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1. Selection of 15 unusual areas

Unusual areas were selected under two different spatial scenarios: i) isolated and ii) clustered. In

order to obtain a good representation of areas, these were selected based on a range of expected

cases and spatial risk ηi as we expect that the levels of these will affect the ability of the model

to detect a particular area.

For scenario i, we selected 3 areas from each of the percentiles 10th, 25th, 50th, 75th and 90th.

At each percentile, each of the 3 areas corresponds to one of the 3 levels of the overall spatial

risk ηi: low (within the 10th-30th percentiles), medium (within the 45th-55th percentiles) and

high (within the 70th-90th percentiles). For spatial scenario ii, we selected 3 clusters consisting

of 4, 5, and 6 areas respectively. For each of these clusters, areas with a variety of levels in their

expected cases and spatial risk were selected. Under each scenario, 15 areas were selected to be
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unusual.

2. Construction of unusual temporal patterns

If γt, for t = 1, . . . , 15, is the common time trend, and γ∗t is the time trend corresponding to the

unusual areas, then we assumed the following 4 temporal scenarios:

1. Isolated: γ∗t = γt + log(2), for t = {3, 10}, γ∗t = γt− log(2), for t = {6, 12, 15}, and γ∗t = γt

otherwise.

2. Consecutive-variable: γ∗t = γt − log(2) for t = 11, γ∗t = γt − log(2.2) for t = {12, 15},

γ∗t = γt + log(2.2) for t = 13, γ∗t = γt + log(1.8) for t = 14, and γ∗t = γt otherwise.

3. Consecutive-stable: γ∗t = γt + log(2), for t = 1, γ∗t = γt−1 + ε, for t = {2, 3}, where ε

represents small random noise, and γ∗t = γt otherwise.

4. Longer time series: γ∗t = γt + log(2), for t = {6, 14, 25, 30}, γ∗t = γt − log(2), for t = {11,

23} and γ∗t = γt + log(2.2), for t = 13, γ∗t = γt − log(2.2), for t = {12, 15} and γ∗t = γt

otherwise.

Figure 1 shows the unusual temporal patterns corresponding to the above scenarios.

3. Simulation study: Short time series

We carried out a simulation study where 8 time points are considered, following closely the

simulation design of the original paper by Li and others (2012). The spatial scenario with isolated

unusual areas was used.

If γt, for t = 1, . . . , 8, is the common time trend and γ∗t is the time trend corresponding to

the unusual areas, we assumed the following 3 temporal scenarios:

1. Scenario 1: γ∗t = γt +log(2) for t = {1, 7}, γ∗t = γt− log(2) for t = 4, and γ∗t = γt otherwise.
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Fig. 1: Temporal scenarios for the main simulation study (15 and 30 time points)

2. Scenario 2: γ∗t = γt + log(2) for t = {3, 4}, and γ∗t = γt otherwise.

3. Scenario 3: γ∗t = γt + log(2) for t = {1, 2}, and γ∗t = γt otherwise.

Figure 2 shows the unusual temporal patterns plotted against the common one. Results from



4 A. Boulieri, J. Bennett and M. Blangiardo

the simulation study with short time series can be seen in Table 1.
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Fig. 2: Temporal scenarios for the simulation study with short time series (8 time points)
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Table 1. Performance for the simulation study with short time series; 95 %CI are in parentheses.

%FP sensitivity specificity global error

Baseline model
Scenario 1 0.079(0.062,0.125) 0.885(0.867,0.933) 0.994(0.990,0.995) 0.014(0.009,0.014)
Scenario 2 0.089(0.064,0.133) 0.889(0.867,0.933) 0.993(0.990,0.995) 0.014(0.009,0.019)
Scenario 3 0.059(0.00,0.083) 0.844(0.750,0.933) 0.996(0.995,1.00) 0.015(0.009,0.019)

Proposed model
Scenario 1 0.030(0.025,0.054) 0.733(0.689,0.778) 0.996(0.999,0.999) 0.011(0.007,0.008)
Scenario 2 0.159(0.121,0.192) 0.667(0.600,0.733) 0.998(0.997,0.998) 0.008(0.007,0.009)
Scenario 3 0.080(0.046,0.115) 0.715(0.642,767) 0.999(0.998,0.999) 0.006(0.006,0.007)
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4. Simulation study: Modified model

We carried out two additional simulations using a modified version of the proposed model. Eq.

2.7 is as follows:

log(φit) = πi + δt + hit + logit(τ), (4.1)

where hit ∼ N(0, σ2), with σ2 following a weakly informative half Normal prior. The scenarios

that we selected for the simulations were S1 and S6; S1 corresponds to the ‘isolated time pattern

and isolated areas’ and gave a very good performance under our proposed model, while S6 cor-

responds to the ‘consecutive-stable time pattern and clustered areas’ and gave poor performance

respectively (see Table 2 in main paper).

Comparison between the model above (Modified model) and our model (Proposed model)

for scenarios S1 and S6 is presented in Table 2. The proportion of false positives increases from

0.022 to 0.044 for S1, and from 0.225 to 0.273 for S6, while sensitivity also increases, but less

importantly. This suggests that although there is some gain in the power of the model, the loss

in terms of false positives is more substantial, which might be due to overparameterisation of the

model.

Table 2. Comparison of performance between the proposed and the modified model for scenarios
S1 and S6; 95 %CI are in parentheses.

%FP sensitivity specificity global error

Proposed model
S1 0.022(0.000,0.036) 0.710(0.671,0.750) 1.000(0.999,1.000) 0.006(0.005,0.007)
S6 0.225(0.190,0.266) 0.932(0.911,0.956) 0.996(0.995,0.997) 0.005(0.004,0.006)

Modified model
S1 0.044 (0.021, 0.062) 0.725 (0.683, 0.763) 0.999(0.999,1.000) 0.006(0.005,0.006)
S6 0.273(0.242,0.311) 0.942(0.911,0.972) 0.995(0.994,0.996) 0.006(0.005,0.007)
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5. Additional material

Table 3. Summary statistics for expected data used for the main simulation study (asthma hos-
pitalisation counts)

Min 1st Quartile Median Mean 3rd Quartile Max

Normal 8 22 29 33.2 39 108
Increased 16 44 58 66.41 78 216
Reduced 4 11 14.5 16.6 19.5 54

Table 4. Summary statistics for raw accidents data at district level

Year Q2.5% Mean Q97.5%

2005 44 74.8 89.8
2006 44 74.2 89
2007 43 72.5 87
2008 40 66.9 79
2009 38.3 63.9 75.8
2010 34.3 59.3 72.8
2011 34 60.9 72.8
2012 35.3 60.6 70
2013 34.3 57.2 66.8
2014 37 60 70
2015 36 58.5 69

Table 5. Summary statistics for accident rates data at district level

Year Q2.5% Mean Q97.5%

2005 0.025 0.045 0.055
2006 0.024 0.046 0.053
2007 0.024 0.044 0.051
2008 0.022 0.041 0.050
2009 0.021 0.040 0.047
2010 0.019 0.036 0.042
2011 0.019 0.037 0.043
2012 0.020 0.037 0.042
2013 0.018 0.035 0.041
2014 0.020 0.038 0.047
2015 0.020 0.036 0.043
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Fig. 3: Simulated common trend plotted against estimated posterior means for scenarios S1 to
S6
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Fig. 4: Simulated unusual trend plotted against estimated posterior means for 15 unusual areas
for scenarios S1 to S6
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Fig. 5: Degree of convergence R̂ estimated by the Brooks-Gelman-Rubin statistic across all model
parameters (case study on road traffic accidents data)
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Fig. 6: Map of areas with common and unusual accident risk in England with London districts
enlarged (case study on road traffic accidents data)


