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Appendix A.

1. Proof of Theorem 4.1

Note that Cov

(√
n(θ̂i − θ̂N )

σiN
,

√
n(θ̂j − θ̂N
σjN

)
=

Σij − ΣiN − ΣjN + ΣNN
σiNσjN

.

Assume Σ is exchangeable, e.g., Σ = σ2IN + ρσ2 (1N1
′
N − IN ) where 1N is a vector of N

1′s and IN is the N by N identity matrix.

Then, for all i, j, i 6= j, Cov (Wi,Wj) = Cov

(√
n(θ̂i − θ̂N )

σiN
,

√
n(θ̂j − θ̂N
σjN

)
=
ρσ2 − 2ρσ2 + σ2

2σ2(1− ρ)
=
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σ2(1− ρ)

2σ2(1− ρ)
=

1

2
for all ρ ∈

(
− 1

N − 1
, 1

)
and for all σ2 > 0. Also, ci,1−α is constant across all

values of ρ and σ2.

It follows from monotonicity of the probability measure that

Powerα,n (Σ,∆,∆min) = P

 ⋂
i:∆i>∆min

{
Wi < −ci,1−α +

∆i
√
n√

2σ2(1− ρ)

}
is monotone increasing in ρ and monotone decreasing in σ2.

2. Simulation Study and EXTEND

In this section, we give additional details on how estimation was performed in the simulation

studies and for EXTEND. The SMART designs in the simulation studies and the estimation

procedures are based off those in Ertefaie and others (2015). We estimated θ and Σ using AIPW.

For SMART design 1, the MSM is m(T ;β) = β0 +β1A1 +β2A
NR
2 . The conditional means are:

E[Y | Ā2 = EDTRV
k , Ō2] = γ0 + γ1o11 + γ2o12 + γ3o21 + γ4o22 + a1(γ5 + γ6o11) + γ7I(o21 < 0))a2

E[Y | A1 = EDTRk,1, O1] = γ8 + γ9o11 + γ10o12 + γ11a1 + γ12a1o11

The true β is approximately (1.499, 0.251, 0.052). Then, θ̂AIPW = Dβ̂AIPW = (1.802, 1.300, 1.699, 1.197)

where

D =


1 1 1
1 −1 1
1 1 −1
1 −1 −1


The rows of D correspond to each of the four EDTRs listed in Table 2.

For SMART design 2, the MSM is:

m(T ;β) = β0 + β1I(A1 = −1) + I(A1 = −1)[β2I(AB2 = 1) + β3I(AB2 = 2) + β4I(AB2 = 3)].
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The conditional means are:

E[Y | ā2 = EDTRV
k , ō2,γ] =γ0 + γ1o11 + γ2o12 + γ3o21 + γ4o22 + I(a1 = −1)(γ5 + γ6o11)

+ I(o22 < 0)I(a1 = −1)[γ7I(a2 = 1) + γ8I(a2 = 2) + γ9I(a2 = 3) + γ10o21I(a2 = 2)]

E[Y | a1 ∈ EDTRk,1, o1,γ] =γ11 + γ12o11 + γ13o12 + γ14I(a1 = −1) + γ15I(a1 = −1)o11

The true βAIPW value is approximately (1.500, 2.001,−0.249, 0.750, 0.000). Then, θ̂AIPW = Dβ̂AIPW =

(1.500, 3.501, 3.251, 4.251, 3.501) where

D =


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1


The rows of D correspond to each of the five EDTRs listed in Table 3.

For EXTEND, we considered the MSM m(T ;β) = β0 + β1A1 + β2A
R
2 + β3A

NR
3 . Let r denote

the indicator of response to the initial NTX treatment. The conditional means are

E[Y | ā2 = EDTRV
k , ō2,γ] =γ0 + γ1o11 + γ2o12 + γ3o21 + γ4o22 + a1(γ5 + γ6o11) + ra2(γ7 + γ8o21)

+ (1− r)a2(γ9 + γ10o21)

E[Y | a1 ∈ EDTRk,1, o1,γ] =γ11 + γ12o11 + γ13o12 + γ14a1 + γ15a1o11 + γ16a1o12

The estimated β̂IPW is (8.86,−0.99,−0.24,−0.07) and the estimated β̂AIPW is (8.84,−0.90,−0.09,−0.21).

Then, θ̂IPW = Dβ̂IPW = (7.56, 9.53, 8.05, 10.02, 7.71, 9.68, 8.19, 10.17) and θ̂AIPW = Dβ̂AIPW =

(7.65, 9.44, 7.83, 9.62, 8.06, 9.85, 8.24, 10.03) where

D =



1 1 1 1
1 −1 1 1
1 1 −1 1
1 −1 −1 1
1 1 1 −1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 −1


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The rows of D correspond to each of the eight EDTRs listed in Table 4.

Appendix B.

3. MCB vs. Alternative Approaches

We now compare sizing a SMART using MCB with sizing for detecting a difference in pairwise

comparisons. We also show that the required sample size for sizing SMARTs based off pairwise

comparisons is sensitive to the choice of covariance matrix Σ.

Ogbagaber and others (2016) proposed a method for sizing SMARTs to detect differences

when performing pairwise comparisons while adjusting for multiple comparisons using the Bon-

ferroni correction. For each pairwise comparison, the sample size is computed so that a difference

can be detected with probability 1− β according to the following equation:

n =
σ2
ij(z1−α/2g + z1−β)2

∆2
ij

(3.1)

where σ2
ij = Var(θ̂i − θ̂j), zq is the q-quantile of the normal distribution, g is the number of

pairwise comparisons, and ∆ij = θi−θj . The sample size is then chosen to be the maximum over

all pairs i, j of Equation 3.1.

We consider two SMARTs: 1) simulation design 1 with four EDTRs; 2) simulation de-

sign 2 with five EDTRs. The true mean EDTR outcome vector for simulation design 1 is

(1.802, 1.300, 1.699, 1.197), and for design 2 is (1.500, 3.501, 3.251, 4.251, 3.501).

For design 1 (4 EDTRs), we consider all pairwise comparisons in which there is a true difference

of 0.1 or more. This is all pairwise comparisons. For design 2 we consider all pairwise comparisons

such that they have true difference 0.7 or more: (1,2), (1,3), (1,4), (1,5), (2,4), (3,4), (4,5).

For MCB in design 1, the power is the probability of excluding from the set of best all EDTRs

with outcome 0.1 or more away from the best. For MCB in design 2, the power is the probability of

excluding from the set of best all EDTRs with outcome 0.7 or more away from the best. We show
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in Table 1 the sample size to achieve 1− β = 80% power for each of the pairwise comparisons as

well as the required sample size to achieve 80% power when using our MCB based methodology.

We see that the required sample sizes to power a SMART are lower for MCB than for pairwise

comparisons and that the pairwise comparisons based approach is also sensitive to the covariance

matrix Σ. Note the large sample sizes required by both methods is because we are powering to

detect very small effect sizes.

4. Pilot SMARTs

In this section we discuss how to use data from a pilot SMART to estimate the correlations in

the covariance matrix, Σ, which can be used for sizing a full-scale SMART. We simulated pilot

SMARTs with 50 individuals for the two simulation designs presented in the main manuscript.

We constructed confidence intervals for the power by taking 1000 bootstrap samples of size

50 from the simulated pilot SMART data and re-estimated the covariance matrix for each boot-

strapped pilot SMART using AIPW. For the known variance case (diagonal elements of Σ known)

the covariance matrix is obtained by transforming the AIPW estimated covariance matrices to

correlation matrices, and then transforming back to covariance matrices by left and right mul-

tiplying the correlation matrices by the diagonal matrix with entries consisting of the square

root of the variances. For the unknown variance covariance matrix, the unstructured covariance

matrix is computed for each bootstrapped pilot SMART (both the diagonal and off diagonal

elements) using AIPW. Then, the power is computed across a grid of sample sizes for each of

the bootstrapped covariance matrices to obtain the bootstrap power confidence intervals. The

results are shown in Figure 3. When the variances are known, the proposed bootstrap algorithm

yields accurate power predications. When the variances are unknown and estimated from the

pilot SMART, the bootstrapped confidence intervals yield similar power to using a conservative

estimate of the covariance matrix for design 1 (diagonal matrix with known variances). For design
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2 when the variances are unknown, there are some gains in estimated power compared to using

a conservative estimate of the covariance matrix.
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Pairwise MCB

Covariance Matrix 4 EDTRs 5 EDTRs 4 EDTRs 5 EDTRs

ΣTrue 1910 280 1274 247
ΣConservative 24357 894 16730 786

Table 1. Sample size to achieve power 1 − β = 80% for pairwise comparisons and for MCB. ΣTrue is the
true covariance matrix. ΣConservative is a diagonal covariance matrix with all variances set to the true
variances. Note that the required sample sizes for pairwise comparisons are higher than those for our
MCB based methodology.

EDTR Decision Rule

EDTR1 : (+1,+1) start with A1 = +1. If the patient is non-responsive,
take A2 = +1; if the patient is responsive, continue with A1 = +1

EDTR2 : (−1,+1) start with A1 = −1. If the patient is non-responsive,
take A2 = +1; if the patient is responsive, continue with A1 = −1

EDTR3 : (+1,−1) start with A1 = +1. If the patient is non-responsive,
take A2 = −1; if the patient is responsive, continue with A1 = +1

EDTR4 : (−1,−1) start with A1 = −1. If the patient is non-responsive,
take A2 = −1; if the patient is responsive, continue with A1 = −1

Table 2. SMART design 1: EDTR

EDTR Decision Rule

EDTR1 : (1, 0) start with A1 = +1. If the patient is non-responsive,
intensify A1; if the patient is responsive, continue with A1 = +1

EDTR2 : (−1, 4) start with A1 = −1. If the patient is non-responsive,
take A2 = 4; if the patient is responsive, continue with A1 = −1

EDTR3 : (−1, 1) start with A1 = −1. If the patient is non-responsive,
take A2 = 1; if the patient is responsive, continue with A1 = −1

EDTR4 : (−1, 2) start with A1 = −1. If the patient is non-responsive,
take A2 = 2; if the patient is responsive, continue with A1 = −1

EDTR5 : (−1, 3) start with A1 = −1. If the patient is non-responsive,
take A2 = 3; if the patient is responsive, continue with A1 = −1

Table 3. SMART design 2: EDTR
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EDTR Decision Rule

EDTR1 : (+1,+1,+1) start with A1 = +1. If the patient is non-responsive,
take A2 = +1; if the patient is responsive, take A2 = +1

EDTR2 : (−1,+1,+1) start with A1 = −1. If the patient is non-responsive,
take A2 = +1; if the patient is responsive, take A2 = +1

EDTR3 : (+1,−1,+1) start with A1 = +1. If the patient is non-responsive,
take A2 = +1; if the patient is responsive, take A2 = −1

EDTR4 : (−1,−1,+1) start with A1 = −1. If the patient is non-responsive,
take A2 = +1; if the patient is responsive, take A2 = −1

EDTR5 : (+1,+1,−1) start with A1 = +1. If the patient is non-responsive,
take A2 = −1; if the patient is responsive, take A2 = +1

EDTR6 : (−1,+1,−1) start with A1 = −1. If the patient is non-responsive,
take A2 = −1; if the patient is responsive, take A2 = +1

EDTR7 : (+1,−1,−1) start with A1 = +1. If the patient is non-responsive,
take A2 = −1; if the patient is responsive, take A2 = −1

EDTR8 : (−1,−1,−1) start with A1 = −1. If the patient is non-responsive,
take A2 = −1; if the patient is responsive, take A2 = −1

Table 4. EXTEND trial: EDTR

R

Stage-1 treatment A1 = +1

Stage-1 treatment A1 = -1

Response

Response

Continue on A1

R

Stage-2 treatment A2 = +1

Stage-2 treatment A2 = -1

Continue on A1

Stage-2 treatment A2 = +1
R

Stage-2 treatment A2 = -1

Yes

Yes

No

No

Fig. 1. SMART simulation design 1 with four EDTRs
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R

Stage-1 treatment A1 = -1

Stage-1 treatment A1 = +1

Response

Response

Continue on A1

R

Stage-2 treatment A2 = 2

Continue on A1

Intensify A1

Yes

Yes

No

No

Stage-2 treatment A2 = 3

Stage-2 treatment A2 = 4

Stage-2 treatment A2 = 1

Fig. 2. SMART simulation design 2 with five EDTRs
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Pilot Design 1: Power vs. Sample Size
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Pilot Design 2: Power vs. Sample Size

Fig. 3. Power by sample size computed using estimates of Σ obtained from pilot SMARTs with 50
individuals. ΣPilot, Unknown Var. is the covariance matrix when estimating both diagonal elements and
correlations in Σ from the pilot SMART, ΣPilot, Known Var. is the covariance matrix when estimating only
the correlations and the variances are known. ΣConservative is the diagonal covariance matrix with known
variances, and ΣTrue is the true covariance matrix. The error bars represent 95% bootstrap confidence
intervals.


