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SUMMARY
Most plants grow and develop by taking up nutrients from the soil while continuously under threat from
foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal
prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory,
we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the
waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata. We identified an early whole-
genome duplication in the family as source for carnivory-associated genes. Recruitment of genes to the
trap from the root especially was a major mechanism in the evolution of carnivory, supported by family-spe-
cific duplications. Still, these genomes belong to the gene poorest land plants sequenced thus far, suggest-
ing reduction of selective pressure on different processes, including non-carnivorous nutrient acquisition.
Our results show how non-carnivorous plants evolved into the most skillful green hunters on the planet.
INTRODUCTION

Carnivorous plants attract, capture, and digest small-animal

prey with the consequent active uptake and usage of the prey-

derived nutrients [1, 2]. Despite the high level of specialization,

plant carnivory has evolved several times independently in flow-

ering plants [3, 4]. This includes the evolution of a wide range of

capture organs, with trapping mechanisms frequently including

rapid movements: the touch-sensitive snap traps in Dionaea

muscipula (Di. muscipula) and Aldrovanda vesiculosa

(A. vesiculosa), the suction traps in Utricularia species, and the

snap tentacles in certain Drosera species. Following the initial
2312 Current Biology 30, 2312–2320, June 22, 2020 ª 2020 The Auth
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catch, ongoing mechanical activation [5] by the prey and

chemical compounds from the prey [6] trigger the production

of jasmonate (JA), which activates the carnivore’s digestive sys-

tem. Specialized glands produce and secrete lytic enzymes that

partially break down the insect’s chitin-based exoskeleton and

degrademost of the prey’s internal soft tissues. The released nu-

trients are actively taken up by the plant cells from the digestive

fluid through newly synthesized and membrane-placed trans-

porters [7].

In recent years, the genomes of several carnivorous plants

were sequenced, providing new insights into various aspects

of the ecology and evolution of plant carnivory. Utricularia gibba
ors. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Genome Evolution

(A–C) Whole plants and traps of (A) A. vesiculosa, (B) Di. Muscipula, and (C) Dr. spatulata.

(D) Phylogenetic relationships of the three carnivorous Droseracaea and nine other species used in the study (Beta vulgaris, Utricularia gibba [carnivorous],

Solanum lycopersicum, Carica papaya, Arabidopsis thaliana, Gossypium raimondii, Manihot esculenta, Cephalotus follicularis [carnivorous], and Aquilegia co-

erulea). Identified whole-genome duplications at the base of the Eudicots (g), the base of the Droseraceae (Db), and in A. vesiculosa (Aa) as well as the inde-

pendent emergences of carnivorous traits (fly) are indicated.

(E) Content of the genome and the transposon only assemblies.

(F) Age distribution of LTRs (long terminal repeats) indicated by number of substitutions as identified in transposon only assemblies. Upper right corner shows

their relative distribution.

See also Figure S1 and Tables S1–S3.
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[8] and Genlisea aurea [9], two members of the Lentibulariaceae

family, were found to possess the smallest genomes of any

known vascular plant. Studies on Drosera capensis revealed

the rapid expansion of proteases, enzymes essential for the

digestion of captured prey [10]. The analysis of specific adapta-

tions in the pitcher plant Cephalotus follicularis and closely

related non-carnivorous and carnivorous plants unveiled the or-

igins of digestive enzymes, thus highlighting distinct trajectories

for the evolution of this functional complex [11].

Here, we sequenced and compared the genomes of three

related carnivorous species to reconstruct the evolutionary his-

tory of botanical carnivory and unravel clade- and species-spe-

cific adaptations. The analyzed speciesA. vesiculosa (Figure 1A),

Di. muscipula (Figure 1B), and Drosera spatulata (Dr. spatulata)

(Figure 1C) belong to one of the largest carnivorous families,

the Droseraceae. Including members from all three genera of

the Droseraceae enabled us to reconstruct early events in the

emergence of carnivory.
RESULTS AND DISCUSSION

A Whole-Genome Duplication Precedes Speciation
Di. muscipula lines that are commercially available for horticul-

ture and for standardized physiological and molecular studies

are produced by vegetative propagation over years to several

decades. As this reduced selective pressure could affect

genome metrics, we, in addition to cultured lines, collected leaf

samples from native Di. muscipula in North Carolina and deter-

mined their genome size by flow cytometry (STAR Methods; Ta-

ble S1). The genome size of both cultured and wild Di. muscipula

is 3.18 Gbp and thus comparable in size with the human

genome. In contrast, the genome sizes obtained for

A. vesiculosa and Dr. spatulata are 509 Mbp (Table S1) and

323 Mbp [12], respectively. We sequenced (Data S1A), assem-

bled, and annotated the genomes of these three species by inte-

grating short- and long-read sequencing technologies (Table 1;

STAR Methods). To unravel the evolutionary mechanisms
Current Biology 30, 2312–2320, June 22, 2020 2313



Table 1. Assembly and Annotation Statistics

Genome Size (Mbp) Assembly Size (Mbp) No. Contigs Longest Contig (Mbp) N50 (Kbp) Completeness (BUSCO)

A. vesiculosa 509 420 2.408 3.4 314 C: 86.9% [S: 76.6%, D:

10.3%]

Di. muscipula 3.187 1.500 104.847 1 35 C: 83.6% [S: 80.5%, D:

3.1%]

Dr. spatulata 293 238 1.061 3.4 705 C: 86.0% [S: 82.9%, D:

3.1%]

No. of Predicted Genes Genes with

Interpro Annotation

Average Intron

Length (bp)

Average Exon

Length (bp)

Completeness (BUSCO)

A. vesiculosa 25.123 24.450 401 224 C: 84.3% [S: 73.1%, D:

11.2%]

Di. muscipula 21.135 19.873 634 229 C: 76.2% [S: 72.5%, D:

3.7%]

Dr. spatulata 18.111 17.645 400 222 C: 83.6% [S: 80.1%, D:

3.5%]
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leading to the large difference in genome size, we first searched

the draft genome sequences for signs of whole-genome duplica-

tions (WGDs). The age distribution of paralogous genes revealed

distinct peaks indicative of WGDs (STAR Methods; Figure S1).

According to those data, a first WGD occurred at the base of

the carnivorous Droseraceae family [13] and is thus shared by

all three species considered here. Supported by copy numbers

of syntenic sequences,A. vesiculosa appears to have undergone

an additional genome triplication (Figure 1D; Table S2). This

more recent event agrees with the increased fraction of dupli-

cated genes compared to the other two carnivorous species

(10.3% in A. vesiculosa but 3.1% in Dr. spatulata and Di. musci-

pula; Table 1). Despite its large genome size, no signs of addi-

tional WGD were identified in Di. muscipula.

Transposons Massively Bloated the Venus Flytrap
Genome
Repetitive sequences, such as long transposable elements

(LTRs), can make up a large part of plant genomes [14] but typi-

cally are poorly represented in draft assemblies [15]. As the draft

assembly we obtained for Di. muscipula is, with 1.5 Gbp, sub-

stantially smaller than the size of 3.18 Gbp determined by flow

cytometry, we used a genome-assembly-independent method

for the characterization of the repeat landscapes of the three ge-

nomes [16] (Table S3). This method identifies reads originating

from repetitive elements and assembles them de novo. Accord-

ing to this analysis, 1.236 Gbp of the Di. muscipula genome

(38.78% of the measured genome size) consists of LTRs—

largely exceeding the observations for A. vesiculosa (89 Mbp;

17.5%) and Dr. spatulata (17 Mbp; 5.7%; Figure 1E). Further-

more, the LTRs ofDi. muscipula are highly self-similar (Figure 1F;

STARMethods), indicating that they arose in a recent expansion.

For genes of Di. muscipula, the mean intron length is 1.5 times

larger than for A. vesiculosa and Dr. spatulata (Table S1). Unlike

the low amount of LTRs, Dr. spatulata has the highest count of

tandem gene duplications observed (Figure S2). The presence

of leucin-rich-repeat (LRR) and IQ domains in these genes sug-

gests their role in the perception of prey via chemical cues.

Taken together, the genomes of the three Droseraceae species

were shaped by a common WGD followed by an additional

whole-genome triplication in A. vesiculosa, extensive tandem
2314 Current Biology 30, 2312–2320, June 22, 2020
gene duplications in Dr. spatulata, and a recent explosion of

LTRs in Di. muscipula.

Evolution of Carnivory Is Associated with Massive Gene
Loss
Despite the evolution of a new and complex trait, carnivory, the

three Droseraceae considered here belong to the gene-poorest

vascular plants sequenced to date (21,135 genes in Di. musci-

pula, 25,123 in A. vesiculosa, and 18,111 in Dr. spatulata; Fig-

ure S3). Still, we identified thirty orthogroups specific for the

three Droseraceae, i.e., they are not shared with any of the

nine outgroup species, including two carnivorous and seven

non-carnivorous plants (Figure S4). Based on Gene Ontology

(GO) terms, this gene set was significantly enriched in carboxy-

peptidases, hydrolases, and endopeptidase inhibitors, all of

which can be directly associated with prey digestions (Data

S1B). Additionally, genes involved in the regulation of transcrip-

tion (GO: 0003700 and GO: 0000987) were enriched. To search

for gene families that had significantly changed size in the carniv-

orous Droseraceae, we generated a birth-death-innovation

model (STARMethods) integrating the three carnivorous Droser-

aceae with two carnivorous and seven non-carnivorous angio-

sperm species (Figure 2A). In congruence with the observed

overall reduction in gene content, 1,912 groups were contracted

in the Droseraceae. These included genes involved in kineto-

chore formation [17, 18] (Figure S5), which have previously

been shown to be associated with the occurrence of holocentric

chromosomes [19–21]. Further losses affected the ubiquitin

(UBQ) gene family often involved in stress responses (Figure S5)

and genes related to root development (Figure S5). The last one

is prominent in A. vesiculosa, where we could not identify key

regulators of root development, such as WOX5, RHD6, LBD1,

ANRs, and CASPs (Figure S5). This can be a consequence of

the fact that its radicle is arrested early after germination and

the lack of any root system in the adult plant [22].

Carnivory Is Associated with the Expansion of Distinct
Gene Families
Contrasting the general trend of gene loss, we identified 279

expanded orthogroups (Figure 2A). Intriguingly, these are en-

riched in functions directly associated with the different steps
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Figure 2. Gene Family Expansion and Contraction

(A) Numbers of expanded (blue) and contracted (pink) orthogroups shared among different lineages.

(B) Functional annotation of the 279 expanded gene families common to all three Droseraceae and their potential association with plant carnivory. Arrows indicate

chronological order in the hunting cycle.

See also Figures S4 and S5.
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of the hunting cycle—prey attraction, perception, digestion, and

nutrient absorption (Figure 2B; Data S1C). The high number of

enzymes involved in terpenoid and other secondary metabolite

synthesis, as well as some sugar transporters, hint at their role

in the attraction of prey. Expanded membrane receptor and

signal transducer families appear to be adaptations related to

the perception of prey, whereas peptidases, nucleases, and

other hydrolases can be used for prey digestion. Finally,

numerous transporters for nitrogen, phosphates, sulfate, amino

acids, oligopeptides, sugars, and metallic ions were expanded,

likely building the core of the nutrient uptake system. These

are accompanied by expanded gene families related to vesicle

transport, which were previously shown to play a role in nutrient

uptake [23] as well as in digestive fluid release [24]. On the plant

inner regulatory systems, GO terms related to JA metabolism

and JA signaling were enriched. Because the expansion of the

underlying gene families precedes the split of the three carni-

vores, our results suggest that this process likely evolved already

in a common ancestor of the Droseraceae. Lastly, gene families

that control structural features of the traps, namely the mucilage

production and the ability to detect prey-induced trap move-

ments, were over-represented. Although auxin was reported to

be accumulated locally in Drosera traps following insect capture

[25], further investigations have challenged the role of auxin in

capture and leaf movement [26]. Interestingly, we found several

small auxin upregulated RNA (SAUR) genes and related families,
including V-ATPases, aquaporins, and expansins, are expanded

in Droseraceae. Together, this supports the notion that gene

duplications contributed to all four steps of plant carnivory (Fig-

ure 2B). At the base of the snap-trap-bearing species, we found

184 GO terms expanded (Data S1D). This includes leaf formation

(GO:0010338), which suggests their contribution to the more

complex leaf-trap morphology in this group. Further enriched

terms cover ‘‘cell wall biogenesis’’ and ‘‘cell wall modification.’’

Indeed, the cell wall is crucial for the trap’s snappingmechanism.

Additionally, we found terms possibly related to gland function

(‘‘fatty acid beta oxidation’’ and ‘‘Golgi vesicle transport’’) as

well as digestion (‘‘metalloendopeptidase activity’’ and

‘‘cysteine-type endopeptidase inhibitors’’).

Recruitment of Genes to Carnivory
To understand the evolutionary origin of the genes involved in car-

nivory in the Droseraceae, we integrated the genomic data of Di.

muscipula with the transcriptomes of ten different tissues,

including resting and prey-processing traps and their glands

[27]. For 15,964 predicted genes, we found an FPKM (fragments

per kilobase of exon model per million reads mapped) >1 in at

least one tissue. We classified the tissue specificity of each

gene over all tissues and conditions using a Shannon entropy-

derivedmethod [28] (STARMethods). This allowed us to function-

ally characterize different parts of the trap and their associated

genes (Figure 3; Data S1M). We extracted all Arabidopsis thaliana
Current Biology 30, 2312–2320, June 22, 2020 2315
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orthologs of genes specific for activated glands in Di. muscipula.

Surprisingly, these are significantly enriched in root-associated

terms (Data S1E). This situation strongly suggests that genes

used for prey-derived nutrient absorption in Di. muscipula were

recruited from the root, the organ engagedwith soil nutrient explo-

ration and absorption in non-carnivorous plants.

InDi. muscipula, the rim of the trap secretes volatiles to attract

prey [29, 30]. Orthologs of rim-specific genes can be found in the

nectaries of non-carnivorous plants [31]. This includes the sugar

transporter SWEET9, which rewards pollinating insects [32] in

floral nectaries, as well as genes responsible for volatile and sec-

ondary metabolite synthesis. Interestingly, this set of genes

overlaps with the set of expanded gene families described in

the previous section, further highlighting the importance of

recruitment and expansion of genes with originally non-carnivo-

rous functions to carnivory-related processes (Table S9).

Specific WRKY Transcription Factors Regulate
Carnivory Genes
In the roots of non-carnivorous plants, nutrient transporters are

constitutively expressed. In their glands, however, the expres-

sion of transporters is switched on only after nutrient-rich prey

has been caught [27, 33]. This raises the more general questions

whether and, if so, how carnivory-related genes came under the

control of gland-specific promoters. To this end, we analyzed

transcription factor binding motifs in the upstream regions of

gland-associated genes in Di. muscipula (STAR Methods). In

addition to insect-based stimulation, we also used coronatine

(COR), a molecular analogon of JA-Ile, to mimic the presence

of prey in the trap. COR induces the secretion of digestive en-

zymes and the expression of nutrient transporters in the glands

[27]. We found that the upstream regions of genes activated

upon COR stimulation or insect capture are enriched specifically

in WRKY6 and WRKY29 binding sites, respectively (Figures 3B–

3E; Table S4). Consistently, genes orthologous to WRKY6 and

WRKY29 transcription factors are specifically expressed in the

activated traps (Data S1G and S1H). Furthermore, the genomes

of A. vesiculosa and Dr. spatulata also code for orthologs of

these transcription factors (Data S1I). Phylogenetic reconstruc-

tions revealed a duplication common to all three Droseraceae

for WRKY6 (Figure 3B) and one specific for the snap-trap plants

for WRKY29 (Figure 3D). This might hint to a sub-functionaliza-

tion following the duplication event. In non-carnivorous plants,

orthologs of WRKY6 and WRKY29 are involved in responses to

biotic and abiotic stresses [34, 35], including pathogens [36,

37] and herbivore attack [38]. This supports the notion that

botanical carnivory originated from plant defense mechanisms

[27, 39]. Taken together, our findings suggest that these tran-

scription factors (TFs) could play a role in gland-specific, prey-

induced gene expression. If this is the case, they could be of

importance for the recruitment of genes to carnivory-related

functions and thereby for the evolution of plant carnivory.
Figure 3. Function and Recruitment of Trap-Specific Genes in Di. mus

(A) Enriched biological function Gene Ontology terms from the tissue-specific ex

(B and D) Phylogenetic trees of WRKY transcription factor orthogroups predict

WRKY6 and (D) WRKY29.

(C and E) Enriched TF-binding motifs found in the upstream region of trap-specific

See also Table S4.
Parallel Evolution of Carnivory in Droseracaea and
Nepenthaceae
The closest relative to Droseraceae is a clade containing the fully

carnivorous Nepenthaceae and Drosophyllaceae, the partly

carnivorous Dioncophyllaceae, and the non-carnivorous Ancis-

trocladaceae families. Members of this clade hunt with passive

pitfall traps or mucilaginous glandular traps. Furthermore,

stalked glands evolved independently in Droseraceae, Droso-

phyllaceae, and Dioncophyllaceae [40]. Together with the funda-

mentally different hunting strategies, this raises the question of

whether carnivory evolved in the last common ancestor of these

clades or independently in both. To address this, we compared

the Droseraceae genomes with transcriptomic data for

Nepenthes alata [41] and close non-carnivorous relatives in Car-

yophyllales and Arabidopsis thaliana. Orthogroups unique for all

carnivorous species did not reveal functions related to plant car-

nivory. Furthermore, gene duplications before the split of Droser-

aceae and Nepenthaceae are enriched in 39 GO terms (Data

S1J). Of those, only lipases and potassium transporters had a

possible association with plant carnivory. By contrast, gene du-

plications at the base of the Droseraceae are enriched in carni-

vory-associated terms, including JA signaling, transport, and

leaf formation (Data S1K). Thus, although first adaptations to

plant carnivory might have evolved before the split of Drosera-

ceae and Nepenthaceae [42], the present data suggest that

the sophisticated mechanisms of carnivory evolved indepen-

dently in these sister clades. Similar to the Droseraceae, the Ne-

penthaceae also underwent a WGD at the base of their clade

[43]. It would be interesting to see whether this genomic event

also was the basis for the evolution of plant carnivory in this sister

clade.

Conclusions
In summary, our study of the three carnivorous sister species Di.

muscipula, A. vesiculosa, and Dr. spatulata suggests a three-

step scenario in the evolution of plant carnivory in the Drosera-

ceae (Figure 4). First, a whole-genome duplication in their last

common ancestor provided gene material for diversification

into carnivorous functions. This included the expression of

ancestral root genes in leaf-derived traps hand in hand with a

co-option for carnivory-specific processes. Second, the use of

a new nutrient source reduced the selective pressure on genes

involved in non-carnivorous nutrition. This led to massive gene

losses, resulting in three of the gene-poorest plant genomes

sequenced thus far. Finally, different species-specific mecha-

nisms enabled the emergence of clade-specific, independent

hunting styles. Obviously, these three steps can overlap and

might not have happened independently.

The genetic material underlying plant carnivory is present in

most non-carnivorous plants, and whole-genome duplications

happened frequently throughout the plant kingdom. Thus, the

path to carnivory could have been open to most plants. To the
cipula

pression list.

ed as potential regulators of carnivorous functions in Di. muscipula traps. (B)

genes, corresponding to theWRKY orthogroups. (C) WRKY6 and (E) WRKY29.

Current Biology 30, 2312–2320, June 22, 2020 2317



Figure 4. Reconstruction of Key Steps in the

Evolution of Plant Carnivory in the Drosera-

ceae

Green boxes refer to gained features for carnivory;

blue boxes indicate events related to genome

evolution. The red circle with a decomposed fly

refers to the possible emergence points of carni-

vory.

See also Figures S2 and S3.
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relief of the animal kingdom, only a select few have evolved along

this route and became green hunters.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Dionaea muscipula tissue Own greenhouse or axenic culture N/A

Aldrovanda vesiculosa Own greenhouse or axenic culture N/A

Drosera spatulata Own greenhouse or axenic culture N/A

Critical Commercial Assays

Genomic-tip 20/G QIAGEN 10223

innuPREP Plant DNA Kit Alalytik Jena 845-KS-1060250

Fruit-mate TaKaRa Clontech 9192

NucleoSpin RNA Plant Kit Macherey & Nagel 740949.50

PureLink Plant RNA Reagent ThermoFisher 12322012

RNeasy Plant Mini Kit QIAGEN 74904

Deposited Data

Dionaea muscipula sequence data N/A PRJEB35195

Aldrovanda vesiculosa sequence data N/A PRJEB35196

Drosera spatulata sequence data N/A PRJDB9009

Experimental Models: Organisms/Strains

Dionaea muscipula Own greenhouse or axenic culture N/A

Aldrovanda vesiculosa Own greenhouse or axenic culture N/A

Drosera spatulata Own greenhouse or axenic culture N/A

Software and Algorithms

Canu v1.5 [44] https://github.com/marbl/canu/releases/tag/v1.5

Bowtie2 v2.3.1 [45] http://bowtie-bio.sourceforge.net/bowtie2/index.

shtml

Pilon v1.22 [46] https://github.com/broadinstitute/pilon

ALLPATHS [47] http://software.broadinstitute.org/allpaths-lg/

blog/

Redundans [48] https://github.com/lpryszcz/redundans

PBJelly [49] https://sourceforge.net/p/pb-jelly/wiki/Home/

BUSCO [50] https://busco.ezlab.org/

RepeatMasker [51] http://www.repeatmasker.org

RepeatModeller [52] http://www.repeatmasker.org

Reper [16] https://github.com/nterhoeven/reper

Maker [53] https://yandell-lab.org/software/maker.html

Augustus [54] http://bioinf.uni-greifswald.de/augustus/

STAR [55] https://github.com/alexdobin/STAR

Cufflinks [56] http://cole-trapnell-lab.github.io/cufflinks/

InterProScan [57] https://www.ebi.ac.uk/interpro/download/

Orthofinder [58] https://github.com/davidemms/OrthoFinder

MCScanX [59] http://chibba.pgml.uga.edu/mcscan2/

Meme-suite [60] http://meme-suite.org/

BadiRate [61] https://github.com/fgvieira/badirate

R 3.5.1 N/A https://www.R-project.org/

Other

Assemblies, predicted transcripts and proteins N/A http://www.carnivorom.org/resources
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Prof. Jörg

Schultz (Joerg.Schultz@uni-wuerzburg.de).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant growth conditions
A. vesiculosa: Plants were axenically grown in a 16h light (40-55 mMol * m2 * s-1) /8h dark regime at 24�C/16�C. The medium was

composed as follows: KNO3 - 5 mM; CaCl2 x 2 H2O - 500 mM; MgSO4 x 7 H2O - 500 mM; NaH2PO4 - 500 mM; (NH4)2SO4 -

500 mM; H3BO3- 100 mM; MnSO4 x 1 H2O - 100 mM; ZnSO4 x 7 H2O - 60 mM; KJ - 4 mM; Na2MoO4 x 2 H2O - 1,2 mM; CuSO4 x 5

H2O - 100 nM; CoCl2 x 6 H2O - 100 nM; Peptone - 250 mg/l; Inosit - 550 nM; Glycin - 27 nM; Nicotinic acid - 4 nM; Thiamin-HCl -

0,3 nM; Pyridoxin-HCl - 3 nM; FeNaEDTA - 100 nM; Sucrose - 20 g/l. pH was adjusted to 5.8.

Di. muscipula: Callus tissue was grown under sterile conditions on 1/3 MS Medium supplemented with 3% sucrose, 1% Agar, pH

5.6-5.8. 3 mg/ml 6-Benzylamonopurine and 0,5mg/ml 2,4-D (synthetic auxin) were added. Calli were grown at 23�C in the dark.

Dr. spatulata: Plants were grown in half strength MSmedium supplemented with 30 g/L sucrose and Gamborg’s vitamins (pH 5.8)

under continuous light and 25C.

METHOD DETAILS

Flow cytometric determination of nuclear DNA contents
Absolute nuclear DNA contents (pg/2C) were determined on nuclei isolated from very young leaves/traps (about 1-1.5 cm long) of

Dionaea muscipula plants grown in the greenhouse and shoot tips of in vitro grown Aldrovanda vesiculosa. Therefore, this plant ma-

terial was co-chopped using a razor blade in 400 mL of the nuclei isolation buffer (Kit: CyStain PI Absolute P, Sysmex Deutschland

GmbH, Norderstedt, Germany) with 0.5 cm2 young leaf tissue of the respective references chosen as internal standards, i.e., Pisum

sativum cultivar ‘Viktoria, Kifejto Borso’ (9.07 pg/2C, genebank IPK Gatersleben acc. no. PIS 630) for D. muscipula and Solanum ly-

copersicum cultivar ‘Stupicke Polni Rane’ (1.96 pg/2C, genebank IPKGatersleben acc. no. LYC 418). After 2min, the suspensionwas

filtered through 30 mmmesh (Celltric filters, Sysmex) and the filtrate wasmixed with 1600 mL of the staining solution of the kit (CyStain

PI Absolute P, Sysmex) containing propidium iodide, RNase and supplemented with 1%polyvinylpyrrolidone-10. After an incubation

of at least 1 h in dark conditions and on ice, flow cytometric measurements were carried out using a CyFlow Ploidy Analyzer (Sysmex

Partec GmbH, Münster, Germany). For each genotype, five measurements of independent samples were taken at different days,

recording a minimum number of 632 nuclei in the main peak of the species of interest, with an average number of 2130 nuclei. Peaks

were automatically detected by the flow cytometer software and nuclear DNA contents of the samples (pg/2C) were calculated by

dividing the sample mean G0/G1 peak position by the reference mean G0/G1 peak position and multiplication by the reference DNA

content (pg/2C).

Sequencing
Genomic

A. vesiculosa: Genomic DNA was isolated from axenically grown Aldrovanda vesiculosa plants using a modified CTAB/Chloroform-

Isoamylalcohol–based protocol. In brief, 1 g of frozen plant material was powdered in liquid nitrogen and thawed in 19ml of extraction

buffer (2%CTAB, 2%PVP/MW10,000, 100mMTris-HCl, 1.4MNaCl, 20mMEDTA) and 120mg PVPP. After incubation at 63�C for 1

h, cell debris was removed by centrifugation (30 min, RT, 3,200 x g). 2.5 mg RNase were added to the supernatant and incubated at

37�C for 1h. Following addition of 50 ml Proteinase K (20 mg/ml) and 45min incubation at 37�C, the sample was extracted with 1 vol-

ume of chloroform/isoamyl alcohol (24:1, v/v). Phases were separated by centrifugation (15 min, RT, 2700xg) and the DNA was

precipitated from the aequeous phase by addition of 0.6 volumes of Isopropanol. After 1 h of incubation on ice, the gDNAwas precip-

itated by centrifugation (30min, RT, 3,200 x g). After two washing steps with 70% ethanol, gDNA was dried at 37�C for 15 min,

resuspended in TE-buffer and stored for subsequent use at 4�C. Quantity and quality of the resulting DNA were determined by capil-

lary electrophoresis (Experion, Bio-Rad Laboratories), fluorometrically (Qubit, Thermo Fisher Scientific) or spectrophotometrically

(NanoDrop 2000, Thermo Fisher Scientific).

Accession number: PRJEB35196

Dr. spatulata: Genomic DNA was isolated from shoots of aseptically grown plants of the ‘‘common’’ strain of diploid Dr. spatulata.

Collected shoots were homogenized in liquid nitrogen using a mortar and a pestle. The homogenate was transferred into 2x CTAB

extraction buffer (2% cetyltrimethylammonium bromide [CTAB], 1.4 M NaCl, 100 mM Tris-HCl [pH 8.0], 20 mM EDTA [pH 8.0], 1%

PVP40) preheated to 80�C and supplied with 1/1,000 volume of 14.1 M b-mercaptoethanol, and was gently agitated at 65�C for 1 h.

An equal volume of chloroform: isoamyl alcohol (25:1) was added, and agitated using a rotator at 30 rpm for 10 min at room temper-

ature. After centrifugation at 10,000 rpm for 30 min at room temperature, supernatants were transferred to new tubes, and supple-

mented with 1/10 volume of 10% CTAB and an equal amount of chloroform:isoamyl alcohol (25:1). The tubes were shaken with a
e2 Current Biology 30, 2312–2320.e1–e5, June 22, 2020
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rotator at 30 rpm for 10 min. After centrifugation at 10,000 rpm for 30 min, supernatants were again transferred to new tubes and an

equal volume of isopropanol was added. The tubes were centrifuged at 10,000 rpm for 30min, and supernatants were discarded. The

crude DNA pellet was rinsed twice with 5 mL of 70% EtOH and air-dried for 5 min. The pellet was dissolved in 100 mL of TE (pH 8.0)

containing 0.1-1 mL 1 mg/mLRNase A, and gently agitated for 60min at 37�C. A 1/20 volume of 20mg/ml Proteinase Kwas added, and

tubeswere incubated at 56�C for 30min. Subsequently, the DNA solution was further purified usingGenomic-tip (QIAGEN) according

to the manufacturer’s instruction. DNA concentration was determined using fluorometer Qubit 2.0 (Thermo Scientific).

Accession number: PRJDB9009

Di. muscipula: Genomic DNA from Dionaea muscipula was extracted from 500mg of sterile callus tissue using the innuPREP Plant

DNA Kit (analytikjena) according to the manufacturer�s instructions. Quantity and quality of the resulting DNA were determined by

capillary electrophoresis (Experion, Bio-Rad Laboratories), fluorometrically (Qubit, Thermo Fisher Scientific) or spectrophotometri-

cally (NanoDrop 2000, Thermo Fisher Scientific).

Accession number: PRJEB35195

Transcriptomic
A. vesiculosa

Plant material of Aldrovanda vesiculosa was kindly provided by Lubomir Adamec from the collection in the Institute of Botany of the

Czech Academy of Sciences at Trebon, Czech Republic, and cultivated in the Botanic Gardens Wuerzburg in a water tank [62].

Mature, healthy & non-flowering Aldrovanda vesiculosa plants were frozen in liquid nitrogen and ground to a fine powder. To re-

move polysaccharides and polyphenols, 200 mg of frozen plant powder were resuspended in 350ml Fruit-mate (TaKaRa Clontech).

After cell debris was removed by centrifugation (10min, 4�C, 11,000 x g), the supernatant was subjected to RNA purification using the

NucleoSpin RNA Plant Kit (Macherey & Nagel) according to the manufacturer�s instructions. Quantity and quality of the resulting RNA

were determined by capillary electrophoresis (Experion, Bio-Rad Laboratories), fluorometrically (Qubit, Thermo Fisher Scientific) or

spectrophotometrically (NanoDrop 2000, Thermo Fisher Scientific). One TruSeq RNA library was generated, and RNA sequencing

was performed using an Illumina MiSeq sequencer at LGC Genomics.

Accession number: ERX3632913

Dr. spatulata

Total RNAwas isolated fromwhole plant, mature leaves, and roots of aseptically grown plants, and inflorescences of plants grown on

peat pots in three biological replicates. Plant materials were put in a 2 mL tube with a 45 mm zirconia bead, frozen in liquid nitrogen,

and ground using TissueLyser (QIAGEN) at 25 Hz for 2 min. Then, total RNA was extracted using PureLink Plant RNA Reagent

(Thermo Scientific) according to themanufacture’s protocol. Subsequently, the DNA solution was further purified using RNeasy Plant

Mini Kit (QIAGEN) according to themanufacturer’s instruction. Total RNA quality was analyzed using 2100 Bioanalyzer (Agilent). Total

RNA concentration was determined using Qubit and NanoDrop (Thermo Fisher Scientific).

Sequencing libraries for whole transcriptome analysis were produced from total RNA of Dr. spatulata using TruSeq Stranded

mRNA HT Sample Prep Kit (Illumina) as the manufacturer’s protocol. Sequencing was performed with HiSeq1500 (Illumina) at the

conditions of HO mode, v4 reagent, and paired-end sequencing of 2x126 bp.

Accession numbers: PRJDB9009

Assembly Strategies
The PacBio reads of Dr. spatulata and A. vesiculosa were assembled with canu [44] (version 1.5, default parameter settings, except

for genomeSize). Following, Illumina reads weremapped to the assembly [45] (bowtie2 version 2.3.1; default parameter settings) and

an error correction was performed with pilon [46] (version 1.22; default parameter).

For Di. muscipula, an assembly was generated using ALLPATHS [47] with a minimum contig size of 200 bp and haploidification

enabled. As overlapping paired-end libraries, digitally normalized reads obtained through an improved normalization run with

bbnorm.sh were used. For scaffolding, the mate-pair libraries Dm_GenIl_[001-018] plus the paired-end libraries with insert sizes

of 500 bp and 800 bp (Dm_GenIl_[027-032]) as well as artificial mate-pair generated from corrected PacBio reads (dm-pb2il-

[1235]000-01, dm-pb2il-15000-01) were supplied. Two additional post-processing steps were performed to further improve the

assembly. First, Redundans [48] was used to identify and merge redundant scaffolds that resulted from the assembly of different

heterozygous regions into separate contigs. Second, PBJelly [49] was applied to further increase the contiguity of the assembly

by scaffolding and extending the available sequences and filling N containing gaps.

The completeness of all three assemblies was evaluated using BUSCO [50] version 3.0.1.

Assemblies and predicted genes are accessible at http://www.carnivorom.org/resources

Annotation
Repetitive elements

All assemblies were annotated with RepeatMasker [51] and species-specific repeat libraries generated with RepeatModeler [52].

Complementary, repetitive elements were annotated in an assembly free approach based on Illumina sequences using reper [16].

TE Age estimation

As result, reper reports cluster with one or many assembled retrotransposon sequences. For each cluster, the distance of each

sequence to an exemplar (the longest sequence) is calculated according to the Jukes and Cantor model [35] as dAB = �3/4
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model name setup replicates parameters

gr Global Rate 3 2

fr Free rate 3 44

ar Asteraceae + Caryophyllales + Background 3 6

db Drosera + Background 3 4

vb Dionaea + Background 3 4

ab Aldrovanda + Background 3 4

av Snap trap + Background 3 4

ll
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ln(1 – 4/3 fAB) where dAB is the evolutionary distance between the sequences A and B and fAB is the fraction of observed differences

between A and B. Additionally, read coverage for each sequence as well as average Jukes Cantor distance of all reads compared to

the assembled sequence was considered. The number of occurrences of each sequence in the genome was calculated as: q = (nread
/coverage) * (lread /laseq) with the read-count (nread), genomic coverage, read-length (lread) and assembled-sequence-length (laseq).

Finally, every distance between an exemplar and an individual sequence was counted once and the distance between an individual

sequence and its reads (q � 1) times.

Gene Prediction

An iterative gene prediction was performed with Maker [53]. As evidence, all plant proteins in the swissprot database [57] (down-

loaded on 6. Dec 2017), predicted proteins of Amaranth (Amaranthus hypocondriacus) [63] and Quinoa (Chenopodium quinoa)

[64] and an augustus model [54] of A. thaliana was used. Additionally, transcriptomic data for each plant were used. Therefore, tran-

scriptomic reads were aligned to the respective genome assembly [55] and assembled [56]. The first iteration of maker was run using

the assembled transcriptome as gff file, the A. thaliana augustus model, as well as the plant proteins mentioned above as evidence.

The resulting annotation was then used to train the snap HMMs. These HMMs were then used as evidence for the second maker

iteration. Then, a second snap training was conducted using the genes from this maker run. Finally, a third maker run was started

using the second snap results.

Functional annotation

Domains and GeneOntology annotations were predicted with Interproscan Version 5.25-64.0 [65]. GO enrichments were calculated

in R 3.5.1 environment using hypergeometric tests and Benjamini-Hochberg correction for multiple testing.

A. thaliana orthologs of Di. muscipula genes were used for Plant Ontology (PO)-term enrichment with ‘‘parent-child-union’’ and

Benjamini-Hochberg correction for multiple testing [66].

Orthology prediction

Orthology prediction for the 12 species Eudicot and for the 11 species Caryophyllales dataset, was performed usingOrthofinder 2.2.6

[58] with msa option using mafft aligner version 7.158b [67].

Species tree reconstruction

The Species tree was reconstructed using STRIDE in the Orthofinder suite [68]. Time estimation was performed with r8s setting the

split of Aquilegia coerulea and Eudicots to 122-134 Mya and the Rosid and (Asterid-Caryophyllales) split to 110-124 Mya based on

TimeTree estimates [69].

Genome Duplication

Fourfold degenerative transversion (4dTv) rates were calculated by aligning all orthologous or paralogous gene pairs using DECI-

PHER’s codon alignment suit (http://www2.decipher.codes) and then calculating 4dTv distances using the seqinr 3.1-5 R package

(http://seqinr.r-forge.r-project.org). To assess the depth of duplications and investigate tandemly duplicated genes, we analyzed the

3 genomes using MCScanX [59].

TF binding site prediction

To identify candidate TF factor binding site in the tissue specific genes, sequences 950 bases upstream to 50 bases into the gene

were extracted. JASPAR CORE [70] redundant database was used as reference for plant transcription factor motifs [33]. Enrichment

of motifs was calculated by ‘‘Analysis of Motif Enrichment’’ (AME) [60]of the meme-suite ver. 5.0.1. Control sequences for a set of

sequences specific to a single tissue were composed of the entirety of all tissue specific gene sequences except for the tissue in

question. FIMO (‘‘Find Individual Motif Occurrences’’) [71], also found in the meme suite ver. 5.0.1, was used to scan tissue specific

sequences for motifs of transcription factors identified by AME.

QUANTIFICATION AND STATISTICAL ANALYSIS

Birth-Death Innovation Model
BadiRate branch models

Using the 12-species Eudicots orthogroups we calculated a Birth-Death-Innovation model for the family turnover rate using Badi-

Rate [61] as described in [11]. We selected seven different branch models (Table 1). Analysis and results were calculated using the
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badirater R package (https://palfalvi.github.io/badirater/), which was developed as an R interface for large-scale studies using Badi-

Rate. Branch models were considered significant if a weighted Akaike information criterion (wAIC) ratio was larger than 2.7.

Tissue Specificity
To identify tissue specific genes the Shannon entropy for every gene in every tissue was calculated. Therefore, all transcriptomic

reads were mapped onto the reference genome using STAR [55]. Next, expression was quantified using Cuffquant [56] and normal-

ized with Cuffnorm resulting in FPKM values for each gene and sample. For each tissue, the mean was taken over all samples.

Following, R was used to calculate the Shannon Entropy [28]. First, the relative expression (pt|g) of each gene (g) in each tissue (t)

based on the FPKM-value wg,t was calculated as pt|g = wg,t / Swg,t . Next, the entropy of the gene’s expression distribution (Hg)

was computed as Hg = S �pt|g*log2(pt|g). Finally, the tissue specificity (Qg|t) could be derived as Qg|t = Hg � log2(pt|g). Here, a small

value for Q-value indicates tissue specificity of gene g for tissue t. The Q-value cut-off to determine the 1 and 5%most specific genes

was calculated by means of probability density: Q-values for each gene in each tissue were collectively pooled for calculation of the

probability density curve. A Laplace-distribution was fitted to the probability density and the Q-value where the area under the curve

accounted for 1% or 5% of the data respectively, was then used as a threshold for specificity across each tissue individually.

DATA AND CODE AVAILABILITY

All sequence information has been uploaded to the Short Read Archive (SRA). Genomic data: A. vesiculosa - PRJEB35196; Dr. spat-

ulata - PRJDB9009; Di. muscipula - PRJEB35195. Transcriptomic data: A. vesiculosa - ERX3632913; Dr. spatulata - PRJDB9009.
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Figure S1: 4dtv distances of duplicated genes. Related to Figure 1. 

Comparison between and within the three analysed Droseracaea species and Arabidopsis thaliana as 

well as Beta vulgaris as an outgroup. Each peak indicates a large duplication event.  

 

 

 

 

 

 

 



 

Figure S2: Distribution of tandem duplicated genes. Related to Figure 4. 

 

 

 

 

 

 

 

 



 

Figure S3: Comparison of gene contents for selected plant and algae genomes. Related to Figure 4. 

 

 

 

 

 



 

Figure S4: Orthogroups uniquely shared between the three carnivorous Droseraceae genomes. 

Related to Figure 2. 

 

 

 

 

 

 

 

 



 

Figure S5: Phylogenetic distribution of lost genes associated to kinetochore, root and stress related 

functions. Related to Figure 4. 



Plant Cultivar/collection site
DNA content 

[pg/2C]

Coefficient of 
variance species of 

interest [%]

Coefficient of 
variance 

reference [%]

Haploid genome 
size (Mbp)

Di. muscipula North Carolina 6.50 + 0.02 9.1 + 0.5 7.1 + 0.8 3178.5

Di. muscipula South Carolina 6.57 + 0.06 8.2 + 1.2 6.2 + 1.1 3212.73

Di. muscipula Cultivar (Type Green) 6.61 + 0.04 7.3 + 0.5 5.2 + 1.3 3232.29

Di. muscipula Cultivar (Type Red) 6.53 + 0.04 8.4 + 0.5 6.8 + 0.4 3193.17

Di. muscipula Cultivar (Type France) 6.60 + 0.04 8.7 + 1.2 6.6 + 0.9 3227.4

A. vesiculosa Cultivar 1.04 + 0.04 9.8 + 1.0 10.7 + 2.1 508.1

1 pg = 978 Mbp

Table S1: Flow cytometric estimation of the DNA content vesiculosa genotype. Related to Figure 1.



Depth 0 1 2 3 4 5 6 7 8
A. vesiculosa 7103 6059 5136 4130 1735 740 165 43 12
Di. muscipula 20398 727 10
Dr. spatulata 13434 3840 836

Table S2: Coverage depth of self-syntenic regions. Related to Figure 1.



Class A. vesiculosa Di. muscipula Dr. spatulata
LTR (total) 88,78 1236,65 16,74
LTR/Copia 26,18 327,34 10,48
LTR/Gypsy 47,29 476,25 3,52
LTR/other 15,31 433,06 2,74
LINE - 0,11 -
SINE 0,07 0,06 -
DNA 0,22 16,82 0,25
rRNA 3,07 5,02 0,38
RC/Helitron - 0,64 -
Retroelement - 0,15 -
MobileElement - 5,06 0,02
Satellite - 0,12 -
Other - 0,2 -
Other/Simple - 0,67 -
not classified 24,3 299,5 5,55

Table S3: Distribution of repetitive sequences identified by on transposon assembly. 
Related to Figure 1



tissue Motif
Flower OJ1058_F05.8
Root -
Trap WRKY24
Trap+Cor WRKY6
Trap+Insect WRKY29

Table S4: Enriched transcription factor binding motifs in the 1kb upstream region
 of top 5% tissue specific genes. Related to Figure 3. 
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