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APPENDIX

A. Computation of IPCW Kendall’s τ

Letting (X1, Y1) and (X2, Y2) be two independent realizations of (X,Y ), the first and second gap

times, and letting ψ12 = I{(X1 −X2)(Y1 − Y2) > 0} − I{(X1 −X2)(Y1 − Y2) < 0} indicate the

concordant/discordant status of the pair, the Kendall’s τ (Gibbons and Kendall, 1990) can be

estimated from uncensored bivariate data {(Xi, Yi), i = 1, . . . , n} by(
n

2

)−1∑
i<j

ψij

. In the presence of censoring events (VX , VY ), respectively related to the two gap times, the esti-

mation of τ can only be based on orderable pairs. Let one observation be denoted as (X̃, Ỹ , δX , δY ),

where X̃ = min(X,VX), Ỹ = min(Y, VY ), δX = I(X < VX) and δY = I(Y < VY ). Oakes (1982)

showed that the pair (i, j) is orderable if {X̃ij < ṼXij , Ỹij < ṼYij}, where X̃ij = min(Xi, Xj),

Ỹij = min(Yi, Yj), ṼXij = min(VXi, VXj), and ṼYij = min(VY i, VY j). Letting Lij be the indica-

tor of this event, and p̂ij be an estimator of the probability of being orderable pij = Pr(VX >

X̃ij ;VY > Ỹij |X̃ij , Ỹij), Lakhal-Chaieb and others (2010) proposed the weighted estimate as

τ̂m =

∑
i<j

Lij
p̂ij

−1∑
i<j

Lijψij
p̂ij

To identify orderable pairs and estimate the corresponding pij , Lakhal-Chaieb and others (2010)

showed that Lij can be reduced to that Xi and Xj being uncensored, Ỹij being observed, and

that {VXi > Xi + Ỹij ;VXj > Xj + Ỹij}. The conditional probability of a pair being orderable is

then

pij = Pr{VXi > Xi + Ỹij ;VXj > Xj + Ỹij |Xi, Xj , Ỹij}

= G(Xi + Ỹij)×G(Xj + Ỹij)

The probability is estimated by

p̂ij = Ĝ(Xi + Ỹij)× Ĝ(Xj + Ỹij)
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where Ĝ(.) is the Kaplan-Meier estimator of G(.) based on {(X̃k + Ỹk, 1 − δYk), k = 1, · · · , n}.

The standard error of the Kendall’s τ is estimated by the jackknife technique.

B. An example of using the peeling algorithm to calculate the familywise

likelihood

Supplementary Figure 1 shows an example of a hypothetical family with 3 generations. Without

loss of generality, we assume that gTobs = (g1, g4) and let gTmis = (g2, g3, g5, g6, g7) and HT =

(h1, · · · , h7) denote vectors of the unknown genotypes and the cancer history of the family,

respectively. The peeling algorithm peels through the family by considering individuals 1, 2, 3 as

anterior and individuals 5, 6, 7 as posterior of individual 4. We can then compute the family-wise

likelihood Pr(h|gobs) as follows:

Pr(h|gobs)

= Pr(h4|gobs)× Pr(h1, h2, h3|gobs)× Pr(h5, h6, h7|gobs)

= Pr(h4|g4)× Pr(h1|g1) · Pr(h2, h3|g1, g4)× Pr(h5, h6, h7|g1, g4)

= Pr(h4|g4)× Pr(h1|g1) ·

[∑
g2

Pr(h2|g2) Pr(h3|g1, g2, g4) Pr(g2|g1, g4)

]

×

[∑
g5

Pr(h5|g5) Pr(h6, h7|g1, g4, g5) Pr(g5|g1, g4)

]

= Pr(h4|g4)× Pr(h1|g1) ·

[∑
g2

Pr(h2|g2) Pr(g2|g4)

{∑
g3

Pr(h3|g3) Pr(g3|g1, g2, g4)

}]

×

[∑
g5

Pr(h5|g5) Pr(g5)

{∑
g6

Pr(h6|g6) Pr(h7|g4, g5) Pr(g6|g4, g5)

}]

= Pr(h4|g4)× Pr(h1|g1) ·

[∑
g2

Pr(h2|g2) Pr(g2|g4)

{∑
g3

Pr(h3|g3) Pr(g3|g1, g2, g4)

}]

×

[∑
g5

Pr(h5|g5) Pr(g5)

{∑
g6

Pr(h6|g6) Pr(g6|g4, g5)

(∑
g7

Pr(h7|g7) Pr(g7|g4, g5)

)}]
.
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Supplementary Figure 1. A hypothetical pedigree to illustrate the likelihood calculation using
the Elston-Stewart algorithm. The family consists of three generations. The circle indicates the
female member while the square indicates the male. The horizontal lines indicate marriage and
vertical lines indicate the next generation. In this example, the genotype is assumed unknown for
every members except the 1st and 4th individuals.

All probabilities in the last equation are straightforward to compute when the mode of inheritance

is known.

C. Bayesian estimation procedure

In this study, we used the MCMC algorithm to generate posterior distributions for model pa-

rameter estimation. The algorithm integrates the Metropolis-Hastings algorithm, which draws

posterior samples by comparing posterior densities from two adjacent iterations, with the Gibbs

sampling scheme, which allows for sampling multiple model parameters within an iteration by

utilizing the full conditional likelihood. More details about the MCMC algorithm can be found in

Hoff (2009); Gelman and others (2014). Here, we show the Bayesian inference in the frailty model.

The inference of the final model we used for the LFS study can be made by simply removing the

part for the frailty estimation.
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Supplementary Figure 2. Graphical representation of the Bayesian frailty model. Λ0 is the cumu-
lative baseline rate function; φ is the hyper-parameter of frailty ξ.

Supplementary Figure 2 shows the frailty model represented by a directed graph that con-

nects the observed data, model parameters and the hyper-parameter, and details about MCMC

algorithm is summarized in the following:

• Prior setting

β ∼ N(0, 1002); γ: flat prior; φ ∼ Gamma(.01, .01)

• Proposal setting

Given θ(t−1), generate θ∗ ∼ q(θ(t−1))

• Iterative updating:

1) Compute proposal adjustment adj = q(θ(t−1)|θ∗)
q(θ∗|θ(t−1))

;

2) Let h denote the cancer phenotype (or survival) data, and p(h|θ∗, others) denote the

full conditional distribution of θ∗, and compute the acceptance ratio

r = min

(
p(h|θ∗, others)p(θ∗)

p(h|θ(t−1), others)p(θ(t−1))
∗ adj, 1

)
3) Take

θ(t) =

{
θ∗, with probability r

θ(t−1), with probability 1− r
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4) Sample u ∼ Uniform(0, 1), and set θ(t) = θ∗ if u < r or θ(t) = θ(t−1) otherwise.

Since we have parameters (e.g., γ, ξ and φ) that only take positive values, we employ a

log-normal proposal. Suppose γ(t−1) ∈ (0,+∞) ∼ logN(µ, σ), and log γ(t−1) ∈ (−∞,+∞) ∼

N(µ′, σ′). To propose a new sample, we generate log γ∗ = log γ(t−1) + ε where ε ∼ N(0, 1), by

which we can obtain γ∗ = exp(log γ∗) ∈ (0,+∞). To adjust the asymmetric proposal density, we

calculate

adj =
lnN(γ(t−1)|lnγ∗)
lnN(γ∗|lnγ(t−1))

=

1
γ(t−1)σ

√
2π

exp[− (lnγ(t−1)−lnγ∗)2

2σ2 ]

1
γ∗σ
√

2π
exp[− (lnγ∗−lnγ(t−1))2

2σ2 ]
=

γ∗

γ(t−1)

which is simply the ratio of the proposed samples.

The posterior density for φ was constructed as previously described (Clayton, 1991). In brief,

let φ ∼ Gamma(νa, νb), or f(φ|νa, νb) =
ννab

Γ{νa}φ
νa−1 exp {−νbφ}, where νa, νb are the shape and

rate of the Gamma distribution, respectively. The posterior density of φ is then

Pr(φ|ξ) ∝ Pr(ξ|φ) Pr(φ|νa, νb)

=

I∏
i

φφξ
(φ−1)
i exp(−φξi)

Γ(φ)

ννab φ(νa−1) exp(−νbφ)

Γ(νa)

=

φIφ+νa−1 exp(−νbφ) exp

([
(φ− 1) log

∏I
i ξi − φ

∑I
i ξi

])
Γ(φ)I

.

where I denotes the number of families.

Finally, we implemented this MCMC algorithm in R as follows.

To check the convergence of the algorithm, we applied the proposed models both with and

without frailty term to the real data. Supplementary Figure 3, Supplementary Figure 4, and

Supplementary Figure 5 show the results. Both models converges well and the results are nearly

identical.
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Supplementary Figure 3. Trace plots and density distribution of posterior samples (after removing
burn-in) from the proposed method. The red line indicates posterior median estimate. The density
distribution is estimated based on the histogram.
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Supplementary Figure 4. Trace plots and density distribution of posterior samples (after removing
burn-in) from the frailty model. The red line indicates posterior median estimate. The density
distribution is estimated based on the histogram.
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Supplementary Figure 5. Comparison of Baseline Estimates for frailty vs. no frailty models.

D. Sensitivity prior analysis

We performed sensitivity analysis by comparing penetrance estimates under different prior set-

tings. We tested 6 combinations of priors for β and γ: three different priors for β, including

Nomral(0, 1002), Normal(0, 102) and a flat prior, and three different priors for γ including

Gamma(0.1, 0.1) and a flat prior. Supplementary Figure 6 shows their penetrance estimates for

the first or the second primary cancers for each subgroup.
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Supplementary Figure 6. Penetrance estimates from sensitivity prior analysis for the first (left)
or the second primary cancer (right). Penetrances estimated from the different combinations of
prior settings are shown with the same color and line type for each subgroup.

E. Penetrance Estimates from the Frailty Model

Penetrance estimates from the frailty model and the model without frailty are shown in Supple-

mentary Figure 7. There is no obvious difference between the two sets of estimates.
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Supplementary Figure 7. Comparison of penetrance estimates generated from frailty model and
model without frailty.

F. Illustration of R-code

We provide estimation results for a simulated dataset with 50 families. The data generation

procedure is described in Section 4. As shown in Supplementary Figure 8, our code successfully

recovers the true values of all parameters. The complete set of source code, including the set that

reproduces the results presented in this section, is available at http://github.com/wwylab/MPC.

http://github.com/wwylab/MPC
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Supplementary Figure 8. Our code successfully recovers the true values of all parameters. Here
(blue) solid lines represent posterior estimates and (red) dashed lines represent true values.

G. Additional Supplementary Figures and Tables

This section contains addition figures and tables referred to in the main manuscript of this article.
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Supplementary Table 1. Summary of the LFS data referred in Section 2.1. ”W/ carriers”, family
with at least one mutation carrier; ”W/O carriers”, family with no observed mutation carriers.

W/ carriers W/O carriers total
Number of families 17 172 189
Number of individuals 2,409 1,297 3,706
Average family size 142 8 20
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Supplementary Figure 9. Kaplan-Meier estimates of the survival distributions for the first or the
second gap times of the LFS dataset without probands, referred in Section 2.2. The solid lines
denote mutation carriers. The dotted lines denote individuals either with a wildtype or without
any genotype information. Blue denotes the first gap time W1 and pink denotes the second gap
time W2. The shaded areas are the 95% confidence bounds. A log-rank test gave p-values < 10−7

comparing the first and second gap time distributions for individuals that are TP53 mutation
carriers, or otherwise, respectively.
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