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S1 Study populations and inclusion criteria

The trials A-E [1, 2, 3, 4, 5] were conducted worldwide, in 237 centres in the United States,

Europe and Mexico (A); 180 centres in the United States, Central and South America (B); 194

centres in the United States, Czech Republic, Poland, the Netherlands and South Africa (C); 203

centres in Europe and several countries worldwide: Australia, Canada, Israel, Republic of Korea,

South Africa (D); 380 centres in 17 countries in Europe, North, Central and South America and

Asia. Studies A-C had similar inclusion criteria to select patients with moderate to severe COPD

with a history of exacerbations. Eligible patients were 40 years or older, current or ex-smokers

with smoking history of ≥10 pack-years diagnosed with severe airflow limitation confirmed by

pre-bronchodilator forced expiratory volume in 1 second (FEV1) of ≤50% predicted and pre-

bronchodilator FEV1/forced vital capacity (FVC) ratio <70%. Patients had to also have a

history of at least one COPD exacerbation requiring treatment in the 12 months before the first

study visit.

There were a few differences in the inclusion criteria for studies E and D, which aimed

at recruiting patients with severe COPD. The included individuals had to have a smoking

history of≥20 pack-years, post-bronchodilator FEV1 of≤50% predicted and post-bronchodilator

FEV1/FVC ratio <70%. Eligible patients had also at least two COPD exacerbations in the one

year period before the trial. Moreover, in study D, patients had to be treated with an inhaled

corticosteroid (ICS) and long-acting β2-agonist (LABA) combination for 12 months prior to

the study and have a total sum of cough and sputum scores of 14 or higher during the week

preceding the randomization data (0-4 scores reported daily). In study E, patients had to have

been receiving ICS/LABA daily for at least 3 months prior to screening.

Patients in the trials could be discontinued from study treatment at any time. Reasons for

early treatment discontinuations observed in respective datasets are presented in Table S1.

S2 Joint frailty model for recurrent episodes and a terminal

event

For a patient i, i = 1, · · · , N we observe time of a terminal event (time to early treatment discon-

tinuation), Ti = min(T ∗i , Ci) which is the minimum of time to the true event from the beginning

of the study, T ∗i , and the time of the right-censoring, Ci which is assumed to be non-informative

and corresponds to the case when, for a given patient, an early treatment discontinuation was

not observed, i.e. the individual completed the study. We denote the observed starting times
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Dataset A B C D E

N (%) N (%) N (%) N (%) N (%)

No. of early treatment 392 221 235 180 421

discontinuations

Reason for early treatment discontinuation

Adverse eventa 253 (64.5%) 128 (57.9%) 143 (60.9%) 76 (42.2%) 188 (44.7%)

Protocol violation 42 (10.7%) 19 (8.6%) 17 (7.2%) 0 84 (20.0%)

Deterioration or no

response

NA NA NA 26 (14.4%) 21 (5.0%)

Death 0 0 0 27 (15.0%) 0

Physician/Sponsor

decisionb

0 0 0 23 (12.8%) 41 (9.7%)

Subject lost to

follow-up

46 (11.7%) 24 (10.9%) 25 (10.6%) 12 (6.7%) 18 (4.3%)

Other reasons 51 (13.1%) 50 (22.6%) 49 (20.9%) 16 (8.9%) 69 (16.3%)

Missing information 0 0 1 (0.4%) 0 0

NA - category as such not included in the study protocol
a In datasets A-C, early treatment discontinuation from the study due to deterioration of COPD was recorded

as ”adverse event”
b ”Sponsor decision” applies only to dataset E and means that the sites were shut down

Table S1: Reasons for early treatment discontinuation in the analyzed datasets. Percentages in

the different discontinuation categories are based on the total number of discontinuations in each

dataset. Among the individuals who discontinued treatment early in the trials, there were also

patients who stopped treatment as they were not willing to continue and subsequently withdrew

their consent. These patients are not presented here as their data was not available due to data

re-use rules.

of the recurrent episodes T sij = min(T s∗ij , Ci, T
∗
i ), j = 1, · · · , ni, with T s∗ij the true time of the

start of the episode (exacerbation). Analogically, we denote the observed ending time of the

recurrent episodes T eij = min(T e∗ij , Ci, T
∗
i ). We define the indicators of the events, δi = I{Ti=T ∗i },

for early treatment discontinuations, and δij = I{T s
ij=T

s∗
ij }, for exacerbations. We assume, for all

individuals, T eij ≤ Ti, j = 1, · · · , ni.
Let N s

i (t) =
∑∞

j=1 I{T s∗
ij ≤t} and N e

i (t) =
∑∞

j=1 I{T e∗
ij ≤t} define counting processes that rep-

resent the number of observed event starts and endings before individual i was completed or

withdrew from the study since the study entry. Denote by Y ex
i (t) = I{Ns

i (t−)=Ne
i (t−)} the at-risk

process whether the previous exacerbation has terminated. The joint frailty model is expressed as

the conditional hazard functions for recurrent and terminal events considering repeated episodes

and is defined by [6]: {
rij(t|ui) = Y ex

i (t)uir0(t) eXex,ij
>βex

λi(t|ui) = uαi λ0(t) eXed,i
>βed

(1)

where Xex,ij are covariates for the recurrent event process and Xed,i are covariates for the
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terminal event process. Parameters βex and βed are the related regression coefficients. Shared

frailty terms ui are assumed to be independent of each other and identically distributed under

a gamma distribution, ui ∼ Γ(1/θ, 1/θ). The variance θ reflects the population heterogeneity,

the intensity of the association between the recurrent events and the terminal event as well as

the correlation between the recurrent events of the same subject. Finally, the parameter of

association α determines the intensity and the sign of influence of the recurrent events on the

terminal event.

In a joint model for recurrent events and a terminal event, for subject i at each rank j we

observe {T sij , T eij , δij , Ti, δi}. Denote by ξ = (r0(·), λ0(·),β>ex,β>ed, θ, α)> the vector of parameters

to estimate. We assume that the processes of recurrent and terminal events are independent of

each other given the frailty ui. Thus, the joint individual marginal likelihood can be expressed

by:

Li(ξ) =

∫
ui

ni∏
j=1

(
fT ex|ui(T

s
ij , T

e
ij , δij |ui; ξ)

)
fT ed|ui(Ti, δi|ui, ξ)fui(ui; ξ)dui

=

∫
ui

ni∏
j=1

(
(rij(T

s
ij |ui))δij exp

[
−
∫ T s

ij

T e
i(j−1)

rij(t|ui)dt

])

× (λi(Ti|ui))δi exp

[
−
∫ Ti

0
λi(t|ui)dt

]
fui(ui; ξ)dui,

where functions fT ex|ui(·|·) and fT ed|ui(·|·) denote density functions of recurrent events and the

terminal event, respectively, and fui(·) is the density function of the frailty term.

The inference of the model uses the approach of penalized maximum likelihood estimation

with cubic M-splines, polynomial functions of order 3 [7], for the approximation of the baseline

risk functions. The penalization of the log-likelihood is performed for the smooth estimation

of baseline hazard functions. The penalty terms include second derivatives of the baseline risk

functions and smoothing parameters that control the trade-off between the smoothness and fit

to the data. The smoothing parameters can be chosen using appropriate automatic procedures

on reduced models [8].

The integral in the marginal likelihood has no analytical solution and we approximate it using

the Gauss-Legendre quadrature. In order to provide accurate estimates we place the quadrature

points in regions that can be problematic when the gamma distribution for the frailty has a

high variance (θ > 1). We use 50 points in the region (0,0.001), 50 points in (0.001, 1), 20

points in (1,10) and 20 points in (10,50). The penalized log-likelihood is maximized using the

Marquardt algorithm. The standard errors of the estimated parameters are obtained from the

inverse Hessian matrix of the penalized log-likelihood.

The baseline hazards are estimated in the model using the approximation of cubic M-splines.

In this approach, smooth hazard functions with low local variations are assumed and this is

obtained by introducing penalized maximum likelihood estimation (MPLE). In the MPLE, the

log-likelihood of the model is penalized by term that have large values for rough functions. The

smoothing parameters that control the trade-off between the fit to the data and smoothness,

can be chosen using appropriate automatic procedures on the reduced models [8].
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S3 Negative binomial model

The negative binomial model can be parametrized in a number of different ways. With the mean

parametrization as is used in the R implementation of the glm.nb function, the density function

is defined as

f(k;µ, θ) =
Γ(k + θ)

k!Γ(θ)

(
θ

µ+ θ

)θ(
µ

µ+ θ

)k
.

Here, k is the outcome (in our case the number of events), µ is the mean (number of events),

and θ is a parameter related to the (excess) variance modeled compared to a simple Poisson

distribution. If X has a negative binomial distribution under this parametrization we have that

V (X) = µ+
1

θ
µ2 = µ+ δµ2

where we refer to δ as the dispersion parameter. This parameter is tabulated in table S3 for the

negative binomial models studied.

S4 Software

The joint frailty and shared frailty models were all estimated using the R package frailtypack

[11]. The negative binomial models were estimated with the function glm.nb from the R package

MASS [12]. The LASSO regression was performed using the R package glmnet [13].

S5 Simulation study

The main purpose of the simulation study was to investigate the impact of differential early

treatment discontinuation, either positively or negatively related to therapy and/or medications,

on the estimation of the treatment effect on the risk of recurrent exacerbations.

S5.1 Data generation

We generated recurrent event times and terminal event times from a joint frailty model assuming

the processes being positively correlated. The generated datasets were similar to the clinical

ones; we assumed a study length of one year (fixed right-censoring) with two treatment groups

and 800 individuals in total. Firstly, for an individual, we generated the frailty parameter from

a gamma distribution, then we randomly assigned the individual to the treatment group and

we used these values to generate the time to early treatment discontinuation using exponential

baseline hazard functions. If the generated time to early treatment discontinuation was larger

than one year, the individual was considered as ”censored”, i.e. he/she completed the study and

the early treatment discontinuation was not observed. Then, considering the generated time to

terminal event, we generated recurrent event times up to the time of the end of observation. We

assumed the hazard ratio of treatment for recurrent exacerbations equal to 0.6.

S5.2 Scenarios and models

We investigated the bias of treatment effect on exacerbations assuming different effects of treat-

ment on early discontinuations. In particular, we considered hazard ratios for discontinuation
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related treatment effects equal to 0.5, meaning that individuals tended to discontinue more in

the control group, HR = 1, which means no differential early treatment discontinuation, and

HR = 2 that corresponded to the case of more early withdrawals in the treatment group. For

each scenario we also considered different rates of exacerbations and early treatment discontin-

uations. We controlled the rates of events by adjusting the exponential distribution parameter

for the baseline hazards. Finally, we investigated the bias by considering different combinations

of strong (α = 1.5) and weak association (α = 0.8) between the recurrent and terminal event

processes and high (θ = 2) and moderate (θ = 0.8) variance of the frailty term.

The simulations results for each scenario were obtained through 1000 replicates of 800 in-

dividuals. We estimated the shared frailty and joint frailty models with an assumed gamma

distribution for the frailty term and applied splines with 4 knots distributed using equidistant

knots. The penalty terms were found for each dataset using the automatic cross-validation

procedure in the shared frailty model for exacerbations. In the joint model, we used the same

penalty for recurrent episodes and for terminal events, we used the penalty obtained from a Cox

model for early treatment discontinuations. In case of non-convergence, we changed the value of

the penalty term (by multiplying by 10 values smaller than 100 and dividing by 10 values larger

than 100) until convergence was reached.

S5.3 Results

In all scenarios, we observed biased estimates of the treatment effect on the risk of exacerbations

using shared frailty models that ignore the process of early treatment discontinuations (Figure

S1, the right bottom panel corresponds to the results presented in Figure 3 in the main text).

When applying the joint frailty model to the same generated datasets, we found unbiased results

(Figure S2).

With the shared frailty model, we observed underestimation of the treatment effect on the

risk of exacerbations when more patients withdraw from the study in the control group (HR =

0.5 for treatment effect on the risk of early discontinuations). On the other hand, the treatment

effect on the risk of exacerbations was overestimated for HR on early treatment discontinuations

equal to 2 (similar to trends observed in datasets D and E), when the treatment is associated with

increased risk of early discontinuations. Finally, when there were no differential early treatment

discontinuations, i.e. HR of the treatment effect on the risk of discontinuations equaled 1, we

observed small bias in the estimates of the effect of treatment on the risks of exacerbations in

the shared frailty model.

We observed a larger bias in scenarios with the strong association and high variance compared

to the scenarios of the weak association and moderate variance. When considering the rates of

events on the magnitude of the bias of the treatment effect, we found that the number of

exacerbations observed per patient had less influence than the rate of observed early treatment

discontinuations in the data. In the case, when there were many discontinuations (40%), we

found larger average bias than in the scenario with smaller number of discontinuations (25%).

Indeed, when we have many early treatment discontinuations in the data, the average time of

follow up is shorter and we are less able to correctly estimate the parameters. On the other

hand, the results showed that even if the rate of discontinuations is not larger than 25%, as it

is the case in our application, we are still able to observe the bias of the effect of treatment on

the risk of exacerbations if the process of early treatment discontinuations is ignored.
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Figure S1: Bias of treatment effect on the risk of exacerbations using reduced shared frailty model

that ignores the process of early treatment discontinuations in the simulation study in scenarios

of different strength of association between the generated processes. Different points on the plot

represent scenarios with different rates of exacerbations and early treatment discontinuations in

the data.
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Figure S2: Bias of treatment effect on the risk of exacerbations using joint frailty model that

includes the process of early treatment discontinuations in the simulation study in scenarios of

different strength of association between the generated processes. Different points on the plot

represent scenarios with different rates of exacerbations and early treatment discontinuations in

the data.
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Negative binomial model Shared frailty model
Dispersion parameter Frailty variance

Estimate (SE)

Dataset A 1.87 (0.04) 1.85 (0.16)
Dataset B 0.81 (0.16) 0.79 (0.10)
Dataset C 2.12 (0.05) 2.15 (0.25)

Dataset D 1.35 (0.06) 1.36 (0.11)
Dataset E 0.75 (0.11) 0.75 (0.06)

SE - standard error

Table S2: Estimates of the dispersion and frailty variance parameters in reduced models for
moderate/severe exacerbations in all datasets.

S6 Analysis of clinical trial data

S6.1 Models applied to COPD data with treatment as the only covariate

For the COPD datasets we estimated models with only treatment effect as a covariate. For

the shared frailty and joint frailty models, we used percentile splines (the intervals for splines

were divided in a way to obtain the same number of events in each interval) for estimating

the baseline hazard functions with the number of knots chosen to ensure the best goodness-

of-fit to the data (dataset A: 13, B: 12, C: 12, D: 15, E: 14). Random effects were assumed

to be distributed according to a gamma distribution so that the models would be similar to

the rate analysis using negative binomial models. However, a sensitivity analysis of the frailty

distribution showed that the estimations and goodness-of-fit (using an approximated likelihood

cross-validation criterion, LCV [9]) were almost identical for both gamma and log-normal joint

frailty models.

The exacerbation hazard ratios in all the models as well as association parameters in the

joint frailty model are presented in the main manuscript (Tables 3 and 4). Estimates of the

frailty variance in the shared frailty model and dispersion parameters in the negative binomial

model are presented in Table S2. Early treatment discontinuation hazard ratios in the joint

frailty model are presented in Table S3.

For comparison with pooled data analysis with covariates, results of the joint frailty model

for pooled dataset with no covariates (only treatment and study effect) are presented in Table

S4.

S6.2 Joint models with covariates applied to pooled COPD datasets

The analysis that included demographic and disease related prognostic factors as covariates in

addition to treatment was performed on pooled datasets. The variables are listed in Table S5.

We combined datasets with similar treatments and similar design; from datasets A, B and C we

created pooled A-C and from datasets D and E we formed pooled D-E.

The covariates were selected for the analysis using a combination of an automatic procedure

and clinical knowledge. Firstly, the LASSO (least absolute shrinkage and selection operator)
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Treatment effect on early treatment discontinuations

Hazard ratio 95% CI

Dataset A

BUD/FM 320 vs PBO 0.73 (0.51 - 1.04)

BUD/FM 160 vs PBO 0.84 (0.59 - 1.19)

FM vs PBO 1.00 (0.71 - 1.41)

Dataset B

BUD/FM 320 vs FM 0.85 (0.58 - 1.26)

BUD/FM 160 vs FM 0.87 (0.59 - 1.28)

Dataset C

BUD/FM 320 vs PBO 0.51 (0.28 - 0.91)

BUD/FM 160 vs PBO 0.43 (0.24 - 0.79)

BUD 320 + FM vs PBO 0.52 (0.29 - 0.94)

BUD 320 vs PBO 0.75 (0.43 - 1.31)

FM vs PBO 0.93 (0.54 - 1.61)

Dataset D

SOC + RFL vs SOC 1.79 (1.29 - 2.49)

Dataset E

SOC + RFL vs SOC 1.54 (1.25 - 1.89)

CI - confidence interval

Table S3: Results of the joint model estimation for early treatment discontinuations for Datasets

A-E. Only treatment included as covariate.
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Exacerbations (moderate/severe) Early treatment discontinuations

Pooled A-C Pooled D-E Pooled A-C Pooled D-E

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Treatment

BUD/FM 320 vs FM 0.67 (0.57 - 0.78) 0.72 (0.56 - 0.91)

BUD/FM 160 vs FM 0.68 (0.58 - 0.80) 0.77 (0.60 - 0.98)

BUD 320 + FM vs FM 0.55 (0.40 - 0.75) 0.64 (0.41 - 1.02)

BUD 320 vs FM 0.70 (0.51 - 0.95) 0.94 (0.61 - 1.46)

PBO vs FM 1.03 (0.85 - 1.25) 0.99 (0.75 - 1.30)

SOC + RFL vs SOC 0.89 (0.81 - 0.99) 1.59 (1.32 - 1.91)

Trial effect

A vs C 0.92 (0.79 - 1.08) 1.05 (0.83 - 1.32)

B vs C 1.21 (1.02 - 1.44) 0.96 (0.73 - 1.24)

E vs D 1.05 (0.94 - 1.17) 1.48 (1.21 - 1.81)

Association parameters

Pooled A-C Pooled D-E

Estimate SE Estimate SE

Frailty variance (θ) 1.56 0.08 0.94 0.05

Association (α) 1.22 0.10 0.86 0.12

HR - hazard ratio, CI - confidence interval, SE - standard error

Table S4: Results of the joint model estimation for pooled datasets. Only treatment and study

included as covariates.
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Category Variables Remarks

Demographics age in years, sex, weight, race, country,

smoking status (former/current),

smoking history (no. of pack-years)

Disease severity years since COPD diagnostics, exacerbation values at baseline

history (no. exacerbations/observation

time in years), past or present coexistence

of cardiovascular disease, use of ICS ≥1 month

before the study, use of bronchodilators ≥1 month

before the study, use of LAMA

Laboratory variables eosinophils, neutrophils, basophils, monocytes, values at baseline

lymphocytes concentration, bilirubin concentration

Spirometry measures pre- (A-C)/post-bronchodilator (D-E) FEV1, average values

reversibility from the run-in period

Patient reported breathlessness, sleep, cough, sputum troubles, average values

outcomes wheeze (0-4 scores), no. of rescue medication from the run-in period

inhalations during a day (total of day and night)

SGRQ score total score of symptoms, activity average values

(A-C trials) and impact (0-100 score) from the run-in period

CAT score total score, i.e. sum of cough, mucus, tightness of chest, value at baseline

(D-E trials) breathlessness, activities limitation,

confidence to leave home, sleep, energy (0-40 score)

Table S5: Baseline variables considered in the analysis.
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Cox regression [10] was performed for simplified models: time to first exacerbation and time to

early treatment discontinuation applied to separate datasets. Four methods for finding optimum

penalty were applied: 10-fold cross-validation (CV) rule, one standard error 10-fold CV rule,

BIC rule and bootstrap (B=1000) BIC rule. Then, we created a set of covariates (including

treatment) for datasets A-C if the covariates were selected by at least two different methods

in at least two datasets. For datasets D-E, the covariates were chosen if they were selected in

at least two methods. The covariate sets were complemented by variables that, although not

selected by the LASSO procedure, were found to be clinically meaningful. The final sets of

covariates for each study was found using stepwise backward selection with joint frailty models

on each pooled dataset. In this step we also added the time-varying seasonality covariate. To

facilitate the model selection, all continuous variables were standardized. The respective steps

of the covariate selection are presented in Figure S3 and the specifications of the final set of

variables can be found in table 5 of the main text.

In the final model for pooled A-C we did not use the laboratory variable (neutrophils,

significant effect on exacerbation risk, p-value = 0.04) even though it was chosen in the backward

selection procedure as there were missing values for an important number of patients (48 in

dataset A, 38 in B and 36 in C) and imputing values would introduce additional uncertainty to

the estimates. Summary of all the included covariates is presented in Table S6.

We applied splines for the approximation of baseline hazard functions using the approach

of percentiles. Using graphical assessment of the estimated baseline hazard functions and fit

to the data using LCV, we found that 13 knots were enough to well approximate the functions

in both pooled A-C and D-E datasets. The plots of the estimated baseline hazard risks are

shown in Figure S4. We observed hazard functions for exacerbations with quite regular periods

of increased and decreased risks during the follow-up. The pattern of periods of increased risks

was similar for exacerbations and early treatment discontinuations but the increase of the risk

of discontinuation was smaller compared to exacerbations.
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Initial set of covariates:

demographics, laboratory variables,

spirometry measures,

SGRQ/CAT scores, PROs

LASSO regression

Datasets A-C Datasets D-E

Ex and ETD: region,

day use of rescue

Ex: smoking history, exac.

history, ICS, bronchodilators,

neutrophils, FEV1, reversibility,

breathlessness, SGRQ total score

ETD: lymphocytes

Ex and ETD: region,

treatment, use of LAMA, FEV1

Ex: race, years since

diagnosis, exac. history, bilirubin,

day use of rescue, CAT total score

ETD: age, smoking history

Additional meaningful variables Additional meaningful variables

Ex and ETD: age, sex, treatment

ETD: FEV1, breathlessness,

SGRQ total score

Ex and ETD: sex

Ex: age

ETD years since diagnosis,

exac. history, day use of

rescue, CAT total score

Stepwise backwards selection

using joint frailty model

Stepwise backwards selection

using joint frailty model

Ex and ETD: age, region, treatment,

FEV1, day use of rescue, SGRQ total score

Ex: smoking history, exac. history,

ICS, bronchodilators, breathlessness

ETD: sex

Ex and ETD: age, region, treat-

ment, FEV1, CAT total score

Ex: exac. history, day use of rescue

ETD: sex

Figure S3: Flow chart of covariate selection process for the joint models analysis (Ex - exacer-

bation risk process, ETD - early treatment discontinuation risk process).
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Pooled A-C Pooled D-E

N/Median %/Range N/Median %/Range

No. of patients* 4355 3058

Demographic characteristics

Sex (Male) 2847 65% 2154 70%

Age, years 63 40− 90 64 40− 89

Region

US 1890 43% 807 26%

Western Europe 409 9% 414 14%

Eastern Europe 1286 30% 887 29%

Rest of the World 770 18% 950 31%

Treatment

BUD/FM 320 1070 25% − −
BUD/FM 160 1060 24% − −
BUD 320 + FM 271 6% − −
BUD 320 252 6% − −
FM 1042 24% − −
PBO 660 15% − −
SOC + RFL − − 1502 49%

SOC − − 1556 51%

Disease severity

History (no exac./observation years) 1 0− 12 2 1− 9

Use of ICS (Yes) 2296 53% − −
Use of bronchodilators (Yes) 2317 53% − −
FEV1** 0.99 0.24− 2.99 0.97 0.22-2.11

SGRQ total score (0-100) 54.98 3.74− 99.22 − −
Breathlessness score (0-4) 2.07 0− 4 − −
CAT total score (0-40) − − 19.00 0− 40

Rescue medication (no of puffs/day) 3.50 0− 42.20 3.45 0− 39.50

BUD - budesonide, FM - formoterol, RFL - roflumilast, SOC - standard of care

PBO - placebo

* Numbers after removing individuals with missing values of the covariates.

** Pre-bronchodilator FEV1 in A-C and post-bronchodilator FEV1 in D-E.

Table S6: Patient characteristics in the analyzed studies for variables included in the full joint

frailty models.
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Figure S4: Estimated baseline hazard functions of the full joint frailty models for pooled datasets

(output from the package frailtypack). Red lines correspond to baseline hazard risks of recurrent

moderate/severe exacerbations and green lines to early treatment discontinuations.
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