

Figure: Results of the hyper-parameters tuning (Deep Neural Network)

Figure: Results of the hyper-parameters tuning (Random Forests)

Figure: Results of the hyper-parameters tuning (Extreme Gradient Boosting-1)

Figure: Results of the hyper-parameters tuning (Extreme Gradient Boosting-2)

Figure: Results of the hyper-parameters tuning (Extreme Gradient Boosting-3)

Figure: Results of the hyper-parameters tuning (Extreme Gradient Boosting-4)

Table: Configuration of hyper-parameters in each machine-learning algorithm (hyper-parameters that were tuned are highlighted in red)
Machine-learning
algorithm

Hyper-parameter name Description Value

Random Forest†

criterion Function to measure the quality of a split Gini
n_estimators Number of trees in the forest 320
max_depth Maximum depth of the tree None
min_samples_split Minimum number of samples required to split an internal node 40
min_samples_leaf Minimum number of samples required to be at a leaf node 80
max_features Number of features to consider when looking for the best split ඥn_features
min_weight_fraction_leaf minimum weighted fraction of the sum total of weights 0

Extreme Gradient
Boosting‡

max_depth Maximum tree depth for base learners 4
learning_rate Boosting learning rate 0.1
n_estimators Number of boosted trees to fit 120
objective learning task and the corresponding learning objective binary:logistic
booster Which booster to use gbtree

gamma
Minimum loss reduction required to make a further partition on a leaf node
of the tree

0.1

min_child_weight Minimum sum of instance weight(hessian) needed in a child 10

max_delta_step Maximum delta step we allow each tree's weight estimation to be 0

subsample Subsample ratio of the training instance 1.0
colsample_bytree Subsample ratio of columns when constructing each tree 0.8
reg_alpha L1 regularization term on weights 0.5
reg_lambda L2 regularization term on weights 2.5
scale_pos_weight Balancing of positive and negative weights 1
base_score Initial prediction score of all instances, global bias 0.5

missing Value in the data which needs to be present as a missing value None
(Continued)

Logistic Regression†
penalty Norm used in the penalization none
C Inverse of regularization strength NA
tol Tolerance for stopping criteria 0.0001

Deep Neural Network§

- Number of hidden layers 5
- Number of neurons in each hidden layer 12
- Activation function in the hidden layers Leaky ReLU
- Activation function in the output layer sigmoid
- Loss function sigmoid cross entropy
- Optimizer Adam optimizer
- Number of iterations 5000

learning_rate Learning rate 0.01 × 0.95⌊௧௧ହ ⌋
keep_prob

With probability keep_prob, outputs the input element scaled up by 1 /
keep_prob, otherwise outputs 0

0.9 in model training and 1.0 in
model testing

† Implemented in in Python 3.6 using scikit-learn (version 0.20.0)
‡ Implemented in Python 3.6 using xgboost (version 0.80)
§ Implemented in Python 3.6 using TensorFlow (version 1.10.0)

