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APPENDIX

The Supplementary Materials contain the specification of the investigated models and mathemat-

ical details of the CTMC model in Section A, implementational details in Section B, a practical

solution of how to choose initial values and starting values in Section C, details of the simulation

studies in Section D and further inference results for the rotavirus data in Section E.

A. Investigated Models

A.1 CTMC Model

The transition rates are related with the state variables in the following way:

∆S1(t) = ∆N�S1(t)−∆NS1S2(t)−∆NS1I1(t) + ∆NR1S1(t)

∆I1(t) = ∆NS1I1(t)−∆NI1I2(t)−∆NI1R1(t)
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2 T. Stocks and others

Model name Transmission model Observation model
DtSt deterministic no overdispersion
DtSt+ deterministic overdispersion
StSt CTMC no overdispersion
StSt+ CTMC overdispersion
St+St CTMC with overdispersion no overdispersion
St+St+ CTMC with overdispersion overdispersion

Table A.1. Specification of the investigated models, where we write CTMC for the model in Section 3.1.1,
CTMC with overdispersion as in 3.1.2 and deterministic as in 3.1.3 . Note that the + in the model names
accounts for overdispersion in the respective model component.

∆R1(t) = ∆NI1R1(t)−∆NR1R2(t)−∆NR1S1(t)

∆S2(t) = ∆NS1S2(t)−∆NS2S3(t)−∆NS2I2(t)

∆I2(t) = ∆NS2I2(t) + ∆NI1I2(t)−∆NI2I3(t)−∆NI2R2(t) (A.1)

∆R2(t) = ∆NI2R2(t) + ∆NR1R2(t)−∆NR2R3(t)−∆NR2S2(t)

∆S3(t) = ∆NS2S3(t) + ∆NR3S3(t)−∆NS3�(t)−∆NS3I3(t)

∆I3(t) = ∆NS3I3(t) + ∆NI2I3(t)−∆NI3�(t)−∆NI3R3(t)

∆R3(t) = ∆NI3R3(t) + ∆NR2R3(t)−∆NR3�(t)−∆NR3S3(t)

B. Implementational details

In the following we give the implementational details for the two inference methods used, namely

trajectory matching for the deterministic transmission models and iterated filtering for the

stochastic transmission models. The code is made available in Stocks (2017).

B.1 Deterministic transmission model

As optimizing algorithm we choose the Nelder-Mead method (Nelder and Mead, 1965). In order to

address the potential problem of local maxima in the optimization we use 100 randomly chosen

parameter constellations as starting values for the fitting algorithm. These values are drawn
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Iterated filtering and model selection for Markovian epidemic models 3

uniformly from a hypercube which covers the estimates for βi, i ∈ {1, 2, 3} obtained from the

endemic equilibrium of the deterministic model, cf. Section C plus minus a range of about 15-70%

around them. For the other parameters we are estimating (ρ, ϕ, θ, σ) we use values which seemed

sensible after simulating. All starting ranges for the parameters can be found in the code available

in Stocks (2017). In general, if the inference procedure gives consistent results for starting values

drawn at random from a hypercube this increases the chances that a global maximum has been

found and a reliable global search has been performed (King and Ionides, 2017). One practical

problem for the models at hand is that if the relative convergence tolerance in the Nelder-Mead

algorithm is very small, estimation fails due to a degeneracy of the Nelder-Mead complex. To get

around this, we choose the relative tolerance as small as possible so the algorithm does not fail

and re-use the obtained estimates as starting values for a second run of the inference algorithm

with the same tolerance. Surprisingly, the implementation of the algorithm then usually takes a

few additional iterations. This way we make sure that the algorithm really converges. Based on

the obtained maxima for all starting values we select the one with the highest likelihood as our

maximum likelihood estimate (MLE).

B.2 Stochastic transmission model

We use the τ -leaping algorithm to generate realizations from the stochastic transmission models

(Gillespie, 2001). In the iterated filtering algorithm as the iterations proceed the intensity of the

perturbation is successively reduced (“cooling”) and the log-likelihood of the perturbed model

gradually approaches the log-likelihood of the model of interest. However, for a finite number of

iteration steps, the log-likelihoods of the two models are not identical and a final particle filter

evaluation of the mif2 model output is necessary in order to obtain the Monte Carlo estimated

log-likelihood of the MLE. For the fitting carried out in the following we use 20 starting values

drawn uniformly from a hypercube chosen as in Section B.1 . To make calculations feasible
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4 T. Stocks and others

with respect to time we accept approximation errors of the underlying stochastic transmission

process by choosing a rather large simulation time step size of 1/10. The question arose if this

approximation error is causing parts of the transmission and observation noises. We carried out

a sensitivity analysis for the simulation step size and decreased the step size to 1/40 weeks

without finding a significant change of the noise parameters. Hence, we believe that the choice

of the step size does not increase the transmission and observation noise noticeably. For all

mif2 searches we used Nmif=300 iterations, Np=5000 particles, a cooling of the perturbations of

cooling.fraction.50=0.5 and random walk standard deviations rw.sd which vary dependent

on the parameter between 0.001 and 0.2. It turned out that there is no precise rule of how to

choose the magnitude of the random walk perturbations which the parameters undergo in the

iterated filtering algorithm. It took some trial and error to find reasonable values. For each of

the 20 mif2 outputs we run 10 particle filters, each with 1000 particles. From this we calculate

the average log-likelihood by taking the logarithm of the mean of the estimated likelihoods and

the standard error of the Monte Carlo approximation for every parameter set. Among the 20

particle filter outputs, we choose the parameter vector with the highest average log-likelihood as

the maximum likelihood estimate. Overall, the iterated filtering algorithm for the Models StSt+

and St+St+ took approximately 11h respectively when working on a computer with 20 cores.

Therefore, we can highly recommend working with a computer cluster and parallelized R code as

done by us.

C. Initial values and staring values

To overcome the practical issue of how to choose initial values and starting values, we decided

to break down the complexity of the problem by assuming that the system is in a “periodic”

equilibrium which we are then able to calculate from the deterministic transmission model in

(3.6). We consider this a reasonable assumption because the pattern in the data is very regular,
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Iterated filtering and model selection for Markovian epidemic models 5

cf. Figure 1. For the inference procedures described in the main manuscript we fix the initial values

X0 at this equilibrium as calculated in the following in Equations (C.2), (C.3) and (C.4) and

initialize the system well ahead of the first observations such that simulations equilibrate before

the first observation is made. Furthermore, we investigate which and how many parameters of the

deterministic transmission model are, in addition to the initial values of the system, identifiable

from the data at hand assuming periodic equilibrium and use the obtained estimates as staring

values for our inference methods. This practical solution works very well in our case, however,

we are aware that the assumption that the system is in an equilibrium which we calculate from a

deterministic system is rather conservative and that it might well be that there is more information

contained in the non-equilibrium or non-deterministic dynamics.

C.1 Equilibrium of the deterministic transmission model without seasonality

We note that the seasonal component in the data allows us to estimate the phase shift parameter

ϕ and the amplitude of the forcing ρ, however, there is no closed form solution for those two

parameters. What remains to be investigated is how many parameters can be estimated from the

data without this seasonal component which corresponds to analyzing the system in the endemic

state. For this purpose, we divide the ODE system in (3.6) by N so we obtain the fractions of

the population being susceptible, infected and recovered, i.e. sk(t) = Sk(t)/N, ik(t) = Ik(t)/N

and rk(t) = Rk(t)/N, k ∈ {1, 2, 3} with the sum over all fractions adding up to one and write

λk(t) = βki(t) with i(t) =
∑3

k=1 ik(t). We are interested in the system at equilibrium, i.e. when

dsk/dt = dik/dt = drk/dt = 0. Here, we work out the values of the variables which we denote by

s̃k, ĩk, r̃k, k ∈ {1, 2, 3} (Keeling and Rohani, 2008).

In order to obtain an endemic state without seasonality we take for each age group the mean over

time and treat the obtained values as our data Ykn which is the number of newly reported rotavirus

cases aggregated over reporting intervals (tn−1, tn], n ∈ {1, . . . ,N} in age class k ∈ {1, 2, 3}. In
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6 T. Stocks and others

the endemic state s̃k, ĩk, r̃k, k ∈ {1, 2, 3} also the number of reported cases is in equilibrium, hence

Ykn = Ykn+1 for all n ∈ {1, . . . ,N}. For tn − tn−1 = 1 and assuming no observation noise, this

translates mathematically to

Ykn =

∫ tn

tn−1

βk ĩs̃kNdu = βk ĩs̃kN, (C.1)

with ĩ(t) =
∑3

k=1 ĩk(t) and which is independent of the time point tn. Hence, we will only write

Yk := Ykn in what follows. Plugging (C.1) into the transformed Equations (3.6) at equilibrium

we obtain the age- dependent prevalence without seasonality at the endemic level as

ĩ1 =
Y1

(γ + δ1)N
, ĩ2 =

Y2 + δ1ĩ1N

(γ + δ2)N
, ĩ3 =

Y3 + δ2ĩ2N

(γ + µ)N
. (C.2)

We conclude that the data thus can inform the three endemic states ĩk, k ∈ {1, 2, 3}, if we

assume that the demographic parameters for µ, δ1, δ2 as well as the recovery rate γ, are fixed and

known. Furthermore, since in the deterministic model the total population size N as well as the

population sizes Nk = Sk(t) + Ik(t) +Rk(t) of age class k are constant, we know that

s̃1 + ĩ1 + r̃1 =
N1

N
=

α

δ1
, s̃2 + ĩ2 + r̃2 =

N2

N
=

α

δ2
, s̃3 + ĩ3 + r̃3 =

N3

N
=

α

µ
. (C.3)

These equalities follow from the fraction of the population in age class k being equal to the

fraction of the average lifetime spent in each age class. We can therefore express r̃k in terms

of s̃k and ĩk, if we assume additionally that the birth rate parameter α is fixed and known.

The variables that remain to be estimated are s̃1, s̃2 and s̃3. It can now be seen that by further

assuming the immunity waning rate ω to be fixed and known we can also estimate β1, β2 and β3.

For this, we equate the above system to zero and solve the equations. We obtain by analytical

derivations

s̃1 =
α− (γ + δ1)̃i1 + ω( α

δ1
− ĩ1)

δ1 + ω
, β1 =

(γ + δ1)̃i1

s̃1ĩ
,

s̃2 =
δ1s̃1 − (γ + δ2)̃i2 + δ1ĩ1 + ω( α

δ2
− ĩ2)

δ2 + ω
, β2 =

(γ + δ2)̃i2 − δ1ĩ1

s̃2ĩ
, (C.4)
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Iterated filtering and model selection for Markovian epidemic models 7

s̃3 =
δ2s̃2 − (γ + µ)̃i3 + δ2ĩ2 + ω(αµ − ĩ3)

µ+ ω
, β3 =

(γ + µ)̃i3 − δ2ĩ2

s̃3ĩ
.

We thus conclude the following: given we observe the incidence of the three different age-groups,

the deterministic system at equilibrium enables identifiability of the two seasonality parameters

ϕ, ρ plus three more parameters, e.g. β1, β2 and β3 assuming all other parameters are known.

C.2 Equilibrium results for βk

As discussed above we estimate the susceptibility parameters βk with k ∈ {1, 2, 3} and the

parameters for the seasonal forcing function ρ and ϕ from the available data. Moreover, we

will estimate the overdispersion parameter θ for the Models DtSt+, StSt+ and St+St+ and

additionally the shape parameter of the transmission noise σ2 for Model St+St+. All other

parameters are fixed at biological plausible values shown in Table 1. As a first inference step we

calculate the βk’s from the equilibrium results. the obtained estimates for βk as starting values

for the other estimation procedures of all four models and the endemic state estimates as initial

values for the transmission model.

In the rotavirus data the mean number of weekly reported new cases in age groups 1,2 and 3

between the years 2001 and 2008 are 10009, 2254 and 1364, respectively. Solving the calculations

from Equation (C.4) we obtain

β̂1 = 12.66, β̂2 = 0.24, β̂3 = 0.42, (C.5)

for the deterministic system.

D. Details Simulation study

The results of the simulation study in Section 5 can be found in Table D.2. As proof of concept

Figure D.1 shows the model fit for a realization of Model StSt+ under the true model. To confirm

that the results are also valid for more than one model realization we conducted a small additional

Page 37 of 52

http://biostatistics.oupjournals.com/

Manuscript Submitted to Biostatistics



8 T. Stocks and others

study for the most stochastic models of each model type, i.e. DtSt+ and St+St+. The results are

shown in Figures D.2 and D.3 and show good accordance with the true parameter values used

for simulation.

Model DtSt
β1 β2 β3 ρ ϕ

TP 12.657 0.238 0.420 0.150 0.100
MLE 12.657 0.238 0.420 0.150 0.100
CI [12.651,12.664] [0.238,0.238] [0.419,0.421] [0.150,0.150] [0.099,0.100]

Model DtSt+
β1 β2 β3 ρ ϕ θ

TP 12.657 0.238 0.420 0.150 0.100 0.500
MLE 12.658 0.235 0.429 0.156 0.135 0.473
CI [12.316,12.998] [0.219,0.253] [0.398, 0.463] [0.15,0.162] [0.097,0.173] [0.441,0.509]

Model StSt+
β1 β2 β3 ρ ϕ θ

TP 12.657 0.238 0.420 0.150 0.100 0.500
MLE 12.794 0.235 0.407 0.149 0.102 0.467
CI [12.454, 13.106] [0.221, 0.254] [0.382, 0.440] [0.144, 0.156] [0.061, 0.143] [0.437, 0.505]

Model St+St+
β1 β2 β3 ρ ϕ θ σ

TP 12.657 0.238 0.420 0.150 0.100 0.300 0.050
MLE 12.390 0.248 0.431 0.152 0.113 0.313 0.034
CI [12.053, 12.715] [0.236, 0.266] [0.408, 0.463] [0.145, 0.160] [0.071, 0.166] [0.293, 0.343] [0.019, 0.057]

Model St+St
β1 β2 β3 ρ ϕ σ

TP 12.657 0.238 0.420 0.150 0.100 0.050
MLE 12.697 0.240 0.422 0.147 0.140 0.047
CI [12.672, 12.825] [0.236, 0.242] [0.421, 0.425] [0.146, 0.158] [0.033, 0.104] [0.048, 0.052]

Model StSt
β1 β2 β3 ρ ϕ

TP 12.657 0.238 0.420 0.150 0.100
MLE 12.670 0.238 0.420 0.150 0.104
CI [12.645, 12.683] [0.238, 0.239] [0.419, 0.422] [0.149, 0.151] [0.094, 0.114]

Table D.2. Simulation study results for the models with true parameter (TP), maximum likelihood
estimate (MLE) and calibration of the 95% confidence interval (CI).
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Fig. D.1. The 95% prediction interval (shading) for realizations of Model DtSt+ evaluated at the maxi-
mum likelihood estimate for simulated data (solid back line) and model mean (solid white line).
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Fig. D.2. Boxplot of the MLEs inferred from 100 model realizations of Model DtSt+. The red horizontal
lines are the true parameter values used to generate the simulations.
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Fig. D.3. Plot of the MLEs inferred from 20 model realizations of Model St+St+. The red horizontal
lines are the true parameter values used to generate the simulations.
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D.1 Robustness study

The robustness study as described in Section 5 of the main manuscript was carried out with 2000

particles and 200 iterations for the modes with stochastic transmission models (StSt+, St+St+,

St+St, StSt) and all other algorithm specifications as described in Section B. We report the AIC

values for each model fit in Table D.3. We see clearly that for each realization, the respective true

model always has the lowest AIC which confirms the correctness of our methods (i.e. best fitting

model is always on the diagonal). Figure D.4 gives an example of the incapability of Model St+St

to fit data under model misspecification.

DtSt DtSt+ StSt+ St+St+ St+St StSt
DtSt 13132.58 13134.57 13615.32 13613.36 13609.48 13606.16
DtSt+ 2487951.13 21248.82 21250.20 21252.04 31886.44 32088.62
StSt+ 4428816.06 22650.99 22632.64 22634.34 32087.86 32256.70
St+St+ 3178656.57 22285.19 22233.86 22217.30 31675.86 32083.00
St+St 355054.81 - - - 16163.90 23121.36
StSt 140607.80 - - - - 14912.24

Table D.3. AIC values from the robustness study. The rows denote from which model the data set was
generated and the columns denote to which model the respective simulated data set was fitted to. In bold
the minimum AIC value of each row. No entry indicates that a substantial amount of filtering failures
occurred so no reliable search was carried out.

D.2 Simulation study AIC

We carried out a small simulation study in order to investigate if the AIC can detect potential

misspecifications in the transmission model in an endemic SIRS framework when only observing

new cases aggregated over some time interval, as is the case for the rotavirus data. As proof

of concept we specifically focused on misspecifications due to (1) alternative forms for random

elements in the force of infection, (2) beyond-exponential distributed infectious period and (3)

seasonality. We only report our findings in the following, a detailed description of the set up

of the study and the code can be found in Stocks (2017). (1) The 6 models in our manuscript

differ with respect to the amount of stochasticity in the transmission model (especially in the
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Fig. D.4. Diagnostic plot of the iterated filtering algorithm fitting Model St+St to a model realization
from Model StSt+. Shown is the evolution of the log-likelihood, the number of filtering failures (nfail) and
parameter estimates per iteration for 20 trajectories with random starting values drawn from a hypercube.
The number of filtering failures in each iteration is very high and does not decrease as iterations proceed.
Hence, a reliable parameter search can not be carried out. We observe the same phenomenon for Model
StSt (not shown here) which is why we excluded both models from our analysis.

force of infection) and the amount of overdispersion in the observation model. Here we definitely

see some merit in the AIC approach as it in each case identifies the correct model as the one

with lowest AIC, cf. Table D.3. (2) In a simple SIRS model with birth and death in an endemic

state scenario as the one of our rotavirus modelling we tried to see, if identification of a gamma

distributed infectious period would be detectable through AIC. We found that in our study the

AIC chooses the right model in 90% of the cases if the data is fitted to a model with a gamma

distributed infectious period but only in 40% cases if the data is fitted to the model where the

infectious period is exponentially distributed. (3) We simulated from the simple SIRS model

described above and a SIRS model with seasonality. We find that the AIC clearly picks the right

model for each of our 10 simulations. We conclude that the AIC for epidemic models in endemic
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state can explicitly help to discriminate between forms that directly affect the transmission event.

Through our small simulation study in the context of a SIRS model, we showed this for forms of

seasonality and additional stochasticity in the transmission model. Non-exponential distributions

are harder to be detected as the signal in the data is low, which supports our modelling choice

of the simplest version (exponential times) for our model.
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E. Model fit rotavirus data

Figures E.5, E.6, E.7 and E.8 show how Models DtSt, DtSt+, StSt+ and Model 18 from

Weidemann and others (2013) fit the rotavirus data. Although the data clearly lies in the 95%

prediction interval for all models with overdispersion in the observation model, we noticed that the

model mean for the young children in these models is slightly lower than the data for the first three

years of our investigations. This does not occur for Poisson distributed observations so we initially

presumed that the phenomenon might be an artifact of the negative binomial distribution. We

carried out some additional analysis in order to understand this better. Firstly, we introduced age-

dependent overdispersion parameters which improved the log-likelihood, however, did not raise

the mean in the first age group compartment. Secondly, we assumed observations to be drawn

from a left-censored normal distribution with the same mean and variance as for the negative

binomial distribution in order to avoid the skewness of the negative binomial distribution. Also

this approach did not raise the mean in the first age group so we conclude that the observed

underestimation is not due to the negative binomial distribution but rather a general consequence

of having overdipsersion in the model.

For the comparison with Weidemann and others (2013), we solved the ODE system of Model 18

for the posterior mode of the fitted parameters and from this solution calculated the expected

number of cases in each age group, respectively. The log-likelihood is then obtained by summing

over the negative binomial density evaluated at the data for each time step. In order to calculate

the AIC, we chose the number of parameters that were estimated, i.e. 17 for Model 18, which

makes it a conservative estimate since the parameters were calculated with an a prior distribution.

Moreover, Model 18 was originally fitted assuming a linear increase of the reporting rate in the

year 2004 and which was model specific – we, however, scaled up the original data by the averaged

posterior density using the weights from the vertical averaging regarding contact pattern C6 and

did not use linear increase in year 2004 but a step function.

Page 44 of 52

http://biostatistics.oupjournals.com/

Manuscript Submitted to Biostatistics



Iterated filtering and model selection for Markovian epidemic models 15

Age 60-99

Age 5-59

Age 0-4

2001 2002 2003 2004 2005 2006 2007 2008 2009

0

10000

20000

30000

0

2500

5000

7500

0

2500

5000

7500

Time (weeks)

N
u

m
b

e
r 

o
f 

n
e
w

 c
a

s
e

s

Fig. E.5. Model fit of Model DtSt to rotavirus incidence data (solid back line) and the model mean (solid
light line). The 95% prediction interval is very thin so it is nearly indistinguishable from the model mean.
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Fig. E.6. The 95% prediction interval (shading) for realizations of Model DtSt+ evaluated at the maxi-
mum likelihood estimate for the rotavirus incidence data (solid back line) and model mean (solid white
line).
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Fig. E.7. The 95% prediction interval (light shading) for 1000 realizations of Model StSt+ evaluated at
the maximum likelihood estimate for the rotavirus incidence data (solid back line) and the median (solid
white line). Furthermore, the 95 % prediction interval of these 1000 realizations for only the transmission
model is shown (darker shading).
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Fig. E.8. The 95% prediction interval (shading) for Model 18 in Weidemann and others (2013) assuming
no under-reporting, the model mean (solid white line) and the rotavirus incidence data (solid black line).
For all computations we used the same dispersion parameter as in Weidemann and others (2013) which
is a fair approximation as long as the number of cases is fairly large.
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E.1 Diagnostic plots

Figures E.9 and E.11 show the evolution of the log-likelihood, number of filtering failures and

parameter estimates per mif2 iteration. In the diagnostic plot for Model StSt+ (Figure E.9)

one can observe that after the log-likelihood of the perturbed model has increased significantly

there is a small drop of the likelihood before stabilizing at a value which seems not optimal after

having seen higher log-likelihood values at earlier iterations. However, re-running the particle

filter at each iteration returned by the mif2 model gives that the log-likelihood of the model of

interest is increasing before stabilizing, cf. Figure E.10. One possible explanation for the observed

phenomenon is that the mif2 model of Model StSt+ which includes extra variability in the pa-

rameters via random-walk perturbations explains the data better if the perturbations are larger.

This indicates that the actual target model i.e. the one without perturbations, is not variable

enough to explain the data well.
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Fig. E.9. Diagnostic plot of the iterated filtering algorithm for Model StSt+for the rotavirus incidence
data. Shown is the evolution of the log-likelihood, the number of filtering failures (nfail) and parameter
estimates per mif2 iteration for 20 trajectories with random starting values drawn from a hypercube.
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Fig. E.10. Particle filter evaluation for each iteration of one mif2 run from Model StSt+ (Figure E.9).
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Fig. E.11. Diagnostic plot of the iterated filtering algorithm for Model St+St+ for the rotavirus incidence
data. Shown is the evolution of the log-likelihood, the number of filtering failures (nfail) and parameter
estimates per iteration for 20 trajectories with random starting values drawn from a hypercube.
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E.2 Discussion on R0

The estimates for βk support that children under the age of 5 years are highly susceptible to

the disease while older individuals have much lower susceptibility which slightly rises again later

in life. One could argue that the value of R0 is surprisingly close to the value one for a highly

infectious disease as rotavirus. For this, it should be noted that the age-specific basic reproduc-

tion number for children under 5 years of age is very high (R
(1)
0 = 11.26 for Model St+St+), but

this age class in our model only makes up approximately 6% of the total population. The age-

specific basic reproduction numbers of the two older age groups are much lower (R
(2)
0 = 0.27 and

R
(3)
0 = 0.43 for Model St+St+). This might have different reasons: firstly, young children might

truly have a higher susceptibility to the disease than older individuals. Secondly, it is possible

that young children mix at a higher rate and expose themselves more to the disease by close body

contact. Another possible scenario is that with higher age there might be partial immunity from

earlier infections left which is why older individuals do not get ill. Furthermore, the severity of

symptoms could play an important role for the reporting behavior of the disease: it might be that

symptoms are very severe in younger children which lead to a higher reporting rate, while cases in

older individuals are less symptomatic or even asymptomatic and hence are not reported. Further,

even if symptoms are the same in all age classes, older individuals might not consult the doctor

as often. Both of the last two explanations we would not be able to detect, because we assumed

the same scaling rate for the under-reporting and fixed the rate of waning of immunity, ω, for all

age classes. A sensitivity analysis for ω indicated that the longer the time of natural immunity

lasts, the higher is R0. For example, if we choose the time until natural immunity 50 years, the

basic reproduction rate increases to 1.44. Moreover, R0 depends heavily on the reporting rate

we used to scale up the data – if the true under-reporting rate is lower than we assumed, R0

increases. Of course we would have liked to disentangle all the previously mentioned explanations

from each other, but the important message is that without any additional structural insights,
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the available data is too coarse to do that.
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