Supplementary materials for

Refactoring of Ehrlich pathway for high-yield 2-phenylethanol production in Yarrowia lipolytica

Yang Gu^{a,b}, Jingbo Ma^a, Yonglian Zhu^b, Peng Xu^{a,*}

^a Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA

^b Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China

*Corresponding author.

E-mail addresses: pengxu@umbc.edu (P. Xu)

Supplementary Table

Table 1. Strains and plasmids used in this study

Names	Characteristics	Reference
Strains		
po1g	Wild-type strain W29 (ATCC20460) derivate, W29 ΔmatA, Δxpr2-332, Δaxp-2,	1
	Δleu 2-270, pBR platform	
po1f	po1g derivate, po1g ∆ura3	1
po1fk	po1f derivate, po1f ∆ku70::loxP	This work
po1g pYXLP'	po1g derivate, po1g with the empty plasmid pYLXP'	This work
po1gP1	po1g derivate, overexpression of genes <i>yliARO8</i> by plasmid pYLXP'-ylARO8	This work
po1gP2	po1g derivate, overexpression of genes <i>yliARO9</i> by plasmid pYLXP'-ylARO9	This work
po1gP3	po1g derivate, overexpression of genes <i>yliARO10</i> by plasmid pYLXP'-ylARO10	This work
po1gP4	po1g derivate, overexpression of genes yliARO8 and ylARO10 by plasmid	This work
	pYLXP'-ylARO10-ylARO8	
po1gP5	po1g derivate, overexpression of genes yliARO9 and ylARO10 by plasmid	This work
	pYLXP'-ylARO10-ylARO9	
po1gP6	po1g derivate, overexpression of genes C18645 by plasmid	This work
	pYLXP'- <i>ylARO10-C18645</i>	
P4-1	po1g derivate, overexpression of genes yliARO8, ylARO10 and BAP by	This work
	plasmid pYLXP'-ylARO10-ylARO8-BAP	
P4-2	po1g derivate, overexpression of genes yliARO8, ylARO10 and phep by	This work
	plasmid pYLXP'-ylARO10-ylARO8-phep	
P4-3	po1g derivate, overexpression of genes yliARO8, ylARO10 and Gap1 by	This work
	plasmid pYLXP'-ylARO10-ylARO8-Gap1	
P4-4	po1g derivate, overexpression of genes <i>yliARO8, ylARO10</i> and <i>GapY1</i> by	This work
	plasmid pYLXP'-ylARO10-ylARO8-GapY1	
P4-5	po1g derivate, overexpression of genes <i>yliARO8, ylARO10</i> and <i>GapY2</i> by	This work
	plasmid pYLXP'-ylARO10-ylARO8-GapY2	
P4-6	po1g derivate, overexpression of genes <i>yliARO8, ylARO10</i> and <i>GapY3</i> by	This work

placmid pVIVD' VIADO10 VIADO9 CapV2	
plasifilu překp -ylakozu-ylakob-Gupře	

P5-1	po1g derivate, overexpression of genes yliARO9, ylARO10 and BAP by	This work
	plasmid pYLXP'-ylARO10-ylARO9-BAP	
P5-2	po1g derivate, overexpression of genes yliARO9, ylARO10 and phep by	This work
	plasmid pYLXP'-ylARO10-ylARO9-phep	
P5-3	po1g derivate, overexpression of genes yliARO9, ylARO10 and Gap1 by	This work
	plasmid pYLXP'-ylARO10-ylARO9-Gap1	
P5-4	po1g derivate, overexpression of genes yliARO9, ylARO10 and GapY1 by	This work
	plasmid pYLXP'-ylARO10-ylARO9-GapY1	
P5-5	po1g derivate, overexpression of genes yliARO9, ylARO10 and GapY2 by	This work
	plasmid pYLXP'-ylARO10-ylARO9-GapY2	
P5-6	po1g derivate, overexpression of genes yliARO9, ylARO10 and GapY3 by	This work
	plasmid pYLXP'-ylARO10-ylARO9-GapY3	
PAR1	po1g derivate, overexpression of genes PAR1 by plasmid pYLXP'-PAR1	This work
PAR2	po1g derivate, overexpression of genes PAR2 by plasmid pYLXP'-PAR2	This work
PAR3	po1g derivate, overexpression of genes PAR3 by plasmid pYLXP'-PAR3	This work
PAR4	po1g derivate, overexpression of genes PAR4 by plasmid pYLXP'-PAR4	This work
PAR5	po1g derivate, overexpression of genes PAR5 by plasmid pYLXP'-PAR5	This work
PAR6	po1g derivate, overexpression of genes PAR6 by plasmid pYLXP'-PAR6	This work
PAR7	po1g derivate, overexpression of genes PAR7 by plasmid pYLXP'-PAR7	This work
PAR8	po1g derivate, overexpression of genes PAR8 by plasmid pYLXP'-PAR8	This work
PARL	po1g derivate, overexpression of genes PARL by plasmid pYLXP'-PARL	This work
ADH1	po1g derivate, overexpression of genes ADH1 by plasmid pYLXP'-ADH1	This work
ADH2	po1g derivate, overexpression of genes ADH2 by plasmid pYLXP'-ADH2	This work
ADH3	po1g derivate, overexpression of genes ADH3 by plasmid pYLXP'-ADH3	This work
ADH4	po1g derivate, overexpression of genes ADH4 by plasmid pYLXP'-ADH4	This work
ADH5	po1g derivate, overexpression of genes ADH5 by plasmid pYLXP'-ADH5	This work
ADH6	po1g derivate, overexpression of genes ADH6 by plasmid pYLXP'-ADH6	This work
ADH7	po1g derivate, overexpression of genes ADH7 by plasmid pYLXP'-ADH7	This work

ADH8	po1g derivate, overexpression of genes ADH8 by plasmid pYLXP'-ADH8	This work
ADH9	po1g derivate, overexpression of genes SFA1 by plasmid pYLXP'-ADH9	This work
po1gP7-1	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and ADH2 by	This work
	plasmid pYLXP'-ARO10-ARO8-GapY3-ADH2	
po1gP7-2	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and ADH3 by	This work
	plasmid pYLXP'-ARO10-ARO8-GapY3-ADH3	
po1gP7-3	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR1 by	This work
	plasmid pYLXP'-ARO10-ARO8-GapY3-PAR1	
po1gP7-4	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR2 by	This work
	plasmid pYLXP'-ARO10-ARO8-GapY3-PAR2	
po1gP7-5	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR3 by	This work
	plasmid pYLXP'-ARO10-ARO8-GapY3-PAR3	
po1gP7-6	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR4 by	This work
	plasmid pYLXP'-ARO10-ARO8-GapY3-PAR4	
po1gP8-1	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and ADH2 by	This work
	integrating linearized pYLXP'-ARO10-ARO8-GapY3-ADH2 at pBR platform	
po1gP8-2	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and ADH3 by	This work
	integrating linearized pYLXP'-ARO10-ARO8-GapY3-ADH3 at pBR platform	
po1gP8-3	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR1 by	This work
	integrating linearized pYLXP'-ARO10-ARO8-GapY3-PAR1 at pBR platform	
po1gP8-4	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR2 by	This work
	integrating linearized pYLXP'-ARO10-ARO8-GapY3-PAR2 at pBR platform	
po1gP8-5	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR3 by	This work
	integrating linearized pYLXP'-ARO10-ARO8-GapY3-PAR3 at pBR platform	
po1gP8-6	po1g derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR4 by	This work
	integrating linearized pYLXP'-ARO10-ARO8-GapY3-PAR4at pBR platform	
po1fk1	po1fk derivate, po1fk ΔALD2 ΔALD3::loxP	This work
po1fk1P	po1fk1 derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR4 by	This work
	integrating linearized pYLXP'-ARO10-ARO8-GapY3-PAR4at pBR platform	

po1fk2	po1fk1 derivate, po1fk1 ΔPHA2::loxP	This work
po1fk2P	po1fk2 derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR4 by	This work
	integrating linearized pYLXP'-ARO10-ARO8-GapY3-PAR4at pBR platform	
po1fk3	po1fk3 derivate, po1fk3 ΔYALIOB21846g::loxP	This work
po1fk3P	po1fk4 derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR4 by	This work
	integrating linearized pYLXP'-ARO10-ARO8-GapY3-PAR4at pBR platform	
po1fk4	po1fk3 derivate, overexpression of genes ARO10, ARO8, GapY3, and PAR4 by	This work
	integrating genes ARO10, ARO8, GapY3, PAR4 at 26s sDNA sites	
po1fk4P1	po1fk4 derivate, overexpression of genes citB and scIDP2 by plasmid	This work
	pYLXP'-citB-scIDP2	
po1fk4P2	po1fk4 derivate, overexpression of genes citB and yllDP2 by plasmid	This work
	pYLXP'-citB-ylIDP2	
po1fk4P3	po1fk4 derivate, overexpression of genes ancA and scIDP2 by plasmid	This work
	pYLXP'-ancA-scIDP2	
po1fk4P4	po1fk4 derivate, overexpression of genes ancA and yIIDP2 by plasmid	This work
	pYLXP'-ancA-ylIDP2	
po1fk4P5	po1fk4 derivate, overexpression of genes ancA, yllDP2 and ylODC by plasmid	This work
	pYLXP'-ancA-ylIDP2-ylODC	
po1fk5	po1fk4 derivate, po1fk4 ΔDGA1::loxP	This work
po1fk5P	po1fk5 derivate, overexpression of genes ancA and yIIDP2 by plasmid	This work
	pYLXP'-ancA-ylIDP2	
po1fk6	po1fk4 derivate, po1fk4 ΔDGA2::loxP	This work
po1fk6P	po1fk6 derivate, overexpression of genes ancA and yIIDP2 by plasmid	This work
	pYLXP'-ancA-ylIDP2	
po1fk7	po1fk5 derivate, po1fk5 ΔDGA2::loxP	This work
po1fk7P	po1fk7 derivate, overexpression of genes ancA and yIIDP2 by plasmid	This work
	pYLXP'-ancA-ylIDP2	
*****	***************************************	*****
Plasmids		

pYLXP'	YaliBrick plasmid	
pYLXP'- <i>loxP-ura</i>	pYLXP' containing the <i>loxP-URA-loxP</i> cassette	2
pYLXP'- <i>Cre</i>	pYLXP' containing gene Cre	2
pYLXP'- <i>loxP-ura-∆ku</i>	pYLXP'-loxP-ura containing the deletion cassette of gene <i>ku70</i>	This work
70		
рҮLXP'- <i>loxP-ura-ΔAL</i>	pYLXP'-loxP-ura containing the deletion cassette of gene ALD2	This work
D2		
рҮLXP'- <i>loxP-ura-ΔAL</i>	pYLXP'-loxP-ura containing the deletion cassette of gene ALD3	This work
D3		
рYLXP' <i>-loxP-ura-ΔPH</i>	pYLXP'-loxP-ura containing the deletion cassette of gene PHA2	This work
A2		
рҮLXP'- <i>loxP-ura-ΔYA</i>	pYLXP'-loxP-ura containing the deletion cassette of gene YALIOB21846g	This work
LI0B21846g		
pYLXP' <i>-loxP-ura-∆DG</i>	pYLXP'-loxP-ura containing the deletion cassette of gene DGA1	This work
A1		
pYLXP' <i>-loxP-ura-∆DG</i>	pYLXP'-loxP-ura containing the deletion cassette of gene DGA2	This work
A2		
pYLXP'- <i>ylARO8</i>	pYLXP' containing gene yIARO8	This work
pYLXP'- <i>ylARO9</i>	pYLXP' containing gene ylARO9	This work
pYLXP'- <i>ylARO10</i>	pYLXP' containing gene ylARO10	This work
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10 and ylARO8	This work
08		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10 and ylARO9	This work
09		
pYLXP'-ylARO10-C18	pYLXP' containing genes ylARO10 and C18645	This work
645		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes yIARO10, yIARO8 and BAP	This work
O8-BAP		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes yIARO10, yIARO8 and phep	This work

O8-phep		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO8 and Gap1	This work
08-Gap1		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO8 and GapY1	This work
O8-GapY1		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO8 and GapY2	This work
O8-GapY2		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO8 and GapY3	This work
O8-GapY3		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO9 and BAP	This work
09-ВАР		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO0 and phep	This work
09-phep		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO9 and Gap1	This work
09-Gap1		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO9 and GapY1	This work
O9-GapY1		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO9 and GapY2	This work
O9-GapY2		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO9 and GapY3	This work
O9-GapY3		
pYLXP'-PAR1	pYLXP' containing gene PAR1	This work
pYLXP'-PAR2	pYLXP' containing gene PAR2	This work
pYLXP'- <i>PAR3</i>	pYLXP' containing gene PAR3	This work
pYLXP'- <i>PAR4</i>	pYLXP' containing gene PAR4	This work
pYLXP'- <i>PAR5</i>	pYLXP' containing gene PAR5	This work
pYLXP'-PAR6	pYLXP' containing gene PAR6	This work
pYLXP'-PAR7	pYLXP' containing gene PAR7	This work
pYLXP'- <i>PAR8</i>	pYLXP' containing gene PAR8	This work

pYLXP'-PARL	pYLXP' containing gene PARL	This work
pYLXP'-ADH1	pYLXP' containing gene ADH1	This work
pYLXP'-ADH2	pYLXP' containing gene ADH2	This work
pYLXP'-ADH3	pYLXP' containing gene ADH3	This work
pYLXP'-ADH4	pYLXP' containing gene ADH4	This work
pYLXP'-ADH5	pYLXP' containing gene ADH5	This work
pYLXP'-ADH6	pYLXP' containing gene ADH6	This work
pYLXP'-ADH7	pYLXP' containing gene ADH7	This work
pYLXP'-ADH8	pYLXP' containing gene ADH8	This work
pYLXP'-ADH9	pYLXP' containing gene SFA1	This work
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO8, GapY3, and ADH2	This work
O8-GapY3-ADH2		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO8, GapY3, and ADH3	This work
O8-GapY3-ADH3		
pYLXP'- <i>ylARO10-ylAR</i>	pYLXP' containing genes ylARO10, ylARO8, GapY3, and PAR1	This work
O8-GapY3-PAR1		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO8, GapY3, and PAR2	This work
O8-GapY3-PAR2		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO8, GapY3, and PAR3	This work
O8-GapY3-PAR3		
pYLXP'-ylARO10-ylAR	pYLXP' containing genes ylARO10, ylARO8, GapY3, and PAR4	This work
O8-GapY3-PAR4		
pYLXP'-loxP-ura-26s	pYLXP' containing the 26s rDNA genomic integration cassette of genes	This work
DNA-ylARO10-ylARO	ylARO10, ylARO8, GapY3, and PAR4	
8-GapY3-PAR4		
pYLXP'-citB-scIDP2	pYLXP' containing genes citB and scIDP2	This work
pYLXP'-citB-ylIDP2	pYLXP' containing genes <i>citB</i> and <i>ylIDP2</i>	This work
pYLXP'-ancA-scIDP2	pYLXP' containing genes ancA and scIDP2	This work
pYLXP'-ancA-yllDP2	pYLXP' containing genes ancA and yllDP2	This work

IODC

Table 2. Primers used in this study

Primers	Sequence
Ku70_DwF	gtccggagcggccgcGCATGCaagtcgacaCTAGGGAGGCACATCTAAACGAATAACG
Ku70_DwR	gttacatccttttatcagacatacctaggAGTGAACGACCAAGACTAAAGGGTG
ku70_UpF	ccctaaatttgatgaaagcctaggCGACTTGATGTTTAGAGTGTCCAGATCC
ku70_UpR	taatgtatgctatacgaagttatTTTCAAAAAGCGGCGGTTCGTG
D07062-F	cgaccagcactttttgcagtactaaccgcagTCTACTACACCCACCACTCTCATCACT
D07062-R	gacaggccatggaactagtcggtaccTTAGTTCTGGAACGACAGCCATTGG
F24937-F	cgaccagcactttttgcagtactaaccgcagCCTACCACCCTTGTTACTGGAGCTAC
F24937-R	cgtggggacaggccatggaactagtcggtaccCTACTGAGACTTAATCCACTGCTCAGC
F09097-F	ccgaccagcactttttgcagtactaaccgcagTCCATTCTTGTCACCGGCGC
F09097-R	ggacaggccatggaactagtcggtaccCTACTCCTCCTTCTTAACTTCCAACCAC
D08844-F	cgaccagcactttttgcagtactaaccgcagCTCGTTCTTCTCACCGGCG
D08844-R	gggacaggccatggaactagtcggtaccTTACTCGAGAGTATTGAGCTGCTTGGC
D12386-F	cgaccagcactttttgcagtactaaccgcagTCTACAGTTCTCGTCACTGGAGCTAC
D12386-R	gacaggccatggaactagtcggtaccCTAAATATTCCACCAATGCTTCTTCTTCTTCTCC
C20251-F	gaccagcactttttgcagtactaaccgcagCCCACTACACTCGTCACTGGAG
C20251-R	gggacaggccatggaactagtcggtaccCTACTTATGCTGCTCGTACCACTGG
D11616-F	cgaccagcactttttgcagtactaaccgcagCACCAACTTCTCTCGTCACCG
D11616-R	ggacaggccatggaactagtcggtaccCTAGTCGTTCCGCTCGTAAGAAAG
D08778-F	gaccagcactttttgcagtactaaccgcagCCCACTACTCTTGTTACCGGAGC
D08778-R	ggacaggccatggaactagtcggtaccTCACTGCTTGATCTCGAGCCATTG
ALD3_Dw-F	gctagcgagacaataacggaggaAGGCCGTCCACATTAACCTGG
ALD3_Dw-R	gttacatccttttatcagacataCTGCTGCAACCAGCCCTACAAA
ALD3_Up-F	gcatccctaaatttgatgaaagCAAGAAGGGATAAAAATGGAAACTCGGTCT
ALD3_Up-R	taatgtatgctatacgaagttatACTTGCACTAGGTTAGCAGCGAC
ALD2_Dw-F	gctagcgagacaataacggaggaACGATGAGCGAACGAATCGTCT
ALD2_Dw-R	gttacatccttttatcagacataTCTGTTGGATTCTAGGGAACTGTTTCTG
ALD2_Up-F	ggcatccctaaatttgatgaaagCCGCTCTCAAGTGTCTGAAAGTTGAAT

ALD2_Up-R	taatgtatgctatacgaagttatATATTTAGAGTTCGGGATAAAGTTCAATGT
ALD2_Cas-F	CCGCTCTCAAGTGTCTGAAAGTTGAAT
ALD2_Cas-R	TCTGTTGGATTCTAGGGAACTGTTTCTG
ALD3_Cas-F	CAAGAAGGGATAAAAATGGAAACTCGGTCT
ALD3_Cas-R	CTGCTGCAACCAGCCCTACAAA
ALD2_DwChk-R	ACTCCTCTAGACTCCTCTGTTC
ALD2_UpChk-F	GTGTCTCCATCACATGACCACAATC
ALD3_DwChk-R	TAGCCTCGTTAATGCACCGAGT
ALD3_UpChk-F	GGGAATGCTCCATTGAGATGATGGA
ADH1-F	accagcactttttgcagtactaaccgcagACCACCATCCCCAAGACCCA
ADH1-R	aggccatggaactagtcggtaccTTACTTGTAAGTGTCCAGAACGTATCTGCC
ADH2-F	ccagcactttttgcagtactaaccgcagTCTGCTCCCGTCATCCCCA
ADH2-R	gggacaggccatggaactagtcggtaccTTACTTGGAGGTGTCCAGAACGTATCG
ADH3-F	cagcactttttgcagtactaaccgcagACCACCATCCCCAAGACCC
ADH3-R	ggacaggccatggaactagtcggtaccTTACTTGGAGCAGTCCAGAACGTATC
ADH4-F	ccagcactttttgcagtactaaccgcagACAATCCCCAAGACCCAGAAAGC
ADH4-R	ggacaggccatggaactagtcggtaccTTACTTGCTGGTATCGACAACATACCGA
ADH5-F	ccagcactttttgcagtactaaccgcagAGCGACGTTCCCAAGACAC
ADH5-R	ggacaggccatggaactagtcggtaccCTACTTGCTGTTATCAACAACGACACGA
ADH6-F	accagcactttttgcagtactaaccgcagGTCAAAACGTCGACGAACCTTGC
ADH6-R	gacaggccatggaactagtcggtaccTTAGTACTCCCAAGCGTCCTCAAGAAT
ADH7-F	ccagcactttttgcagtactaaccgcagAGAGCCGCTTTCACCACC
ADH7-R	ggccatggaactagtcggtaccTTACTGCTTGAACTCCTTATCAAGAGTATCATCC
Gap1Y3-F	cactttttgcagtactaaccgcagAACGACATTGAAAAAAACCAAGACGC
Gap1Y3-R	acaggccatggaactagtcggtaccCTAACACCAGGCCTTGTAGACTCG
Gap1Y2-F	cactttttgcagtactaaccgcagGAAAAAAACGAAGTGGTATCAACCAACTCT
Gap1Y2-R	caggccatggaactagtcggtaccTTAGCACCAGAACTTGTAAACTCGGTAGT
Gap1Y1-F	cagcactttttgcagtactaaccgcagCAAATGCTCAACCGAACAAGGAAGG
Gap1Y1-R	caggccatggaactagtcggtaccCTAACACCAGAAATTGTATGTTCGATAAAGGAAG

Gap1p-F	cactttttgcagtactaaccgcagAGTAATACTTCTTCGTACGAGAAGAATAATCCAGA
Gap1p-R	caggccatggaactagtcggtaccTTAACACCAGAAATTCCAGATTCTATACCATCTT
pheP-F	gcactttttgcagtactaaccgcagaaaaacgcgtcaaccgtatcgg
pheP_R	gacaggccatggaactagtcggtaccttatttccgacgcagcgttttaaatgc
PHA2_DwChkR	AGAATACCTTGATTCTGGCCACCG
PHA2_UpChkF	TCTGGCCGAGTTCAAGCTCCA
PHA2_CasF	TACCATCACCGACCCAGAGACCA
PHA2_CasR	TGCCGCATGCCATTCAGCTA
PHA2_DwF	gctagcgagacaataacggaggaCTTAGACGGTTCAGCGTTTCTGT
PHA2_DwR	tacatccttttatcagacataTGCCGCATGCCATTCAGCTA
PHA2_UpF	atccctaaatttgatgaaagTACCATCACCGACCCAGAGACCA
PHA2_UpR	atgtatgctatacgaagttatGATGTGTAATGTGTGTGATCAAGTGTGC
ScBAP2_F	cagcactttttgcagtactaaccgcagCTATCTTCAGAAGATTTTGGATCTTCTGGGA
ScBAP2_R	caggccatggaactagtcggtaccTTAACACCAGAAATGATAAGCTTTTCTCATCAAAG
YliB21846_CheckF	GCTACTTGTTGTAGACGTAGACATACACT
YliB21846_CheckR	TATTCGCACGACACTGACATTTAAGGC
YliB21846_CasF	CCGTACGTAAGAGACTGCCATAAGT
YliB21846_CasR	CTTCCCCTCCTGCTCACCCC
YliB21846_Dw_F	cgagacaataacggaggaTCATCTCTAGAGACGAGGCGTGC
YliB21846_Dw_R	agcttgcctatgttacatccttttatcagacataCTTCCCCTCCTGCTCACCCC
YliB21846_Up_F	ccctaaatttgatgaaagCCGTACGTAAGAGACTGCCATAAGT
YliB21846_Up_R	atgctatacgaagttatGTTGTTGGTGGTTATTTGTTTGTGTGTGTCA
yliODC_F	actttttgcagtactaaccgcagTCTGACCAGAAGCCCCTCCCCTTCATCTACCAATTC
yliODC_R	caggccatggaactagtcggtaccTTATTTCTTACCGTCGTGGATTCCTCG
yliGDH_F	cactttttgcagtactaaccgcaggacgccattgacgtcaagggcttc
yliGDH_R	aggccatggaactagtcggtaccctattgcttcttagtcttctcagccatgt
YliDGA1a_ChkF	GTTTATGCATTCTGTTGGACCTTAGTCTG
YliDGA1a_ChkR	GTTATCTACCACGATTTTTTGGTTTCTGAGGC
YliDGA1b_ChkF	CTATCGCCCCAAAGTGTTTCTAGCA

YliDGA1b_ChkR	GAGATGGCATGCCAACGTTGAC
YliDGA1b_DwF	gctagcgagacaataacggaggaCATAACACTCATCAGTAGCCTTTACAGTGAT
YliDGA1b_DwR	ccttttatcagacatagcggccgcTTGCTCTTGTAATTCCATAGATAATATATACGAAA
YliDGA1b_UpF	aaatttgatgaaaggcggccgcCTTGGGAGTGTATTTGGAAAATGACTTGG
YliDGA1b_UpR	tgtatgctatacgaagttatTTTGCGGGCGGTACGGGTACA
YliDGA1a_DwF	gctagcgagacaataacggaggaGGAAAACTGCCTGGGTTAGGCAAAT
YliDGA1a_DwR	atcagacatagcggccgcTCTCTGATGGCCTGGAGCGAG
YliDGA1a_UpF	aatttgatgaaaggcggccgcATGCTGCGGGCGGATCCTGG
YliDGA1a_UpR	tgtatgctatacgaagttatAGCTTTTGTTTTGTGTGACTTGTCTGT
BsuCtiB_F	agcactttttgcagtactaaccgcaggcaaacgagcaaaaaactgcagca
BsuCtiB_R	gggacaggccatggaactagtcggtacctcaggactgcttcattttttcacga
EcoAncA_F	ccagcactttttgcagtactaaccgcagtcgtcaaccctacgagaagcca
EcoAncA_R	ccatggaactagtcggtaccttacttcaacatattacgaatgacataatgcaaaatgcc
ylidp2-f	ccagcactttttgcagtactaaccgcagTCCACCACCGCTACTCGAGG
ylIDP2_R	gggacaggccatggaactagtcggtaccCTAAGCCAGGTCCTTCTTCAGTCTG
ScIDP2-F	agcactttttgcagtactaaccgcagACAAAGATTAAGGTAGCTAACCCCATTGT
ScIDP2_R	ggacaggccatggaactagtcggtaccTTACAATGCAGCTGCCTCGAACT
ARO9_F	ccagcactttttgcagtactaaccgcagtccttccacgacaagttcatttctgac
ARO9_R	gggacaggccatggaactagtcggtaccctacttctgcttaatctcaccctcctc
ARO8_F	cagcactttttgcagtactaaccgcagacctccgacaacaagcctct
ARO8_R	cgtggggacaggccatggaactagtcggtaccttaaagctggaactctcgcttgacga
C18645_F	cgaccagcactttttgcagtactaaccgcagttcaactcagtcaacaaggaggaggacca
C18645_R	gggacaggccatggaactagtcggtacctcaactaccgttcttcttctgcatcttc

Table 3. Screening of high-performance strains

Strains	Clone numbers (2PE mg/L)					
po1gP1	549.12	487.23	654.21	-	-	-
po1gP2	512.21	612.12	559.21	-	-	-
po1gP3	498.21	719.23	871.21	-	-	-
po1gP4	132.68	42.92	543.55	432.64	371.12	538.25
po1gP5	491.18	626.17	217.01	575.09	199.42	106.75
po1gP6	58.43	323.79	305.29	388.76	399.89	315.13
P4-2	698.12	623.41	773.97	842.26	770.52	625.62
P4-1	923.19	906.22	921.28	996.46	962.23	992.63
P4-3	771.19	724.11	890.59	956.47	901.14	917.82
P4-4	985.15	737.92	733.79	663.11	664.26	890.78
P4-5	730.15	946.59	1012.96	816.94	815.21	862.20
P4-6	678.46	840.43	616.79	902.48	790.57	725.55
P5-2	735.52	781.55	732.93	843.31	750.48	830.17
P5-1	992.15	900.95	963.66	992.76	998.86	907.37
P5-3	745.97	702.19	716.91	692.29	721.81	701.65
P5-4	921.85	943.05	724.78	842.06	717.30	677.69
P5-5	908.62	668.39	911.21	629.55	900.56	726.22
P5-6	949.47	1196.80	1179.34	711.45	638.18	681.53
PAR1	523.77	499.89	397.57	449.35	-	-
PAR2	570.86	429.21	677.02	225.71	-	-
PAR3	526.74	586.87	424.32	568.46	-	-
PAR4	780.40	154.27	830.46	631.56	-	-
PAR5	426.24	399.20	376.76	217.27	-	-
PAR6	365.15	417.90	518.30	475.34	-	-
PAR7	371.96	338.97	644.89	398.05	-	-
PAR8	477.16	427.39	567.60	494.52	-	-

PARL	411.57	281.05	353.74	213.82	-	-
ADH1	208.36	604.61	203.37	238.95	668.20	576.52
ADH2	635.49	413.87	369.66	415.69	251.99	420.20
ADH3	459.32	564.77	745.12	668.20	452.32	325.12
ADH4	277.98	184.96	580.73	732.83	123.00	439.38
ADH5	476.59	452.32	439.47	181.79	412.81	283.06
ADH6	40.43	179.59	69.68	254.20	213.82	234.25
ADH7	263.88	307.32	144.20	81.86	140.36	152.25
ADH8	277.21	306.56	281.05	345.78	612.00	228.30
ADH9	145.06	154.46	200.59	108.72	236.65	183.52
po1gP7-3	1586.92	1430.22	816.84	647.00	633.58	994.06
	366.88	669.92	708.28	1019.48	658.70	759.97
	848.30	750.96	886.37	800.83	531.06	679.51
polgP7-5	826.43	1058.32	1028.88	865.65	1082.87	-
	776.28	1052.28	1062.15	877.26	833.91	1326.26
polgP7-6	1554.41	525.78	1014.01	499.32	1030.70	878.70
	919.07	1026.67	955.32	917.25	1018.23	1107.13
po1gP7-1	1088.62	918.40	924.15	917.06	940.36	941.32
n = 1 = D7 - 2	927.51	951.96	1070.40	925.11	974.31	986.30
po1gP7-2	995.89	930.48	917.34	883.40	901.81	985.72
po1gP7-4	722.19	713.08	1062.34	746.93	778.96	710.49
	1222.31	872.85	912.26	903.05	810.99	909.67
po1gP8-1	812.14	954.94	758.05	874.28	497.21	739.55
	783.85	1067.14	744.92	877.83	736.86	727.85
	788.93	837.84	767.74	925.11	897.01	-
po1gP8-2	920.99	622.93	1027.44	976.03	1061.96	858.08
	987.54	851.08	630.89	944.96	783.08	965.97
	773.88	736.76	747.22	919.65	729.38	1007.87
po1gP8-3	855.78	756.71	973.16	933.36	955.42	816.36

	713.56	786.25	995.79	938.92	845.99	644.51
	711.93	803.70	1110.10	587.54	811.85	461.82
po1gP8-4	660.52	907.18	385.96	908.71	775.32	880.33
	864.31	606.44	829.50	705.40	676.35	617.85
	603.37	635.11	758.34	836.69	520.03	881.38
po1gP8-5	1067.33	691.31	474.38	736.96	952.35	804.95
	820.68	768.70	1159.11	745.59	684.02	920.70
	269.25	433.05	854.63	749.14	661.96	890.97
po1gP8-6	725.74	864.98	801.69	969.32	89.06	1137.48
	340.31	735.13	800.92	935.37	887.81	-
	891.07	845.51	822.50	723.53	895.96	772.73
no1fk1D	621.40	267.91	560.02	340.60	280.66	720.08
ролткль	770.71	565.68	796.61	335.14	547.07	647.67
po1fk2P	45.80	509.67	368.99	924.73	600.30	532.21
	288.62	201.55	734.17	679.99	408.02	775.32
po1fk3P	149.38	579.30	63.35	598.00	184.96	211.42
	229.84	479.27	606.92	249.98	659.85	367.45
po1fk4P1	1023.41	1022.26	1034.82	1132.45	1391.67	1056.40
po1fk4P2	1008.45	1062.82	1619.81	1284.74	1047.67	1071.17
po1fk4P3	981.41	1104.16	993.39	1030.22	1098.98	934.41
po1fk4P4	1092.36	1123.82	980.93	1110.68	982.84	-
po1fk4P5	568.75	603.08	1447.58	1042.40	985.15	-
po1fk5P	1595.07	1103.68	1301.33	1230.75	1359.54	-
po1fk6P	1081.05	1108.47	1593.25	1175.41	-	-
po1fk7P	797.95	1802.69	968.94	1011.42	-	_

Supplementary Note

Stoichiometric model to assess Ehrlich pathway efficiency

To systematically assess the Ehrlich pathway, we analyzed the stoichiometrics of 2-PE biosynthesis using L-phenylalanine as substrate, listed below:

Here, 2-oxoglutarate is synthesized by the central carbon metabolism with the glucose as substrate (Fig 1b):

Glucose + 2ADP_c + 2NAD⁺_c
$$\rightarrow$$
 2-Oxoglutarate + 2NADH_c + +2ATP_c + CO₂ (2)

Thus, the overall stoichiometry of 2-PE biosynthesis is:

L-Phenylalanine + Glucose + 2ADP_c + NAD⁺_c
$$\rightarrow$$
 2-PE + Glutamate + NADH_c + 2ATP_c + 2CO₂ (3)

On the basis of the stoichiometry, producing 1 mol 2-PE will consume 1 mol of L-phenylalanine and glucose, with the formation of 1 mol cytosolic NADH, 1 mol of glutamate, 2 mol of cytosolic ATP and 2 mol of CO₂. This overall stoichiometrics suggests that NADH is not the limiting factor of 2-PE production.

Next, to rationally predict the engineering targets, a global stoichiometric model was established. Herein, for production of 1 mol of 2-PE, x mol of L-phe and y mol of glucose will be consumed. The final outcome of nitrogen metabolism in microbes should be some proteins or metabolisms with N elements. Herein, we assumed that the final outcome of nitrogen metabolism is proteins and the formula is $(RC_2H_4O_2N)_n$, the general linear formula of proteins (R represents the side chain). For the convenience of the following deduction, we further assumed that the R group is H. Thus, the overall stoichiometrics will be

The yield of 2-PE (g/g L-phenylalanine) is

$$Y_{2-PE} = \frac{122}{165} x$$
 (5)

Furthermore, introduction of the respiratory quotient (RQ):

$$RQ = \frac{7x + 6y - 8}{8.5x + 6y - 10}$$
 (6)

Solve the above equation (6) and substitute x into equation (5), we will get a general yield which depends on both RQ and the amount of glucose (y) consumed.

$$Y_{2-PE} = \frac{122}{165} * \frac{8.5RQ - 7}{(6 - 6RQ)y + 10RQ - 8}$$
(7)

However, the above mathematical model with three unknown variables is obscure and esoteric. Thus, we decided to reduce the degree of freedom of the above model and divided the yield into two parts, namely L-phe consumption and

2-oxoglutarate supplementation.

To deduce the boundary of above model (Eqn.7), we assumed that production of 1 mol of 2-PE will only require m mol of L-phe without glucose (y=0), which means L-phe is used as both N and C sources for cell maintenance and product production. Thus, the metabolic model was

m L-Phenylalanine $(C_9H_{11}NO_2) + (8.5m-10) O_2 \rightarrow 2$ -PE $(C_8H_{10}O) + m$ proteins $(C_2H_5O_2N)_n + (7m-8) CO_2 + (3m-5) H_2O (8)$ As a result, the yield of 2-PE $(g/g_{L-phenylalanine})$ and the respiratory quotient (RQ) were $Y_{2-PE} = \frac{122}{165m}$ and $RQ = \frac{7m-8}{8.5m-10}$, respectively. And, the yield of 2-PE could be solved as

$$Y_{2-PE} = \frac{122}{165} * \frac{8.5RQ - 7}{10RQ - 8}$$
 (9)

As Shown in the metabolic model (Fig. S1), Y_{2-PE} increases as RQ increases, whereas RQ increases as L-phe consumption (m) decreases. High RQ value represents less L-phe is oxidized to maintain cell metabolism, and more L-phe is used to synthesize 2-PE through the Ehrlich pathway. In addition, the stoichiometrics (Eqn. 9) suggest that the theoretically maximum Y_{2-PE} is 0.739 g/g _{L-phenylalanine}. On the other hand, to account for the cofactor aKG, we assumed that RQ value is a certain value (β) and production of 1 mol of 2-PE will require m mol of aKG. Thus, the metabolic model was

$$\frac{\binom{8+\beta a-5m}{7}}{1} \text{L-Phenylalanine} (C_9H_{11}NO_2) + \text{m 2-oxoglutarate} (C_5H_6O_5) + aO_2 \rightarrow 2\text{-PE} (C_8H_{10}O) + (\frac{8+\beta a-5m}{7}) \text{ proteins}$$

$$(C_2H_5O_2N)_n + \beta a CO_2 + (\frac{3\beta a+6m-11}{7}) H_2O (10)$$

According to mass balance of element O, 'a' could be further simplified, which is $\frac{29m + 4}{17\beta - 7}$. As a result, the yield of 2-PE (g/g _{L-phenylalanine}) is

$$Y_{2-PE} = \frac{122}{165 * \frac{8 - 5m + \beta * \frac{29m + 4}{17\beta - 7}}{7}} (11)$$

If $\beta=1$, $Y_{2-PE} = \frac{122}{165 * (1.2 - 0.3m)}$ (12); If $\beta=2$, $Y_{2-PE} = \frac{122}{165 * \frac{224 + 53m}{189}}$ (13); If $\beta=10$, $Y_{2-PE} = \frac{122}{165 * \frac{1344 - 525m}{1141}}$ (14);

Analysis of the above equation (Fig. S1) indicates that increasing aKG supplementation will significantly improve 2PE yield Y_{2-PE} under all different β values. Thus, as suggested by the mathematical model, 2-PE yield is more sensitive to the supply of akG. In the following section, we will focus our work to improve the pathway selectivity toward L-phe and enhance the availability of aKG.

Fig. S1. Stoichiometric models reveal that 2-PE yield is driven by selectivity of Ehrlich pathway and supply of 2-oxoglutarate (aKG).

Supplementary Figure

Fig. S2. 2-PE titers of screening L-phenylalanine specific permeases with the addition of final concentration of 4g/L

L-phenylalanine into CSM fermentation medium (48 h) in shake cultivations.

Fig. S3. 2-PE titers of strain strains po1gP7-1, po1gP7-2, po1gP7-3, po1gP7-4, po1gP7-5, and po1gP7-6 in shake cultivations.

References

- (1) Madzak, C., Treton, B., and Blanchin-Roland, S. (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast *Yarrowia lipolytica*. J Mol Microbiol Biotechnol 2, 207-216.
- (2) Lv, Y., Edwards, H., Zhou, J., and Xu, P. (2019) Combining 26s rDNA and the Cre-loxP system for iterative gene integration and efficient marker curation in *Yarrowia lipolytica*. ACS Synth. Biol. 8 (3), 568-576.