Supplementary Information

"DNA Double-Strand Breaks Induce H2Ax Phosphorylation Domains in a Contact-Dependent Manner" Collins et al.

Supplementary Figure 1: Supplemental data related to Figure 1.

A) UCSC genome browser snapshot showing the 3' *Igk* TAD border. Data are derived from *Lig4*-^{*I*} G1-arrested v-abl pre-B cells following Imatinib treatment (72h). Tracks show RPKM-normalized histograms for γH2Ax ChIP-seq (RPKM mean of three independent replicates), CTCF Cut and Run-seq (n=1), and relative TAD insulation scores, derived from 40 kb bins (blue lines) or 20-100 kb bins (grey lines). The *Igk* TAD border position is indicated above. **(B-C)** HiCExplorer PlotTADs representation of **(B)** *Tcrad* and **(C)** *Tcrg* Hi-C contacts (n=2, merged independent replicates), γH2Ax CR-seq (Red, RPKM, representative of 2 independent replicates), and V.4C data (grey, interaction counts, n=2, merged independent replicates), from the indicated cell types. Each panel includes diagrams indicating antigen receptor loci, and genes on top, and the DSB location (lightning bolt) at the bottom. For *Tcrg*, the two most commonly rearranged V segments were used as V.4C viewpoints (grey and dark grey).

Supplementary Figure 2: Supplemental data related to Figure 2.

A) Southern blotting analysis, as described in Figure 2. Data are shown for independent replicates, as well as for an extended, 16-hour time point. Black box indicates a cropped section used for figure 2A. B) Left: Proportion of cut alleles as a function of time post-nucleofection was calculated by relative qPCR. For this assay, any negative value is shown as 0% cutting. Right: G1-arrested Lig4^{-/-} v-abl cells were nucleofected with RNP-eß (blue) or an RNP for a control genomic region on a separate chromosome (red) and processed for yH2Ax ChIP-qPCR using oligos targeting PD_β1. Relative yH2Ax abundance was calculated using percent input. C) Dot and line plot showing γ H2Ax in 25 kb bins across *Tcrb*, two hours after pro- (63-12: blue) or pre- (p5424: red) lymphocyte cell lines were nucleofected with an RNP-E β . Dots show three independent replicates while lines indicate mean yH2Ax values. The locations of gene segments, regulatory elements and RNP target (lightning bolt) are shown at the top. Statistical significance and P values (Student's Paired T test) for each 25 kb bin is shown on bottom (blue significantly enriched in 6312, red significantly enriched in p5424).

Supplementary Figure 3: Supplemental data related to Figure 2.

A) Juicebox browser snapshots showing the (left) *Tcrb* or (right) *Myc* loci in cells nucleofected with the indicated RNP complexes, or control cells that were not nucleofected. Locations of genes, gene segments, and TAD locations are shown at the top of each panel. RNP target locations and V.4C data extraction viewpoints are shown as lightning bolts. Tracks represent values for γ H2Ax CR-seq (Red, RPKM, representative of three independent experiments) or V.4C (Grey, representative of two independent experiments). Subtraction plots show differences in mean V.4C signal from cells receiving RNP-E β versus RNP-*Myc*. Bottom: JuiceBox Hi-C plots after coverage-normalization, derived from G1-arrested *Lig4^{-/-}* v-abl cells receiving RNPs targeted to *Myc* (top right) or E β (bottom left). **B**) *Myc* promoter or E β interactome derived from Hi-C data of cells two hours after RNP-E β or RNP-*Myc* nucleofection, quantified in 25 kb bins across the targeted TAD. Relative interactome measurements have been normalized using coverage normalization and down sampling. For all plots, statistical enrichment (two-sided Paired Student's T test) is shown above. Means, quartiles, and outlier limits (1.5 x interquartile range) are indicated by the median line, box and whiskers, respectively. Grey lines indicate paired bins. Genomic intervals with over 50 interaction counts, which correspond to nearest neighbors, are not shown.

c)

RNP-*Ifit1, Foxp1* locus (off target) Genes H H RNP-*Ifit1* γH2Ax V.4C Anchor-*Foxp1*

Supplementary Figure 4: Supplemental data related to Figure 3.

Juicebox browser snapshots showing the *Rragc* (A), *lfit1* (B), or *Foxp1* (C) loci nucleofected with the indicated RNP complexes, or a control RNP targeted to $E\beta$ (Representative of 2 independent replicates, each). Data are represented as in Figure 3.

b)

Supplementary Figure 5: Supplemental data related to Figure 4

A) Left: Genomic sequence of the upstream *Myc* CTCF site with RNP target sites (grey with red NGG) and CTCF motif (green) labeled. RNPs labeled 5' and 3' CTCF were used for subclone creation. <u>Right</u>: PCR showing deletion of the upstream *Myc* CTCF site Gel image is representative of at least two independent genotyping PCRs. **B**) IGV snapshot, as described in Figure 4, showing the *Myc* locus in 63-12 cells with and without the 5' CTCF binding motif. Tracks representing γ H2Ax data were normalized to the DSB-containing bin. For subtraction plots of γ H2Ax or V.4C data, red represents WT enrichment, while purple represents KO enrichment. Independent replicates are indicated on the figure. RPKM-normalized CTCF and H3K27ac CR-seq tracks are shown on the bottom (n=1, each). **C)** *Myc* super-enhancer interactome and γ H2Ax derived from 5'CTCF WT or KO cell lines, quantified in 10 kb bins across the *Myc*-containing bin. Replicates are indicated on the figure. <u>Right</u>: Comparison of *Myc* promoter interactomes, derived from Hi-C data, across the *Myc*-containing TAD of indicated genotypes, without RNP nucleofection. Relative interactome measurements have been normalized using coverage normalization. For all plots, statistical enrichment (two-sided Paired Student's T test) is shown above. Means, quartiles, and outlier limits (1.5 x interquartile range) are indicated by the median line, box and whiskers, respectively.

Supplementary Figure 6: Supplemental data related to Figure 5

A) Genomic sequence of the upstream *Myc* CTCF site with RNP target sites (grey with red NGG) and CTCF motif (green) labeled. RNPs labeled 5' and 3' CTCF were used for RNP targeting in Supplementary Figure 6, while RNP labeled CTCF was used for Figure 5. **B)** γH2Ax following DSBs targeted to the TAD border. UCSC snapshot show values for γH2Ax CR-seq (red, RPKM, representative of two independent experiments). Cartoons to the right of tracks show relative regulatory element and DSB sites (lightning bolts). **C)** Juicebox browser snapshots showing the *Ras10b* and *Tcrb* loci, nucleofected with the indicated RNP complexes or a control RNP targeted to eβ. Top: Scale bar, and gene locations (green). <u>Middle:</u> Tracks represent mean γH2Ax CR-seq (red, scaled as min-max, representative of 2 independent replicates) and V.4C (grey, scaled as 0-50 interaction score, n=2 merged independent replicates). RNP target sites and V.4C anchors are shown as dashed blue lines. <u>Bottom:</u> JuiceBox Hi-C plots showing coverage normalized interaction scores. Relevant TADs are highlighted with dashed boxes. **D)** Model of γH2Ax domain formation via chromosomal contacts. <u>Top</u>: Intra-TAD DSBs lead to propagation of γH2Ax via contacts with the break site; <u>Middle:</u> DSB at a TAD border leads to spreading of γH2Ax throughout both adjacent TADs; and, <u>Bottom:</u> DSBs near a TAD border generate highly asymmetric γH2Ax domains on each side of the break, where spreading on one side is blocked by the proximal CTCF site.

Supplementary Table 1

Key resources table listing the reagents and datasets used in this study

REAGENT or RESOURCE	SOURCE	IDENTIFIER				
Antibodies		<u>.</u>				
Anti-H2Ax (3 μg/ChIP)	Abcam	Ab11175				
Anti-phosphoH2Ax (3 μg/ChIP or 1 μg/Cut and Run)	Millipore	05-636				
Anti-CTCF (1 µg/Cut and Run)	Rockland	600-401-C42				
Anti-H3K27Ac (1 μg/Cut and Run)	Abcam	Ab4722				
Rabbit anti Mouse (1 µg/Cut and Run)	Invitrogen	31188				
Chemicals, Peptides, and Recombinant Proteins						
Digitonin	EMD Millipore	300410				
Spermidine	Sigma-Aldrich	S2501				
Protein A Dynabeads	Invitrogen	10001D				
ConA Microbeads	Bangs Laboratory	BP531				
Protein A Mnase	Skene et al. 2018					
MNase	NEB	M0247S				
Cas9-NLS	Berkley Macrolabs					
ACK lysing buffer	ThermoFisher	A1049201				
TRizol	Invitrogen	15596026				
T4 DNA Polymerase	New England Biolabs	M0203L				
Klenow DNA Polymerase	New England Biolabs	M0210L				
T4 PNK	New England Biolabs	M0201L				
Klenow (3'-5' Exo-)	New England Biolabs	M0212L				
Quick DNA Ligase	New England Biolabs	M2200L				
Phusion HF Master Mix	New England Biolabs	M0531L				
Complete, EDTA-Free PI Cocktail	Roche	11873580001				
Critical Commercial Assays						
GeneArt™ Precision gRNA Synthesis Kit	ThermoFisher	A29377				
Agencourt AMPure XP	Beckman Coulter	A63880				
RNeasy Plus Micro kit	Qiagen	74034				
Nextera DNA Library Preparation Kit	Illumina	FC-121-1030				
Nextera Index Kit	Illumina	FC-121-1011				
NEBNext ChIP-Seq Library Prep Master Mix Set for Illumina	NEB	E6240L				
EZ nuclei isolation kit	Sigma	NUC101-1KT				
Low Bind DNA Tubes	Ambion	AM12450				
Deposited Data						
Raw and Analyzed Data	GSE150384					
Experimental Models: Cell Lines						
Lig4-/- FokI-ZFN Abl Cell	Lee et al. 2013	Lig4-/- FokI-ZFN				
Lig4-/- Abl Cells	Helmink et al 2011 Lig4-/-					
Rag2-/- Rag1-/- Abl pro lymphocyte line	Ji Y et al. 2010 63-12					
P5424 cells pre lymphocyte line	Mombaerts et al. 1995 P5424					
Experimental Models: Organisms/Strains						

Artemis -/- Bcl2Tg mice		Bednarski et al., 2012				
Rag-/- Bcl2-Tg mice		Bednarski et al., 2012		000046 00 40007		
Rag-/- Mice JA		JAX La	ab	002216 - B6.12987- Rag1 <tm1mom>/J</tm1mom>		
Oligonucleotides						
RNP-Fam49b genomic	GATGTACAGGGTAACG	GCGA				
target			mm9 chr15:63829296-63829978			
RNP-MYC Pro genomic	GTGTGCAGAGCCGCGCTCCG					
target			mm9 chr15:61816821-61817283			
RNP-MYC SE genomic	GGATGCCTCTCACTGAGTCA		mm9 chr15:63,510,641-			
target			63,510,773			
RNP-MYC CTCF motif	GTGGTCTCTGTGGCCAG	STAG				
genomic target			mm9 chr15:61814727-61815220			
RNP-FAM84b genomic	GCTCGCCACGCACCTGCACC		mm9 chr15:60,654,471-			
target			60,654,943			
RNP-eBeta 5' genomic	ACTGTCACGGTGATAGO	CTAG				
target			mm9 chr6:415	04605-41504606		
RNP-eBeta 3' genomic	AGTGGGAAGAGCGGTGATGT					
target			mm9 chr6:41504799-41504800			
RNP-MYC CTCF 5' genomic	AGCGTTGCGAAGCCAA	CGA				
target			mm9 chr15:61815048-61815150			
RNP-Vb30 genomic target	GTAGAATGTTAGGCAGGCAT		mm9 chr6:41166002-41166061			
RNP-Agk genomic target	AGAAAGTAATTAAATGGCTA		mm9 chr6:40275167-40275304			
RNP-eBeta genomic target	GATGTAAGATAGTTTAGATG		mm9 chr6:41504684-41504685			
Software and Algorithms						
Bowtie2		Langn		http://bowtie-		
		Salzbe	erg, 2012	bio.sourceforge.net/		
Samtools		lietal 2009		http://samtools.sourc		
			eforge.net/			
Novoalign		Hercus et al, 2012		www.novocraft.com		
Picard	MIT c		oen license	https://broadinstitute.		
ΜΔΩε2		Zhang Viet al. 2008		gltnub.io/picard/		
		Zhang	1 ot al, 2000	oliu/MACS		
DeepTools				http://www.biconduct		
				or.org		
BEDTools		Quinla	n A.R. and Hall	bedtools.readthedoc		
Microsoft Office		1.101, 20	1.IVI, 2010 S.IO			
ggplot2		Wickham H., 2016		http://ggplot2.tidyver		
			•	se.org/		
UCSC Genome Browser		Karolc	hik et al, 2003	https://genome.ucsc. edu/		
HicCompare		Stansf	ield et al, 2018	http://www.biconduct		
				or.org		