Could Microwave Irradiation Cause Misfolding of Peptides? - Supporting Material

Martin Gladovic,[†] Chris Oostenbrink,[‡] and Urban Bren^{*,†,¶}

†Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia

‡Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria

¶National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

E-mail: urban.bren@um.si Phone: +386 2 2294 421

Figures

Figure S1: Backbone atom-positional RMSD values plot as a function of time for the simulation at 300 K. The 0.1 nm cutoff RMSD value between the folded and unfolded structures is depicted with a red line.

Figure S2: Backbone atom-positional RMSD values plot as a function of time for the simulation of thermal heating to 700 K. The 0.1 nm cutoff RMSD value between the folded and unfolded structures is depicted with a red line.

Figure S3: Backbone atom-positional RMSD values plot as a function of time for the simulation of MW heating to 700 K. The 0.1 nm cutoff RMSD value between the folded and unfolded structures is depicted with a red line.

Figure S4: Correllograms of the rotational relaxation times of water molecules. The autocorrelation functions were calculated using the first-order Legendre polynomial of molecular axis aligned with the water molecule's dipole vector¹. A (top): Comparison of the bulk solvent using conventional heating and microwave heating. B (middle): Comparison of the hydration shell and the bulk solvent using conventional heating. C (bottom): Comparison of the hydration shell and the bulk solvent using MW heating.

Figure S5: Central member structures of the most stable cluster for each simulation. The temperature labels 300 K – 700 K denote the systems at equilibrium temperature while the labels 400 K MW – 700 K MW denote rotationally heated systems.

Figure S6: Principal component analysis of the combined clustering of systems at equilibrium temperature of 300 K, conventionally and MW heated up to 400 K (top row), 500 K (middle row) and 600 K (bottom row). The first and second principal component form the x and y axis of the scatter plots, respectively. On each plot, the trajectory at equilibrium 300 K is depicted with blue dots and the trajectory at an elevated temperature is depicted with orange dots.

Figure S7: Radial distribution functions (RDFs) of the water oxygen atoms. A, B (top): Comparison of RDFs between the hydration shell and bulk water for the simulations of conventional heating. C, D (bottom): Comparison of RDFs between the hydration shell and bulk water for the simulations of MW heating.

Tables

$T_{\rm T} \ / \ T_{\rm R} \ ^a \ [{ m K}]$	rel. lifetime [%] b	
700 / 700	1.1	
600 / 600	2.1	
$500 \ / \ 500$	4.6	
400 / 400	9.6	
$300 \ / \ 300$	20.6	
$300 \ / \ 400$	19.1	
300 / 500	17.7	
$300 \ / \ 600$	32.0	
$300 \neq 700$	29.7	

Table S1: Relative lifetimes of the most stable cluster

^{*a*} Translational $(T_{\rm T})$ and rotational $(T_{\rm R})$ temperature of the solvent during MD simulation. ^{*b*} Relative lifetime of the most stable cluster, calculated as the ratio of the number of cluster members to the total number of trajectory snapshots.

donor	acceptor	relative	
residue	residue	occurrence [%] a	helix-forming
Cluster 1			
1	3	6.9	*
2	4	55.6	*
3	5	86.1	*
4	6	40.4	*
4	7	31.5	
5	7	20.9	*
Cluster 2			
1	3	13.2	*
1	4	8.2	
4	5	5.1	
4	6	64.9	*
4	7	9.9	
5	7	42.6	*
Cluster 3			
1	6	8.1	*
3	1	5.1	
3	6	10.3	
3	7	20.7	
4	6	6.6	
4	6	70.7	
Cluster 4			
1	3	13.5	*
1	4	29.2	
1	5	36.7	
2	5	5.9	
2	6	19.3	
3	6	61.3	
3	7	6.8	
4	7	5.7	
Cluster 5			
1	3	58.8	*
4	5	55.6	

Table S2: Relative occurrences of peptide intramolecular hydrogen bonds

 a Calculated as a ratio between the snapshots containing the particular hydrogen bond and the total number of snapshots. Only the hydrogen bonds present in at least 5% of the snapshots are reported.

References

 Eichenberger, A. P.; Allison, J. R.; Dolenc, J.; Geerke, D. P.; Horta, B. A.; Meier, K.; Oostenbrink, C.; Schmid, N.; Steiner, D.; Wang, D.; Van Gunsteren, W. F. GROMOS++ software for the analysis of biomolecular simulation trajectories. *J. Chem. Theory Comput.* 2011, 7, 3379–3390.