0.622
1.0

0.620

0.618

4
©

keep_prob

- 0.616

r0.614

L
®

- 0.612

- 0.610

0.7

0.608

0.606

NUmber thi4

ddep, lay, ers

Figure: Results of the hyper-parameters tuning (Deep Neural Network)

Average log-loss

ss0J-60] abelony

0.608
606
604
602

0.616
0.614
0.612
0.610

0
0
0

H__lemw_QEmmlc_E

Figure: Results of the hyper-parameters tuning (Random Forests)

sso|-60| abeiany

© <
© @
0 0
_

o o
© ©
[} S

@
©
[S]

Yidep~xew

Figure: Results of the hyper-parameters tuning (Extreme Gradient Boosting-1)

161 o .
14 -
10 . . 0.5938
- 0.5936
— (2}
c
1o 0] prressse s 6 F0.5934 &
2 | g
| ; -0.5932 2
=2 ! o
e 1 [®)]
° i L 05030 ©
= | Q
S ; -0.5928 <<
I
I
I
{ 0.5926
5- z
; 0.5924
I
I
1
I
I
I
|
!
1 e e [J []
0.0 0.1 0.2 0.3 0.4 0.5
gamma

Figure: Results of the hyper-parameters tuning (Extreme Gradient Boosting-2)

1.04 o o
091 e °
0.595
o -0.594 0
L 08t e GnEEEEEEEEE oo - z
> ! =
o : o)
P ! - 0.593 %
o} i
£ ! &
© : 5
2071 o ' 0592 @
o ! <
1
1
i 0.591
i
i
064 e . i 0.590
i
1
1
1
|
0.5 - . ° ¢
05 06 07 08 0.9 1.0
subsample

Figure: Results of the hyper-parameters tuning (Extreme Gradient Boosting-3)

3.0 1
P . . o .
1
1
1
i 0.5915
1
1
2.0 1 + o o
; 05910 @
® i o
1
3 ! >
1 - —
% 15 ‘ . 0.5905 .
] i o
(@)] 1 ©
(0] : (]L)
o : -0.5900 2
i <4
1.0 H ° °
i 0.5895
i
i
0.5 - $. 0.5890
I
1
1
1
!
0.0 - ° ° o
!
0.0 0.5 1.0 15 2.0 25 3.0
reg_alpha

Figure: Results of the hyper-parameters tuning (Extreme Gradient Boosting-4)

Table: Configuration of hyper-parameters in each machine-learning algorithm (hyper-parameters that were tuned are highlighted in red)

Machine-learning

Hyper-parameter name

Description

Value

algorithm
criterion Function to measure the quality of a split Gini
n_estimators Number of trees in the forest 320
max_depth Maximum depth of the tree None
Random Forest? min_samples_split Minimum number of samples required to split an internal node 40
min_samples_leaf Minimum number of samples required to be at a leaf node 80

max_features

min_weight_fraction_leaf

Number of features to consider when looking for the best split
minimum weighted fraction of the sum total of weights

+/n_features

0

Extreme Gradient
Boosting*

max_depth
learning_rate
n_estimators
objective
booster

gamma

min_child_weight
max_delta_step

subsample
colsample_bytree
reg_alpha
reg_lambda
scale_pos_weight
base_score

Maximum tree depth for base learners

Boosting learning rate

Number of boosted trees to fit

learning task and the corresponding learning objective
Which booster to use

Minimum loss reduction required to make a further partition on a leaf node
of the tree

Minimum sum of instance weight(hessian) needed in a child

Maximum delta step we allow each tree's weight estimation to be

Subsample ratio of the training instance

Subsample ratio of columns when constructing each tree
L1 regularization term on weights

L2 regularization term on weights

Balancing of positive and negative weights

Initial prediction score of all instances, global bias

4
0.1

120
binary:logistic
gbtree

0.1

10

0

1.0
0.8
0.5
25
1

05

missing Value in the data which needs to be present as a missing value None

(Continued)

penalty Norm used in the penalization none
Logistic Regression® C Inverse of regularization strength NA

tol Tolerance for stopping criteria 0.0001

- Number of hidden layers 5

- Number of neurons in each hidden layer 12

- Activation function in the hidden layers Leaky ReLU

- Activation function in the output layer sigmoid

- Loss function sigmoid cross entropy
Deep Neural Networks - Optimizer Adam optimizer

- Number of iterations 5000

learning_rate Learning rate 0.01 x 0,951 Z5auo

keep orob With probability keep_prob, outputs the input element scaled up by 1 / 0.9 in model training and 1.0 in
PP keep_prob, otherwise outputs 0 model testing

T Implemented in in Python 3.6 using scikit-learn (version 0.20.0)
* Implemented in Python 3.6 using xghoost (version 0.80)
§ Implemented in Python 3.6 using TensorFlow (version 1.10.0)

