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Materials and Methods 
Subject enrollment and imaging sessions:  
 All subject provided written informed consent and all procedures were approved 
by the Massachusetts General Hospital Institutional Review Board. A total of 15 subjects 
were studied and 13 were analyzed.  
 We imaged 15 subjects in sessions beginning at approximately midnight. One 
subject was excluded for poor EEG quality and one was excluded after stopping the scan 
to report he/she could not sleep comfortably. The remaining 13 subjects were aged 23–33 
(11 female), and reported no neurological, psychiatric, or sleep disorders. Subjects were 
screened for MR contraindications and to have habitual sleep duration of no less than six 
hours, daily caffeine consumption of less than 300 mg, not smoke cigarettes, weigh less 
than 250 pounds, not be pregnant, be comfortable sleeping on their back, and not be 
taking medications that affect sleep. Subjects self-reported head size (ranging from small 
to extra-large) in a pre-screening form, and those reporting large head size were excluded 
due to the space constraints of the RF receive coil housing. Due to the head size 
constraint, a majority of the subjects were female. While we did not have an a priori 
prediction of gender effects and were not powered to test for these, we examined the data 
to evaluate whether large differences were apparent and found that CSF oscillations were 
detected in both male and female subjects (Fig. S8). All subjects had previously 
participated in a daytime MR imaging session to ensure comfort in the scanner 
environment. Subjects were asked to sleep only four hours the night prior to the imaging 
study, to increase sleep pressure during the scan. One subject failed to complete the sleep 
restriction protocol but was still included and still fell asleep in the scanner. During sleep 
acquisition sessions, subjects were asked to rest with eyes closed. In a subset of sessions 
(n=6), subjects were asked to press a button on an MR-compatible USB button box on 
each breath in and each breath out, to provide an additional behavioral metric of sleep 
(43). Instructions asked subjects to allow themselves to fall asleep but to return to 
performing to the task if they awoke during the scan.  
 
EEG acquisition 
 EEG was acquired using MR-compatible 256-channel geodesic nets and a NA410 
amplifier (Electrical Geodesics, Inc., Eugene, OR USA) at a sampling rate of 1000 Hz. 
EEG acquisition was synchronized to the scanner 10 MHz clock to reduce aliasing of 
high-frequency gradient artifacts. The scanner cryopump was temporarily shut off during 
EEG acquisition to reduce vibrational artifact. To acquire reference signals to be used for 
EEG noise removal, subjects wore a reference layer cap composed of an isolating vinyl 
layer and conductive satin layer on the head, with grommets inserted to allow electrodes 
to pass through and make contact with the scalp (44), while other electrodes remained 
isolated from the scalp and recorded the noise, resulting in a total of 30–36 EEG 
electrodes per subject.  
 Physiological signals were simultaneously acquired using a Physio16 device 
(Electrical Geodesics, Inc., Eugene, OR USA). ECG was measured through two 
disposable electrodes placed on the chest diagonally across the heart, with an MR-
compatible lead (InVivo Corp, Philips). Respiration was measured through a piezo-
electrical belt (UFI systems, Morro Bay, CA USA) around the chest.  
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fMRI acquisition  
 Subjects were scanned on a 3T Siemens Prisma scanner with the vendor-supplied 
64-channel head-and-neck coil. Each session began with a 1 mm isotropic multi-echo 
MPRAGE to provide an anatomical reference (45). Functional runs acquired 40 
interleaved BOLD-weighted EPI slices with 2.5 mm3 isotropic voxels. This acquisition 
volume covered most of the brain, omitting the tips of the temporal poles, which also 
exhibit higher signal dropout. fMRI protocols consisted of a single-shot gradient echo 
SMS-EPI (46) with MultiBand factor=8, matrix=92×92, blipped CAIPI shift=FOV/4, 
TR=367 ms, nominal echo-spacing=0.53 ms, flip angle=32-37°, and no in-plane 
acceleration. Two slightly different fMRI scanning acquisition parameters were used due 
to a scanner software upgrade partway through the study: the TE was set to 32 ms in the 
first seven subjects and 30 ms in the remaining subjects. In one subject the TR was set to 
387 ms due to technical error. VERSE factor was set between 1 and 1.5 depending on 
individual subject SAR constraints. Individual runs could last up to 2 hours. If runs ended 
earlier, subsequent runs would be started up to a maximum total scan duration of 2.5 
hours as long as subjects were still comfortable and sleeping. 
 
EEG preprocessing 
 Gradient artifacts were removed through average artifact subtraction (47), using a 
moving average of the previous 20 TRs. This gradient artifact removal acts as a high-pass 
filter and EEG analysis therefore focused on >0.2 Hz signals. Electrodes were then re-
referenced to the common average, computing this separately for electrodes contacting 
the head, and those placed on the reference layer. Channels on the cheeks and borders of 
the reference cap were excluded from the common average. Ballistocardiogram artifacts 
were removed using regression of reference signals from the isolated EEG electrodes (44, 
48). Since there was a larger number of noise electrodes than signal electrodes, the 
regression was performed after subsampling the noise electrodes, using only every fourth 
isolated electrode. Because the position of and physiological noise influences on the 
electrodes can vary over the long recording times used here, we implemented a dynamic 
time-varying regression of the reference signals. Beta coefficients for the best-fit 
regression within 30 s sliding time windows were fit using least-squares; these beta 
values were then linearly interpolated over the nonoverlapping windows. The resulting 
interpolated beta value at every time point was then used for a local subtraction of the 
reference signals from the modeled EEG recording. This regression was performed 
individually for each EEG channel. 
 
BOLD fMRI data preprocessing 
 Processing streams are shown in Fig. S9. CSF inflow analysis used the raw 
acquired fMRI data with slice-timing correction but without any motion correction, as 
motion correction corrupts the voxel slice position information needed for inflow 
analysis, and motion correction cannot be accurately performed on edge slices where 
tissue moves in and out of the imaging volume. All analysis therefore was performed 
after selecting low-motion epochs. For BOLD analysis, fMRI data were slice-timing 
corrected using FSL (https://fsl.fmrib.ox.ac.uk/fsl) and motion corrected with AFNI 
(https://afni.nimh.nih.gov). Physiological noise removal was performed using dynamic 
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regression based on the concept of RETROICOR (49) and adapted for fast fMRI as 
follows. The respiratory trace was bandpass filtered between 0.16–0.4 Hz using a finite 
impulse response filter and the instantaneous phase was computed as the angle of the 
Hilbert transform. The cardiac peaks were detected automatically using the FASST 
toolbox (http://www.montefiore.ulg.ac.be/~phillips/FASST.html) and the phase was 
modeled as varying linearly between each identified peak. Sine and cosine basis 
functions using the phase of the signal and its second harmonic were generated as 
regressors for physiological noise. This regression was performed over 1000 s windows 
sliding every 400 s to enable high-quality physiological noise removal as the heart rate 
and respiratory rate varied throughout the scan. No spatial smoothing was applied.  
 
Sleep/wake segment extraction 
 Because our analysis of CSF signals required non-motion-corrected data (to 
measure signal at the edge slices) and long continuous epochs (to analyze continuous 
low-frequency dynamics), we restricted our analysis to periods of stable wake or sleep 
with low motion. Our analysis focused on long segments of stable and unambiguous 
continuous NREM sleep or wake (REM epochs were not seen in our data, likely due to 
the long time needed to reach REM sleep). We therefore based our sleep and wake 
segment identification by examining ongoing dynamics in the EEG spectrograms rather 
than performing conventional sleep scoring in discrete windows. To select continuous 
sleep and wake segments, we plotted occipital EEG spectrograms (from the channel 
nearest to OZ with good recording quality), behavior (in the subset of subjects 
performing the task), and translational and rotational motion estimated automatically 
from the fMRI timeseries using AFNI. EEG signatures of sleep included loss of occipital 
alpha (8–12 Hz) rhythms and increased delta (0.5–4 Hz) and theta (4–8 Hz) power. The 
occipital EEG channel was selected both to provide the ability to identify disappearance 
of occipital alpha rhythms at sleep onset, allowing for clear segmentation of wake and 
sleep, and because occipital EEG has the highest signal quality in the MR environment. 
Periods of at least 90 s of low motion and either stable wake or NREM were manually 
identified and extracted for further analysis. Since we required stable low-motion sleep 
for >90 s, whereas sleep substages are typically defined in 30 s windows (50), and since 
N2 is the majority of human NREM sleep, these longer >90 s NREM segments were 
predominantly N2 sleep, but could nevertheless also include some N1 or N3 (Fig. S2).  

 
ROI definition 
 All fMRI signal analyses were performed within individual subjects in the 
original spatial frame of the fMRI acquisition space, without transforming to a common 
average, to avoid spatial blurring of these signals across space in the registration process. 
 The ROI for the fourth ventricle and aqueduct was defined anatomically on the 
functional images. An initial registration matrix between the functional and anatomical 
images was calculated using boundary-based registration (51). The registered MPRAGE 
was overlaid onto the functional image to identify the approximate position of the 
ventricle/aqueduct, and then the brightest voxels on the functional image were selected to 
identify the CSF region. ROIs for the BOLD signal in cortical gray matter were defined 
using the automated segmentation generated by Freesurfer 
(https://surfer.nmr.mgh.harvard.edu)  (52) on the MPRAGE, and then registered to the 
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functional volume, to include all cortical gray matter present in the imaging volume (i.e. 
most of the cortex). 
 
Inflow analysis:  
 For analysis of inflow dynamics, the CSF ROI was split into separate subROIs 
within individual slices, consisting of its projection onto the bottom four slices of the 
functional acquisition volume. The mean signal from the subROI of the CSF on each 
slice was then extracted. Only subjects for whom the CSF region could be identified on 
all four bottom slices were included in this analysis (n=11 subjects). The critical velocity 
for inflow signals in slice 2 was calculated (53) as the slice width (2.5 mm) divided by 
the temporal gap between slice 1 and slice 2 (220.2 ms, due to interleaved acquisition). 
To capture the range of signal fluctuations between low- and high-flow conditions, the 
signal magnitude was calculated as the relative ratio of the 95th percentile and 5th 
percentile of the signal in each ROI over time.  
 
Spectral power analysis:  
 The power of fMRI and EEG signals was calculated using multitaper spectral 
estimation (Chronux, (54)). Power in the BOLD signal was estimated in the 90 s 
segments identified as described above, and the mean power in each patient was 
calculated across each segment. Pairwise comparisons across sleep and wake segments 
were computed within the patients who exhibited both sleep and wake data (n=11; the 
remaining two subjects only had sleep segments) using the Wilcoxon signed-rank test, 
and confidence intervals were estimated by inverting the test. When comparisons were 
performed across segments (Fig. S2), because the segments were not paired, differences 
and confidence intervals were calculated using the Wilcoxon rank-sum test. The BOLD 
and CSF analyses used 5 tapers and the EEG analysis used 59 tapers. EEG analyses were 
performed on the occipital EEG channel closest to OZ that was also identified as having 
good data quality in order to minimize ballistocardiogram artifact induced by motion in 
the magnetic field (as occipital channels are anchored by the head, whereas frontal 
channels exhibit larger artifacts) and to allow analysis of occipital alpha to track sleep 
onset. 95% confidence intervals for the power spectra were estimated by bootstrapping 
across subjects with 1000 times with replacement.  
 
Cross-correlation analysis:  
 The CSF and BOLD timeseries were respectively extracted from the ventricle and 
cortical gray matter ROIs (Fig. S9). For comparing the relative flow, the BOLD and CSF 
signals were lowpass filtered below 0.1 Hz. This filtering was performed to reduce noise 
but results were also consistent when repeating the analysis without this filtering step 
(Fig. S10). Next, the time derivative of the BOLD signal was computed. For the analysis 
in Fig. 3, this derivative was multiplied by −1 and all negative values were set to zero. 
This zero-thresholding was applied to restrict the analysis to inflow but not outflow 
signals, because our imaging technique only measures inflow of CSF and not outflow. 
Cross-correlation was computed after detrending data and was normalized such that the 
autocorrelation of each signal was 1. The EEG was filtered into the 0.2–4 Hz band using 
a finite impulse response filter, and its instantaneous amplitude was estimated as the 
magnitude of the Hilbert transform, which was then smoothed with a moving average of 
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4 s. To create a threshold for statistical testing and estimate p-values, the segment indices 
of the sleep data were shuffled such that the two variables being correlated were drawn 
from different data segments, and the maximal cross-correlation over lags (-20 to 20 s) 
was computed. This procedure was repeated 1000 times and the p-value was calculated 
from percentiles of this shuffled distribution.  
 
CSF peak-locked analysis:  
 Peaks in the CSF signal during sleep were identified by filtering the CSF signal 
between 0-0.1 Hz and identifying local maxima that surpassed a threshold of 20% 
amplitude. The 0-0.1 Hz filtering was used only to identify the peaks of the CSF waves, 
and the unfiltered CSF signals were then analyzed, to minimize processing of the data. 
These peaks were then used to extract a peak-locked signal in the EEG 0.2-4 Hz 
amplitude envelope, the time derivative of the BOLD signal, and the CSF signal (Fig. 
4a,b,c). To test for statistical significance of the peak in the EEG signal, the relative 
timing of each peak-locked signal was shuffled randomly, and the mean EEG amplitude 
signal was recalculated on the shuffled data. This process was repeated 1000 times to 
create a null distribution for peak EEG amplitudes.  
 
Model simulations:  
 We first simulated the relationship between EEG power, BOLD, and CSF signals 
by calculating the flow of CSF as the negative of CBF. Physiological parameters were 
first drawn from previous studies (33, 35) to test whether these dynamics could be 
explained without requiring any additional parameter fitting. Then, we numerically 
optimized model parameters to estimate the best-fit coupling functions between EEG, 
hemodynamics, and CSF. The equations used in the model are reported in the 
Supplementary Text. 
 
 Because the magnitude of the relationship between the neural activity, EEG, and 
flow is not known, and BOLD does not provide quantitative information, this model did 
not employ physical units but instead aimed to capture the time-varying dynamics of 
these signals as quantified by the correlation coefficient. We calculated the mean 
correlation coefficient between the predicted CSF flow and the measured CSF timeseries 
across all segments. We compared this metric to a shuffled distribution in which the 
prediction from one time segment was tested against the data from a different time 
segment. This shuffling was repeated 1000 times and the threshold was set as the 2.5th 
and 97.5th percentile of the shuffled distribution. When parameter fitting was used (Fig. 
4d), the R-value was further assessed through tenfold cross-validation, and statistics 
report the mean and standard deviation of R-values measured in cross-validated test data. 
Model performance was also evaluated across segments after sorting segments based on 
CSF wave amplitude, calculated as the range of the 0-0.1 Hz filtered CSF signal.  
 
 



Supplementary Text

Model with fixed parameters

The blood flow response to neural activity was calculated as:

f (t) =−n∗h(t) (1)

where f (t) is the relative cerebral blood flow (CBF), which is always positive and is normalized to a value of 1;
n is the power envelope of the EEG signal between 0.2 Hz and 4 Hz; and h(t) is the flow impulse response to neural
activity, modeled as the gamma distribution:

h(t) =
(t/τ f )

(z−1) exp(−t/τ f )

τ f (z−1)!
(2)

The value for τ f was set at 2.1 and z was set at 3 based on the results in Simon and Buxton, 2015.

We added a term for CSF such that a decrease in blood volume would elicit an increase in CSF volume. Because
the exact link between volume and CSF flow rates is not known, we approximated CSF flow as the opposite of the
cerebral blood flow:

CSF =− f (t)+1; (3)

This model simplifies the relationship between blood and CSF by assuming that blood flow and CSF flow changes
are exactly coupled, and assuming that net CSF flow is zero. The CSF term thus includes an offset of 1, as CSF flow
can be negative or positive, and is centered at zero. In contrast, the CBF f (t) term is always positive, representing
inflow of fully oxygenated blood, and is normalized to 1. The cross-correlation between this CSF prediction and the
CSF signal was then calculated.

Model with varying parameters

We used numerical optimization to examine the best-fit impulse response between EEG and CSF. We first fit the
shape and scale parameters of a gamma distribution, using as the cost function the root-mean-squared error between
the CSF prediction and the true CSF signal. This process was used to generate the EEG-CSF impulse response in Fig.
4d.

To compare the best-fit impulse response for EEG-CSF to the model predictions of CBF and cerebral blood volume
(CBV), we used the CBF equations as above and calculated the predicted CBV change using the balloon model as in
Buxton et al., 2004:

dv
dt

=
1

τMT T
( f (t)− fout(v, t)) (4)

fout = v
1
α + τv

dv
dt

(5)

The physiological parameters were drawn from Buxton et al., 2004, and fixed at τMT T =4, E0=0.4, α=0.4. To find the
best fit delay between flow and volume, we varied either the CBF parameters (τ f and z) or varied the viscoelastic time
constant τv in the previously published range between 0 and 30. The model fitting minimized the difference between
the derivative of CBV and the inverse of CSF flow (e.g., positive CSF flow when d/dt CBV is negative).
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Schematic of flow-related enhancement

Schematic of signal reaching steady state

t0: image at steady-state, 
all tissue has experienced 
many RF pulses

t1: fluid arrives at volume 
and has bright signal in 
response to first RF pulse

t2 : fluid moves further into 
volume and has lower 
signal after 2 RF pulses 

t0: fluid moves further into 
volume and approaches 
steady-state after 3 RF pulses

fluid fluid fluid
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# RF pulses 

As successive RF pulses are applied to an 
imaging volume, the signal intensity decays 
to a steady state which remains for the rest 
of the imaging period. This causes an initial 
transient in the images at the first few 
timepoints.

 
Fig. S1: Schematic of inflow effects in rapid acquisition paradigms. The stationary 
tissue inside the imaging volume is at steady state, having already experienced a large 
number of RF pulses. When fresh fluid begins to flow into the volume, the fluid will be 
bright, as it has not yet experienced an RF pulse. After the first image is taken, the fluid 
will now have experienced 1 RF pulse, and will have reduced signal as it moves upward 
into the second slice, while the continuing flow of fresh fluid will lead to continued bright 
signals in the bottom slice. As fluid continues to flow into upper slices, it will further 
decrease its signal (receiving additional RF excitation as each image is taken), until it too 
reaches steady state. This signal corresponds to the well-established principle of MR 
flow-related enhancement, which appears in fast fMRI acquisition (53, 55).  
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Fig. S2: Sleep scoring of sleep segments. Our analysis used the spectral dynamics of the 
EEG and metrics of behavior and motion to identify low-noise, stable, sleep segments 
lasting at least 90 seconds in order to examine continuous low-frequency signals. When 
applying conventional sleep scoring in 30 s windows, N2 predominates in these 
segments, in part because it is the stage in which people spend the majority of their 
NREM sleep, but also because it is most likely to be maintained for the long stable 
segments as subjects sleep in the scanner. A) CSF signal power during wake, N1-only, 
and N2-only segments (wake segments n=45; N1-only segments n=23; N2-only segments 
n=73). Error bars are standard error. B) Effect size for the difference between conditions. 
Error bars are 95% confidence intervals calculated by Wilcoxon ranksum; black dashed 
line indicates zero; n is as in panel A. N2 sleep exhibits significantly more CSF signal 
power than N1 sleep (p=0.039, Wilcoxon ranksum). We did not detect a statistically 
significant increase in the CSF signal in N1 relative to wake (p=0.19, Wilcoxon 
ranksum), but we note that there is reduced statistical power for this analysis (as 
compared to N2), as few of the segments were exclusively N1. It therefore remains 
possible that N1 contains a smaller CSF effect that did not reach statistical significance. 
While some N3 scores were present in our data, sufficient contiguous N3 scores for this 
analysis of segments containing exclusively one sleep stage were not present. 
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Fig. S3: Correlation between cortical BOLD and CSF signals. The BOLD signal is 
significantly anticorrelated with the CSF signal. Shaded region is standard error across 
segments and black dashed lines are 95% intervals of shuffled data.  
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Fig. S4: EEG cross-correlation with the derivative of BOLD. The EEG slow-delta 
amplitude envelope is significantly correlated with the derivative of the BOLD signal, 
with a max R of -0.18 at a delay of −4.2 s. While a cross-correlation is not able to capture 
all aspects of the link between these two signals due to their nonlinear relationship, it 
nonetheless identifies that they are significantly coupled, with EEG preceding the BOLD 
derivative. Shaded region is standard error across segments and black dashed lines are 
95% intervals of shuffled data. 
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Fig. S5: Best-fit impulse response prediction of CSF using the EEG data. A) The 
normalized cross-correlation of the CSF signal vs. the prediction of CSF using the EEG 
data demonstrates successful model prediction of CSF dynamics (p<0.001, n=176 
segments, shuffling test). B) When considering only the sleep segments with the largest 
CSF waves (range>50%, n=19 segments), the model prediction performance is increased, 
demonstrating that the EEG is more predictive of CSF when larger CSF waves are 
present (p<0.001, shuffling test). Shaded region is standard error across segments. C) 
Cross-correlation of CSF data and model-based CSF prediction (using only EEG data) for 
each individual sleep segment. Segments are sorted by the amplitude of CSF peaks 
present in each segment (smaller index is smaller CSF waves). Sorting segments by CSF 
wave amplitude demonstrates that the slow-delta EEG model prediction performs well in 
individual segments, and that it explains the most variance in the segments with the 
largest CSF waves. 
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Fig. S6: Comparison of models implementing links between neural activity and 
CSF. Model variables include cerebral blood flow (CBF) and cerebral blood volume 
(CBV). A) We first implemented a model using previously established parameters 
without any additional fitting, and a simple assumption for CSF flow: we model the CSF 
signal as compensating changes in cerebral blood volume, and calculate it as the opposite 
of the change in CBF. We therefore tested whether the CSF dynamics were well 
predicted by the EEG-locked changes in CBF, using fixed parameters published in 
previous studies. This model performed as well as the best-fit impulse response, 
indicating that these biophysical mechanisms would produce the time-lagged dynamics 
we observe. B) We then allowed parameter settings to vary, finding two parameter 
settings that predicted the best-fit impulse response mapping EEG to the CSF signal, 
displayed in Fig. S7. In this case, we optimized model parameters to produce a CSF 
signal that was opposite to the d/dt of the CBV signal (i.e., positive CSF signal 
corresponding to negative d/dt CBV).  
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Fig. S7: The best fit impulse response for the CSF dynamics is consistent with a 
biophysical model of cerebral blood volume dynamics. The numerically fit CSF 
impulse response shows a similar, but slightly slower waveform, as compared to the 
fixed-parameter CBF impulse response. In this figure we demonstrate two model 
scenarios that are consistent with this CSF impulse response. First, this impulse response 
timing is within the established physiological range for CBF responses, so this result 
would be consistent with a slightly slower CBF coupling to spontaneous slow-delta EEG 
in sleep (as compared to task-induced fMRI measurements). Alternatively, it could reflect 
delayed changes in blood volume relative to blood flow (56). A) Implementation of 
delayed CBF scenario: the CBF impulse response timing matches the empirical CSF 
impulse response, corresponding to a slightly slower but still physiological blood flow 
response, as compared to the fixed-parameter model. B) Implementation of the delayed 
CBV scenario: plotting impulse response of the best-fit CBV impulse response (green) 
when holding the CBF impulse response constant at the fixed parameters, using a 
viscoelastic time constant of 30 s. This time constant provided the best fit within the 
physiological range of [0 30] s. The responses of modeled blood flow (yellow) and CSF 
data (purple) are also shown for comparison.  
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Fig. S8: CSF effects in male and female subjects. Our study enrolled more female 
subjects than male subjects, so we also examined whether the CSF oscillation increase 
during sleep was detected in both sexes. We split the CSF low-frequency (0-0.1 Hz) 
power change during sleep, reported in Fig. 1i, into male and female subjects. We 
observed that the two male subjects in the study exhibited CSF effects within the range of 
the female subjects. While this study was not designed to test for sex differences in CSF 
dynamics during sleep, future work could examine whether such differences exist.  
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Fig. S9: Flowchart of preprocessing steps on each data type used in cross-
correlation analyses. After preprocessing and filtering, pairs of signals were compared 
using cross-correlation analyses (Fig. 3d, Fig. S3, Fig. S4). For comparison, the cross-
correlation without filtering is displayed in Fig. S10. 
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Fig. S10: Cross-correlation results when omitting the 0-0.1 Hz bandpass filtering of 
BOLD and CSF signals. Repeating the cross-correlation without the bandpass filter 
steps shown in Fig. S9 yields qualitatively similar results. The correlations with the time 
derivative of cortical gray matter BOLD are slightly noisier when the filtering step is 
omitted, as the derivative calculation increases the contribution of high-frequency noise. 
A) Cross-correlation of CSF and derivative of BOLD has a max R = –0.40 at delay =  
–0.4s. B) Cross-correlation of CSF and BOLD (original signal, not derivative) has a max 
R = –0.48 at delay = –2.0 s. C) Cross-correlation of EEG and derivative BOLD has a max 
R = –0.10 at delay = –3.8 s. 
 




