Supporting Information

High-throughput screening for substrate specificity-adapted mutants of the nisin dehydratase NisB

Xinghong Zhao ^{1, 2}, Rubén Cebrián ¹, Yuxin Fu ¹, Rick Rink ³, Tjibbe Bosma ³, Gert N. Moll ^{1,3} and Oscar P. Kuipers ^{1,*}

- ¹ Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands.
- ² Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
- ³ Lanthio Pharma, Rozenburglaan 13 B, Groningen 9727 DL, The Netherlands.
- * Correspondence: o.p.kuipers@rug.nl (Oscar P. Kuipers)

Supplemental Figure 1. Amino acid sequence of designed peptides.

Supplemental Figure 2. MALDI-TOF MS data of CS5 before (a) and after (b) cleavage of the leader peptide.

Supplemental Figure 3. MALDI-TOF MS data of trypsin treated CS5 fragments. It demonstrates that the cyclic strep-ligand was correctly formed since CS5 was cleaved by trypsin after Lys12, liberating the cyclic strep-ligand.

Supplemental Figure 4. MALDI-TOF MS data of CS5A (a), CS5D (b), CS5E (c), CS5H (d), CS5M (e), CS5R (f), CS5W (g).

Supplemental Figure 5. MALDI-TOF MS data of nisin modified by NisB mutants. a, modified by NisB^{wt};
b, modified by NisB^{S88P/D234N}; c, modified by NisB^{S88P}; d, modified by NisB^{D234N}.

Supplemental Figure 6. MALDI-TOF MS data of peptides modified by NisB mutants. **a**, CS5A, modified by NisB^{S88P}; **b**, CS5A, modified by NisB^{D234N}; **c**, CS5D, modified by NisB^{S88P}; **d**, CS5D, modified by NisB^{D234N}; **e**, nisin^{T2D}, modified by NisB^{S88P}; **f**, nisin^{T2D}, modified by NisB^{D234N}; **g**, nisin^{T2E}, modified by NisB^{S88P}; **h**, nisin^{T2E}, modified by NisB^{D234N}.

Supplemental Figure 7. MALDI-TOF MS data of peptides modified by NisB mutants. a, nisin(1-22)^{K12D}, modified by NisB^{S88P}; b, nisin(1-22)^{K12D}, modified by NisB^{D234N}; c, nisin(1-22)^{K12E}, modified by NisB^{S88P}; d, nisin(1-22)^{K12E}, modified by NisB^{D234N}; e, nisin(1-22)^{G14D}, modified by NisB^{S88P}; f, nisin(1-22)^{G14D}, modified by NisB^{D234N}; g, nisin(1-22)^{G14E}, modified by NisB^{S88P}; h, nisin(1-22)^{G14E}, modified by NisB^{D234N}.

Supplemental Figure 8. a, Overall structure of the NisB dehydratase and the functions of each domain ¹. **b**, glutamyl-tRNA^{Glu} binding site. Amino acids are shown in green that are known to be important for tRNA binding; mutation points of NisB^{T1151} are show in red.

Supplemental Figure 9. a, Overall structure of the NisB dehydratase and the functions of each domain ¹. **b**, glutamyl-tRNA^{Glu} binding site. Amino acids are shown in green that are known to be important for tRNA binding; mutation points of NisB^{N292K} are show in red.

Supplemental Figure 10. LanB-alignment-based probability of amino acid occurrence in positions 88, 234, 115 and 292. Following the obtention of S88P, D234N, T115I, N292K mutations in NisB, the LanB family were aligned based on the full model of the N terminal domains (PFAM PF04737 http://pfam.xfam.org/family/Lant_dehyd_N). The figure depicts the probability of the occurrence of each amino acid in the four positions. Clearly none of the four positions is conserved. Wild type amino acid is marked by black rectangle; amino acid of mutation is marked by a green rectangle. In positions 88, 234 and 292 the probability of the new amino acid is higher than of the wild type amino acid.

Strain or plasmid	Characteristics	Source or reference
Strains		
L. lactis NZ9000	MG1363 derivative; NisRK+	2
E. coli XL-10 gold	XL10-Gold Ultracompetent Cells	Agilent Technologies
Plasmids		
pNZnisA leader his2	pNZ8048 derivative, nisA, Cm ^r , encoding his6 residues behind the first Met gene of nisin leader	3
pCS1	pNZ8048 derivative, CS1, Cm ^r	This work
pCS2	pNZ8048 derivative, CS2, Cm ^r	This work
pCS3	pNZ8048 derivative, CS3, Cm ^r	This work
pCS4	pNZ8048 derivative, CS4, Cm ^r	This work
pCS5	pNZ8048 derivative, CS5, Cm ^r	This work
pCS5A	pNZ8048 derivative, CS5A, Cm ^r	This work
pCS5D	pNZ8048 derivative, CS5D, Cm ^r	This work
pCS5E	pNZ8048 derivative, CS5E, Cm ^r	This work
pCS5H	pNZ8048 derivative, CS5H, Cm ^r	This work
pCS5M	pNZ8048 derivative, CS5M, Cm ^r	This work
pCS5R	pNZ8048 derivative, CS5R, Cm ^r	This work
pCS5W	pNZ8048 derivative, CS5W, Cm ^r	This work
pBD-CS5	pNZ8048 derivative, BD-CS5, Cm ^r	This work
pBDA	pNZ8048 derivative, BDA, Cm ^r	This work
pBD-CS5D	pNZ8048 derivative, BD-CS5D, Cm ^r	This work
pBDD	pNZ8048 derivative, BDD, Cm ^r	This work
pNZnisA	pNZ8048 derivative, Nisin, Cm ^r	4
pNisin ^{T2D}	pNZ8048 derivative, Nisin ^{T2D} , Cm ^r	5
pNisin ^{T2E}	pNZ8048 derivative, Nisin ^{T2E} , Cm ^r	5
pNisin(1-22)	pNZ8048 derivative, Nisin(1-22), Cm ^r	5
pNisin(1-22)K12D	pNZ8048 derivative, Nisin(1-22) ^{K12D} , Cm ^r	This work
pNisin(1-22)K12E	pNZ8048 derivative, Nisin(1-22) ^{K12E} , Cm ^r	This work
pNisin(1-22)G14D	pNZ8048 derivative, Nisin(1-22) ^{G14D} , Cm ^r	This work
pNisin(1-22)G14E	pNZ8048 derivative, Nisin(1-22) ^{G14E} , Cm ^r	This work
pTLR-BTC	P _{nis} nisBTC, Em ^r	6

Supplemental Table 1. Stains and plasmids used in this study.

Supplemental Table 2. Primers for PCRs used in this study.	
--	--

Plasmids	Templates	Primers	Nucleic acid sequences (5' to 3')	Characteristics (5'-lable)
pCS1	pNZnisA	PXZ1	AAGCTTTCTTTGAACCAAAATTAGAAAACCAAG	5'- phosphorylation
		PXZ2	ATTTGTTACAAAATTGTGGGTGTGATTTGCTTAC GTGAATACTACAATGACAAGTTG	
pCS2	pNZnisA	PXZ1	AAGCTTTCTTTGAACCAAAATTAGAAAACCAAG	5'- phosphorylation
		PXZ3	ATTTACAAAATTGTGGGTGTGATTTGCTTACGTG AATACTACAATGACAAGTTG	
pCS3	pNZnisA	PXZ1	AAGCTTTCTTTGAACCAAAATTAGAAAACCAAG	5'- phosphorylation
		PXZ4	ATTTGTTACAAAATTGTGGGTGTGATTTCATGTT ACAACCCATCAGAGCTC	
pCS4	pNZnisA	PXZ1	AAGCTTTCTTTGAACCAAAATTAGAAAACCAAG	5'- phosphorylation
		PXZ5	ATTTACAAAATTGTGGGTGTGATTTCATGTTACA ACCCATCAGAGCTC	
	pNZnisA	PXZ1	AAGCTTTCTTTGAACCAAAATTAGAAAACCAAG	5'- phosphorylation
pCS5		PXZ6	ATTTGTTACAAAATTGTGGGTGTGATTTACAACC GGGTGTACATAGCGAAATAC	
pCS5A/	pCS5/	PXZ7	TTTACAACCGGGTGTACATAGCGAAATAC	5'- phosphorylation
pBDA	pBDD	PXZ8	GCTTCACACCCACAATTTTGTAACAAATAAGCTTTC	
pCS5D/	pCS5/	PXZ7	TTTACAACCGGGTGTACATAGCGAAATAC	5'- phosphorylation
pBD-CS5D	pBD-CS5	PXZ9	GATTCACACCCACAATTTTGTAACAAATAAGCTTTC	
DCS5E	nC85	PXZ7	TTTACAACCGGGTGTACATAGCGAAATAC	5'- phosphorylation
PCSSE	pCS5	PXZ10	GAATCACCCCACAATTTTGTAACAAATAAGCTTTC	
0.001	005	PXZ7	TTTACAACCGGGTGTACATAGCGAAATAC	5'- phosphorylation
pessii	pess	PXZ11	CACTCACACCCACAATTTTGTAACAAATAAGCTTTC	
pCS5M	pCS5	PXZ7	TTTACAACCGGGTGTACATAGCGAAATAC	5'- phosphorylation
		PXZ12	ATGTCACACCCACAATTTTGTAACAAATAAGCTTTC	
nCS5P	pCS5	PXZ7	TTTACAACCGGGTGTACATAGCGAAATAC	5'- phosphorylation
pCS5R		PXZ13	AGATCACACCCACAATTTTGTAACAAATAAGCTTTC	
CONV	pCS5	PXZ7	TTTACAACCGGGTGTACATAGCGAAATAC	5'- phosphorylation
pCS5 w		PXZ14	TGGTCACACCCACAATTTTGTAACAAATAAGCTTTC	
		PXZ15	GTGATGATGCATGGTGAGTGCCTCCTTATAATTTATTTTG	5'- phosphorylation
pBDD	pBD-CS5D	PXZ16	CATCACCATAGTACAAAAGATTTTAACTTGGATTTGGTAT CTG	
pNisin(1-22) ^{K12D}	nNisin(1.22)	PXZ17	ACAACCGGGTGTACATAGCGAAATAC	5'- phosphorylation
	pNisin(1-22)	PXZ18	GATACAGGAGCTCTGATGGGTTGTAAC	
nNisin(1 22)Kl2E	nNigin(1.22)	PXZ17	ACAACCGGGTGTACATAGCGAAATAC	5'- phosphorylation
pN1s1n(1-22) ^{K12E}	pinisin(1-22)	PXZ19	GAAACAGGAGCTCTGATGGGTTGTAAC	
pNisin(1-22)G14D	pNisin(1-22)	PXZ20	ATTTGTTACAAAATTGTGGGTGTGATTTACAACCGG GTGTACATAGCGAAATAC	5'- phosphorylation
		PXZ21	ACAGATGCTCTGATGGGTTGTAACATGAAATAAG	
pNisin(1-22)G14E	pNisin(1-22)	PXZ20	ATTTGTTACAAAATTGTGGGTGTGATTTACAACCGG GTGTACATAGCGAAATAC	5'- phosphorylation
		PXZ22	ACAGAAGCTCTGATGGGTTGTAACATGAAATAAG	

Primers	Nucleic acid sequences (5' to 3')	Purpose
Pbd1	GAAGTTCTGTTTCAAGGACCCTTGCAGGCAGCTAAGCAGGAAC	To construct the
Pbd2	CTAATTTTGGTTCAAAGAAAGCTTATTCTTCACGTTGTTTCCGTTTCAATC	plasmid that
Pbd3	CAGCTCCAAGATCTAGTCTTATAACTATACTGAC	encoding the
Pbd4	CAAGGGTCCTTGAAACAGAACTTCCAATTTGTTACAAAATTGTGGGTGTGATTTAC	bacterial
Pbd5	GAAGAATAAGCTTTCTTTGAACCAAAATTAGAAAACCAAG	display protein
Pbd6	CTTAGCAATAGCGTCCTTTGATTCATG	BD-CS5
Ptlr1	AACTTTTTATCAUGTTTTTTCCTCTCTTTATTTTTATAAGC	
Ptlr2	ATACATGAAAUGAGGACTAATAGATGGATGAAAGTGAAAG	NisB library
Ptlr3	ATGATAAAAAGTUCATTTAAAGCTCAACCGTTTTTAG	construction
Ptlr4	ATTTCATGTAUTCTTCCGAAACAACAACCATTTGAAGTGTG	
PS1	CTATCAATCAAAGCAACACGTGC	
PS2	GATAACGCGAGCATAATAAACGG	
PS3	CTCCAAACGATAAACGGAGTTTTAC	
PS4	AACCCTTTTCTTCTTTAACAGACCAGC	Sequencing
PS5	GATTTGTTGTCAGATTTTTCTTGGAAC	bequeneing
PS6	GAATTTGGCAAAGGAGTATGAAAAAG	
PS7	CCCAAAGAGTTTTATATTGTCAATGG	
PS8	CGAAGCAATATTTTGTGCCGATTC	

Supplemental Table 3. Primers for PCRs used in this study.

References

- Ortega, M. A.; Hao, Y.; Zhang, Q.; Walker, M. C.; van der Donk, W. A.; Nair, S. K. Structure and Mechanism of the TRNA-Dependent Lantibiotic Dehydratase NisB. Nature 2015, 517 (7535), 509.
- (2) Kuipers, O. P.; de Ruyter, P. G. G. A.; Kleerebezem, M.; de Vos, W. M. Controlled Overproduction of Proteins by Lactic Acid Bacteria. *Trends Biotechnol.* **1997**, 15 (4), 135–140.
- (3) Li, Q.; Montalban-Lopez, M.; Kuipers, O. P. Increasing the Antimicrobial Activity of Nisin-Based Lantibiotics against Gram-Negative Pathogens. *Appl. Environ. Microbiol.* **2018**, 84 (12), e00052-18.
- (4) Zhou, L.; van Heel, A. J.; Montalban-Lopez, M.; Kuipers, O. P. Potentiating the Activity of Nisin against Escherichia Coli. *Front. cell Dev. Biol.* **2016**, 4, 7.
- (5) Zhao, X.; Yin, Z.; Breukink, E.; Moll G.N.; Kuipers, O. P. An engineered double lipid II binding motifs-containing lantibiotic displays potent and selective antimicrobial activity against *E. faecium*. *Antimicrob. Agents Chemother*. (2020).
- (6) Cebrian, R.; Macia-Valero, A.; Jati, A. P.; Kuipers, O. P. Design and Expression of Specific Hybrid Lantibiotics Active against Pathogenic Clostridium Spp. *Front. Microbiol.* 2019, 10.