High-resolution animal tracking with
integration of environmental information in
aquatic systems

A Practical Guide

1 Data collection

Our approach requires little preparation in the field, however, some things need to
be considered. In order to successfully triangulate 3D animal trajectories, we need at
least two detections per time point (i.e. video frame) of each animal throughout the
videos. Hence, we need at least two cameras in our multi-view camera array. For better
coverage, higher overlap and easier filming, four cameras are recommended (arranged
in a square). The size of the observed animals and the distance from which they are
filmed determine the camera-to-camera distances in the array (and correspondingly
the video overlap). We found a distance of 0.6 m between the cameras appropriate
when filming from one to three meters above the animals. See Figure 1 for example
setups.

Since the Structure-from-Motion (SfM) approach relies on moving cameras, the camera
array should not remain stationary throughout a full recording. This is not problematic
when swimming/diving above mobile animals (as for our ’single’” and ’school’ datasets),
but when filming site-specific animals for a longer duration (> 5 min) it may become
tedious for the observer and increase later computational load for the SfM algorithm.
Here, we suggest using a semi-stationary camera array mounted on a tripod (as for the
'mized’ dataset), that can be moved when the animals are moving, and left stationary
when the animals stay in one spot for some time.

Finally, the observer should make a noise after all cameras were turned on (e.g.
knocking on the camera array), so that the videos can be easily synchronized.

2 Video synchronization

Generally, video cutting and synchronization should be the first step after filming
animals in the field. This will reduce later data management and organization. We
provide a Python script, that extracts audio signals from the videos, convolves the
Fourier-transformed signals to calculate offsets and cuts the videos so that they are
synchronized, using fimpeg and common Python packages (e.g. scipy).

https://www.ffmpeg.org/
https://www.scipy.org/

float (e.g. PET bottle)

woo
o
o
3

—T

cameras

Figure 1: Example setups for the multi-view camera arrays. When filming mobile
animals, we recommend using four cameras (left). If the observed animals are site-specific,
a semi-stationary setup may be preferable, that is only moved when the animals change
their locations (middle). The setup we used for recording the videos of the “accuracy’
dataset (right).

3 Mask R-CNN training and inference

The next step is training a Mask R-CNN model for object detection and instance
segmentation to generate pixel locations of the observed animals from the synchronized
videos. Mask R-CNN is a complex convolutional neural network that would take a
long time to train from scratch, but we can use transfer-learning (starting from a
pre-trained snapshot using the COCO dataset) to speed up the process.

First, a custom dataset containing image annotations has to be created. We developed
a purpose-oriented GUI based on Python and Qt5 within the lab ("TrackUtil’), that
allows to mask objects of interest during video playback. It supports interactive
annotation of multiple classes (for example when multiple species were observed), as
well as simultaneous playback of multiple videos, and outputs the dataset in a format
that can be directly imported for Mask R-CNN training. "TrackUtil’ is available in
the additional files section, but will be released on GitHub once it is fully documented.

The resulting dataset containing the images and respective pixel masks is then used
as input to the training process, which is well-documented in the original GitHub
repository. We customized the code for input, inference (i.e. using the model to
predict animal locations on the videos), and output (Additional file 5). Training and
inference both require GPU-accelerated systems, and can be performed either on local
hardware, on computing clusters (for example available through respective research
institute or university) or free computing services such as Google Colaboratory.

https://github.com/matterport/Mask_RCNN/blob/master/samples/shapes/train_shapes.ipynb
https://github.com/matterport/Mask_RCNN/blob/master/samples/shapes/train_shapes.ipynb
https://colab.research.google.com/notebooks/intro.ipynb

4 Structure-from-Motion

We use SfM to reconstruct the trajectories of the cameras from the video recordings,
and to generate 3D point clouds of the filmed environment. Further, the camera
calibration parameters are obtained through SfM. Our approach implements input and
output for one implementation of SfM that we found well-documented and performant,
COLMAP. However, free alternative implementations exist (e.g. Theia and Meshroom)
and can be used by changing input and output data formatting.

First, images have to be extracted. For this purpose, we provide a Python script
(Additional file 6). We recommend a sampling rate of 3 Hz, so that fast camera
motion will be well represented in the resulting reconstructions without too much
computational load. For all subsequent SfM steps, using the default COLMAP
options will result in good reconstruction results in most cases. If a semi-stationary
setup is used, images that were extracted from time points without camera motion
should be discarded before starting the reconstruction process. In case of very long
observations, or many cameras, we recommend splitting the reconstructions into parts
with approximately 3000 images each. COLMAP provides functionality to merge
reconstructions that are based on the same dataset.

It is sufficient to only run the sparse reconstruction for the subsequent triangulation
of 3D trajectories. At this step, each image is referenced in the reconstruction as a
3D location of the camera view point, and a sparse point cloud of the visual scene is
reconstructed. Additionally, COLMAP can be used to obtain a denser representation
of this scene, useful for visualization and environmental analyses. However, this is
computationally demanding and requires a GPU, and we do not include environmental
analyses (e.g. complexity measures or habitat segmentation).

5 Triangulating trajectories

From the raw Mask R-CNN predictions (binary pixel masks), animal positions have
to be determined in pixel coordinate space. These positions can be either estimated
as the pixel mask centroid, or an approximation of fish spine pose. For both cases,
and for the subsequent generation of animal trajectories, we provide Python code
(Additional file 6). The resulting pixel trajectories are very likely fractured and may
contain misidentifications, making manual track corrections necessary in almost all
cases. Further, trajectory ids have to be matched between the multi-view trajectories.
All of these tasks can be accomplished using the interactive functionality of "TrackUtil’
(Additional file 4).

Finally, 3D trajectories can be obtained through triangulation of the multi-view Mask
R-CNN detections using the camera parameters estimated with SfM. For this purpose,
we implemented ‘multiviewtracks’, a Python module available on GitHub. Examples for
general usage, visualization and export of 3D models can be found in the documentary.

https://colmap.github.io/
http://theia-sfm.org/
https://alicevision.org/#meshroom
https://github.com/pnuehrenberg/multiviewtracks
https://sketchfab.com/3d-models/lamprologus-c-kasakalwe-tanganyika-fadca55294bb496fb1a898db6ac1ee03
https://multiviewtracks.readthedocs.io/en/latest/

	Data collection
	Video synchronization
	Mask R-CNN training and inference
	Structure-from-Motion
	Triangulating trajectories

