O1A 1.234(3)	C7B C10B 1.499(4)
C1A	C2A 1.515(4)	C9A C14A1.497(4)
C1A	C6A 1.444(4)	C8B C9B 1.344(4)
N1A	C5A 1.368(3)	C8B C15B 1.498(4)
N1A	C9A 1.403(3)	C10A C13A 1.354(4)
C2A	C3A 1.524(4)	C9B C14B 1.507(4)
N2A	C15A 1.370(4)	C11A C12A 1.343(5)
N2A	C16A 1.411(4)	C10B C13B 1.352(4)
O2A	C10A 1.373(4)	C12A C13A 1.426(4)
O2A	C11A 1.368(3)	C11B C12B 1.339(5)
C3A	C4A 1.519(4)	C12B C13B 1.426(4)
O3A	C15A 1.227(3)	C16A C17A 1.409(4)
C2B	C3B 1.529(4)	C16A C21A 1.393(4)
N2B	C15B 1.359(4)	C17A C18A 1.385(4)
N2B	C16B 1.424(4)	C17A C22A 1.509(4)
O2B	C10B 1.376(3)	C16B C17B 1.412(4)
O2B	C11B 1.371(4)	C16B C21B 1.385(4)
C4A	C5A 1.502(4)	C18A C19A 1.384(5)
C3B	C4B 1.529(4)	C17B C18B 1.390(4)
O3B	C15B 1.226(3)	C17B C22B 1.510(4)
C5A	C6A 1.361(4)	C19A C20A 1.388(4)
C4B	C5B 1.499(4)	C18B C19B 1.381(5)
C6A	C7A 1.511(3)	C20A C21A 1.388(4)
C5B	C6B 1.363(4)	C19B C20B 1.388(4)
C7A	C8A 1.514(4)	C20B C21B 1.393(4)

Table S7. Bond Angles for (R)-1

Atom	Atom	Atom	Angle/°	Atom Atom Atom Angle/°
O1B	C1B	C2B	120.2(3)	C9B C8B C15B 127.5(2)
O1B	C1B	C6B	121.8(3)	C15B C8B C7B 113.4(2)
C6B	C1B	C2B	118.1(2)	O2A C10AC7A 116.5(2)
C5B	N1B	C9B	122.2(2)	C13A C10A O2A 109.4(2)
01A	C1A	C2A	119.8(2)	C13AC10AC7A 134.1(3)
01A	C1A	C6A	121.9(2)	N1B C9B C14B112.2(2)
C6A	C1A	C2A	118.3(2)	C8B C9B N1B 119.4(2)
C5A	N1A	C9A	122.1(2)	C8B C9B C14B128.1(3)

C1A C2A C3A 112.6(2)	C12AC11AO2A 110.4(3)
C15AN2A C16A128.8(2)	O2B C10B C7B 116.7(2)
C11AO2A C10A106.8(2)	C13B C10B O2B 108.9(2)
C4A C3A C2A 110.3(3)	C13B C10B C7B 134.3(3)
C1B C2B C3B 113.0(3)	C11A C12A C13A 106.5(2)
C15B N2B C16B 126.7(2)	C12B C11B O2B 110.1(3)
C11B O2B C10B 107.1(2)	C10A C13A C12A 106.9(3)
C5A C4A C3A 111.0(2)	C11B C12B C13B 106.6(3)
C2B C3B C4B 109.6(2)	C10B C13B C12B 107.2(3)
N1A C5A C4A 117.0(2)	N2A C15AC8A 117.5(2)
C6A C5A N1A 119.4(2)	O3A C15AN2A 122.6(3)
C6A C5A C4A 123.5(2)	O3A C15AC8A 119.8(2)
C5B C4B C3B 110.6(2)	C17A C16A N2A 116.6(3)
C1A C6A C7A 119.8(2)	C21A C16A N2A 122.7(3)
C5A C6A C1A 120.3(2)	C21A C16A C17A 120.7(3)
C5A C6A C7A 119.9(2)	N2B C15B C8B 117.4(2)
N1B C5B C4B 117.2(2)	O3B C15B N2B 122.6(3)
C6B C5B N1B 118.9(3)	O3B C15B C8B 119.9(2)
C6B C5B C4B 123.8(2)	C16A C17A C22A 121.9(3)
C6A C7A C8A 110.5(2)	C18A C17A C16A 117.7(3)
C10AC7A C6A 111.9(2)	C18A C17A C22A 120.3(3)
C10AC7A C8A 110.7(2)	C17B C16B N2B 117.4(3)
C1B C6B C7B 120.7(2)	C21B C16B N2B 121.8(2)
C5B C6B C1B 119.8(2)	C21B C16B C17B 120.7(3)
C5B C6B C7B 119.4(2)	C19A C18A C17A 122.0(3)
C9A C8A C7A 119.9(2)	C16B C17B C22B 121.4(3)
C9A C8A C15A126.4(2)	C18B C17B C16B 117.6(3)
C15AC8A C7A 113.6(2)	C18B C17B C22B 121.0(3)
C6B C7B C8B 109.8(2)	C18A C19A C20A 119.6(3)
C10B C7B C6B 111.5(2)	C19B C18B C17B 121.9(3)
C10B C7B C8B 110.9(2)	C21A C20A C19A 120.0(3)
N1A C9A C14A112.5(2)	C18B C19B C20B 120.0(3)
C8A C9A N1A 118.9(2)	C20A C21A C16A 119.9(3)
C8A C9A C14A128.5(3)	C19B C20B C21B 119.4(3)
C9B C8B C7B 119.1(2)	C16B C21B C20B 120.3(3)

Molecular modeling of hFFA3

A homology model of hFFA3 was constructed using Modeller 9.17 based on the crystal structure of hFFA1 (PDB code 5TZY)¹ using manual alignment (Clustalx coloring):

FFA1 (5TZY)	D L <mark>P P</mark> Q L S F G L Y VAA F A L G F P L N V LA I R GATAHAR L <mark>R</mark> L T <mark>P</mark> S A V Y A L N L G C S D L L L T V S L P L K A V E A L A S G A W P L P A S L C P V
hFFA3 model	S G N HW F V F S V Y L L T F L V G L P L N L L A L V V F V G K L Q R <mark>P</mark> V A V D V L L L N L T A S D L L L L L F L P F R M V E A A N G M HW P L P F I L C P L
FFA1 (5TZY)	F A V A H F F <mark>P L Y A G G G F L A A L S</mark> A A <mark>R Y L G A A F P L G Y</mark> Q A F R <mark>R P</mark> C Y SWG V C A A I WA L V L C H L G L V F G L E A <mark>P G G</mark> W L D H S N T S L G I N
hFFA3 model	S <mark>G F I F F T T I Y L T A L F L A A V S I E R F L S V A H P L W Y K T R P R L G</mark> Q A G L V S V A C W L L A S A H C S V V Y V I E F S G D I S H - S Q G T N
FFA1 (5TZY)	T P - NG S P V C L E AW D - P A S A G P A R F S L S L L L F F L P L A I T A F C F V G C L R A L A R L T H R R K L R A A W V A G G A L L T L L L C V G
hFFA3 model	G T C Y L E F R K D Q L A I L L P V R L E MA V V L F V V P L I I T S Y C Y S R L V W I L G R G - G S H R R Q R R V A G L L A A T L L N F L V C F G
FFA1 (5TZY)	P Y N A <mark>S</mark> N V A S F L Y P N L G G S W R K L G L I T G A W S V V L N P L V T G Y
hFFA3 model	P Y N V S H V V G Y I C G E - S P A W R I Y V T L L S T L N S C V D P F V Y - Y F S S S G F Q A D F H E L L R R L C G - L W G Q W Q Q E S S - M E L K E Q K G G
FFA1 (5TZY) hFFA3 model	E - EQRADR PAER - KTSEHSQGCG - TGGQVACA

The receptor was prepared using Protein Preparation in Maestro 2015-3 (Schrödinger, LLC) before docking using Induced-fit docking employing default settings with Glide Extra Precision (XP) and OPLS 2005 force field. (R)-1 was prior to docking prepared by LigPrep using default settings. The best pose was selected for redocking without any constraints using Maestro 2019-3 and OPLS3e force field.

Stability of 57

Counterscreen data on 1, 16, 57 and 63

	1	16	57	63
GPR84, agonist, cAMP assay, 10 μM	1±7%	2±4%	1±4%	0±1%
Cav1.2 (L-type) Human Calcium Ion Channel Binding	-20%	13%	12%	1%
(Antagonist Radioligand) Assay, Panlabs, 10 µM				

FFA2 (cAMP assay)

C3: propionate, reference agonist

FFA1 (arrestin BRET assay)

TUG-770: FFA1 agonist reference

FFA2 Antagonism; cAMP % C3; n=3

FFA1 Antagonism; Arrestin BRET; n=4

FFA4 (arrestin BRET assay)

FFA4 Antagonism; Arrestin BRET; n=3

TUG-891: FFA4 agonist reference

Counter screening against FFA1, FFA2, FFA4 and GPR84

Counter screening against FFA1 and FFA4 was carried out using a modified version of a previously described bioluminescence resonance energy transfer (BRET) designed to assess recruitment of βarrestin-2 to each receptor.² Briefly, HEK293T cells were co-transfected with plasmids encoding either human FFA1 or human FFA4 tagged at their C-termini with eYFP and with a plasmid encoding βarrestin-2 tagged at its N-terminal with Nanoluciferase. 24 h post transfection cells were seeded into black with clear bottom 96-well plates that had been coated with poly-D-lysine. Cells were then cultured a further 24 h prior to experiments. Cells were then washed twice with Hank's Balanced salt solution supplemented with 10 mM HEPES (HBSSH) then incubated at 37 °C in HBSSH for 30 min prior to running the assay. The Nluc substrate, coelenterazine h was then added to a final concentration of 5 µM and cells were incubated at 37 °C for 10 min prior to adding test agonists. Following a further 5 min incubation, luminescent emission at 475 nm and 535 nm was measured using a Pherastar FS reader (BMG Labtech, Aylesbury, UK) plate reader set for bottom plate optics. The BRET ratio was then calculated as 535/475 emissions and all BRET ratio values were normalized against the maximal BRET ratio obtained using reference agonists for the respective receptors (TUG-891 for FFA4, TUG-770 for FFA1). For antagonism studies, the same protocol was used, however the antagonist was added 15 min prior to the addition of an EC_{80} concentration of the reference agonist for each receptor.

Counter screening for FFA2 was carried out using a cAMP assay. Flp-In T-Rex 293 cells generated to stably express human FFA2 tagged at is C-terminal with eYFP were first treated with doxycycline (100 ng/mL) overnight to induce receptor expression. Cells were then detached and used directly in an HTR-FRET cAMP assay (CisBio) according to the manufacturer's protocol and measured using a Pherastar FS plate reader (BMG Labtech, Aylesbury, UK). For these experiments, 2000 cells were used per well in a low volume 384-well plate and compounds were tested against their ability to inhibit the cAMP response to 1 μ M forskolin for 30 min. Propionic acid was used as reference agonist and for antagonism studies the ability of compounds to inhibit the response to and EC₈₀ concentration of C3 was tested.

Counter screening for GPR84 was carried out using a cAMP assay. Flp-In T-Rex 293 cells generated to stably express human GPR84 tagged at is C-terminal with Gia were first treated with doxycycline (100 ng/mL) overnight to induce receptor expression. Cells were then detached and used directly in an HTR-FRET cAMP assay (CisBio) according to the manufacturer's protocol and measured using an Envision plate reader (PerkinElmer). For these experiments, 5000 cells were used per well in a low volume 384-well plate and compounds were tested against their ability to inhibit the cAMP response to 1 μ M forskolin for 45 min. TUG-1985 was used as reference agonist.

References

1. Lu, J.; Byrne, N.; Wang, J.; Bricogne, G.; Brown, F. K.; Chobanian, H. R.; Colletti, S. L.; Di Salvo, J.; Thomas-Fowlkes, B.; Guo, Y.; Hall, D. L.; Hadix, J.; Hastings, N. B.; Hermes, J. D.; Ho, T.; Howard, A. D.; Josien, H.; Kornienko, M.; Lumb, K. J.; Miller, M. W.; Patel, S. B.; Pio, B.; Plummer, C. W.; Sherborne, B. S.; Sheth, P.; Souza, S.; Tummala, S.; Vonrhein, C.; Webb, M.; Allen, S. J.; Johnston, J. M.; Weinglass, A. B.; Sharma, S.; Soisson, S. M., Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. *Nat. Struct. Mol. Biol.* **2017**, *24* (7), 570-577.

2. Shimpukade, B.; Hudson, B. D.; Hovgaard, C. K.; Milligan, G.; Ulven, T., Discovery of a Potent and Selective GPR120 Agonist. *J. Med. Chem.* **2012**, *55* (9), 4511–4515.