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In this Supporting Information, we describe the triangulation selection algorithm in Subsection
[A.T] In Subsection [A.2] we include more results from simulation studies. In Subsection [A.3] we
give more description of the ADNI data analyzed in Section [f]in the main article. Section [B|includes

detailed proofs of the theoretical results in the main article.

Web Appendix A Implementation Algorithm and More Numerical Studies

A.1 Algorithm for Triangulation Selection

In this section, we describe the algorithm for selecting the triangulation for bivariate spline smooth-
ing. As proposed in Section 4.2]in the main paper, we choose the triangulation A, based on leave-
images-out k-fold cross-validation (CV), and choose the triangulation A\, by minimizing a bootstrap
estimator of the coverage error of the SCCs. Details of the algorithm for the one-sample case are

given in Algorithm [AT|below.
A.2  More Results from Simulation Studies

In this section, we present more simulation results from Sections and in the main paper.
For the simulation example presented in Section Figures A3|present the 99% SCCs for the
quadratic mean function based on sample size n = 50, 100 and 200. Figures [A4HAG| present the
99% SCCs for the exponential, cubic and sine mean functions with n = 50, respectively. Table

[AT] summarizes the estimated coverage rate of the SCCs based on 1000 replications for N = 3682.



Input : Images {V;;} 7"}, .

Output: Triangulations A, and A,,.

Step 1. Selecting A\, and estimating ;:(z). Based on {Y; };.V:’Tii:l, select /A, via the
leave-images-out k-fold CV, and obtain ji(z) using the BPS method. Define
Rij = Yy — fi(2)).

Step 2. Selecting A, from a set of triangulations {AZ, g € Q}.

foreach ¢ € O do

(i) Fori = 1, ..., n, estimate 7;(z) by smoothing Eij via the bivariate spline
smoothing method based on triangulation A}, and let Eij = ﬁij —ni(2;).

(i1) Generate an independent random sample 5i(b) and 55’ ) from {—1,1} with
probability 0.5 each, and define Yij(b) = 1i(z;) + 5§b)7/7\1;(Zj) + (55’)%.

(i11) Based on {Yij(b) }jvj Ly obtain the estimators of the mean and covariance
functions 72*® and G5 using A, and A respectively.

(iv) For any fixed a € (0, 1), construct 100(1 — )% SCCs for resampled data

Nmn
{Y*“’)} :B®(a), b=1,...,B,

Yo ) j=t1i=1

BO(a) = 10 (z) £ n 206" (2, 2)' "%
end

Select AA,, by minimizing the objective function

a—ao

a+d 1 B 2
i - m *O) () A) — (1 —
Iql’élél/ {B ;I(u € BV (a); Al) - (1 a)} da,

for some constant 0 < & < «, which is taken to be 0.005 in our simulation studies.

Algorithm A1: Triangulation selection.




Table provides the type I error and the empirical power of the two-sample test presented in
Section [5.2]in the main paper.

To illustrate the benefits of our method, we conduct the following simulation study to compare
the proposed SCC with the traditional multiple testing with Bonferroni correction and the cluster
threshold-based method (Poldrack et al.| [2011). Similar as in Sections @ in the main paper, we

generate the images from the following model:

Yij = u(z;) + Z VEibn(z;) + 0(2))ei;, z; € Q C [0,1]%
k=1

For comparison, we consider the following mean function, which is similar as the exponential func-

tion in Example 1 in Section [5.1]in the main paper:

(2) = { exp [—30{(z1 — 0.5)% + (20 — 0.5)?}], (21 — 0.5)% + (22 — 0.5)> < 0.10
==, (21— 0.5)2 + (25 — 0.5)% > 0.10

and the corresponding images are shown in Figure To simulate the within-image dependence,
we generate &, Sy N(0,1) fori = 1,...,n, k = 1,2, and orthonormal basis functions 1 (z) =
0.988sin(mzy) + 0.5, ¥9(z) = 2.157 cos(mzz) — 0.084. For the eigenvalues, we set \; = 0.2,
Ay = 0.05. We consider n = 100, 200 and for each image, the number of pixels is set to be the same
as in typical brain imaging which is N = 79 x 95 = 7505.

Based on these images, we are interested in testing Hy : p(z;) =0, z; € Q,j=1,...,N,at
significance level o = 0.05. For the cluster approach, the threshold is usually set by the practitioner’s
experience and prior knowledge. In this example, we consider three thresholds: 0.1, 0.05 and 0.01,

as suggested in [Poldrack et al.| (2011). For comparison, we consider the following criteria:

e False Positive Rate (FPR): the proportion of pixels within the domain which are discovered
incorrectly as positive (significantly different from zero);
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e False Negative Rate (FNR): the proportion of pixels within the domain which are discovered

incorrectly as negative (not significantly different from zero);

e False Discovery Rate (FDR): the proportion of detected pixels that are false positives.

Table [A3] summarizes all results based on 100 replications. Figure [A8|shows the discovery of
the true signal via different methods for a typical replication with n = 200. Based on Table [A3|and
Figure[A§] it is obvious that the pixel-wise inference with Bonferroni correction is very conservative.
The FPRs and FDRs of the Bonferroni correction are very close to zero, while the FNRs are very
high, even greater than 30%. Although the FPRs and FDRs for the proposed SCC are above zero,
they are still very small, usually less than 1%. Meanwhile, the FNRs for the proposed SCC are much
smaller than the Bonferroni correction. In addition, one sees that the cluster threshold-based method
heavily depends on the choice of threshold. When using 0.01 as the threshold instead of 0.1, the
FPR dramatically decreases while the FNR considerably increases. For n = 200, the FPR and FDR
of the SCC are both smaller than those of the Cluster-threshold method. From Figure we can
also see that our method aims at detecting contiguous groups of active pixels because it is able to

account for the spatial dependence within data.
A.3  Additional Information of ADNI Data

The ADNI dataset analyzied in Section [6] in the main paper consists of 112 subjects with normal
cognitive functions (control group; CON), 213 subjects with mild cognitive impairment (MCI), and
122 subjects who have been diagnosed with Alzheimer’s Disease (AD). As described in the data
analysis in Section [f] in the main paper, we stratify the data according to sex and age, and the

breakdowns are given in Table



Table A1: Two way table of diagnosis vs. gender and age group.

Diagnosis
CON MCI AD Total
Female 42 77 50 169
Gender  pra1e 70 136 72 278
Age <75 54 107 60 221
Ag  Age>75 58 106 62 226
Total 112 213 122 447

Web Appendix B Technical Assumptions and Proofs

In the following, we use ¢, C, c1, co, Cy, C, etc. as generic constants, which may be different even
in the same line. For any sequence a,, and b,,, we write a,, < b, if there exist two positive constants
¢1, ¢o such that ¢i|a,| < |b,| < ¢sla,|, for all n > 1. For a real valued vector a, denote ||a| its
Euclidean norm. For a matrix A = (a;;), denote ||A||.c = max; ; |a;;|. For any positive definite

matrix A, let A\yin(A) and A\« (A) be the smallest and largest eigenvalues of A.
B.1 Assumptions

Given a triangle 7' € A, let o7 be the radius of the largest disk which can be inscribed in 7T'. Define
the shape parameter of 7" as the ratio 7y = |T'|/or. When 7r is small, the triangles are relatively
uniform in the sense that all angles of triangles in the triangulation A are roughly the same. Next,

we introduce some technical assumptions.

(A1) The bivariate function z(-) € WL(Q) = {g : |glr.con < 00,0 < k < d + 1} for an inte-

gerd > 1.

|4+(51

(A2) Forany k > 1, &;.’s are i.i.d. random variables with mean 0, variance 1 and E' |; < 400



for some constant 6; > 0. Forany 7 = 1,...,n,j = 1,..., N, g;’s are i.i.d with mean 0,

4469

variance 1, and F |¢;;| < +o0 for some constant 5 > 0.

(A3) The function o € C(l)(Q) with 0 < ¢, < 0(2z) < C, < oo for any z € ; for any £,

Yy, € CW(Q) and the variance function 0 < c¢g < G, (2, 2) < Cg < oo, for any z € Q.

(A4) The triangulation is m-quasi-uniform, that is, there exists a positive constant 7 such that

(mingea o) A < 7.

(AS) As N — oo, n — oo, N™In¥/@D]og(n) — 0, the triangulation size satisfies that
N7'log(n) < |A]? < min{n(?+%)/+02) N=1]og™1 (), n=1/(@+11 " and the smoothing

penalty parameter p,, satisfies p, = o{min(n'/2N|A[>, nN3/2| A8, nN|A|?)}.

(A6) For k € {1,...,x} and a nonnegative integer s, ¢(z) € WTH2(Q), 7 |[oklleo <
0. sy Sona lowllzce = 0(1), (14 i ) iy 1A dllssrce = o(1) for a se-
quence {k,}>2, of increasing integers, with lim, ,., k, = K, as n — oo. Meanwhile,

> ker+1 |Pxlloc = o(1). The number « of nonzero eigenvalues is finite or & is infinite.

(A7) As N — oo, n — oo, for some 0 < §3 < 1, N~Ipl/(@+h+s 5 ) N|A, |2 — oo,
n?|Ap|*/ logn — oo.

The above assumptions are mild conditions that can be satisfied in many practical situations. As-

sumption (A1) is typically assumed about the true underlying functions in the nonparametric esti-

mation literature. Assumption (A1) can be relaxed by only requiring x(-) € C((Q) if the imaging

data has sharp edges. Assumptions (A2) and (A3) are common conditions used in the literature; see

for example, Cao et al.| (2012). Assumption (A4) suggests the use of more uniform triangulations



with smaller shape parameters. Assumption (AS5) describes the requirement of the growth rate of the

dimension of the spline spaces relative to the sample size and the image resolution.
B.2  Properties of Bivariate Splines

For g1(2), g1(2), define the theoretical and empirical inner products as

(91,92) = /991(2)92(Z)dza (91, 92)n = %Zgl(zj)gﬂzj)a (B.1)

and denote the corresponding theoretical and empirical norms || - || and || - || y. Furthermore, let || - ||

be the norm introduced by the inner product (-, -)¢, where, for g;(z) and g,(2),

e = [ { > (2) <v;vz2g1<z>>2}1/2{ > (2) <v;vz2gz<z>>2}l/2 iz

i+j=2 i+j=2

Let A(Q2) be the area of the domain €2, and without loss of generality, we assume A() = 1 in
the rest of the article.

We cite two important results from Lai and Schumaker| (2007).

Lemma B.1 (Theorem 2.7,Lai and Schumaker|(2007)) Let {B,,}.nem be the Bernstein polyno-
mial basis for spline space S} (/) defined over a T-quasi-uniform triangulation /\. Then there exist

positive constants ¢, C depending on the smoothness r, d, and the shape parameter 7 such that

> VB

meM

2

<CIAP Y 7

meM

A

meM

Lemma B.2 (Theorems 10.2 and 10.10, Lai and Schumaker| (2007)) Suppose that A\ is a T-quasi-

uniform triangulation of a polygonal domian Q, and g(-) € W1>(Q).

(i) For bi-integer (ay,az) with 0 < ay + ay < d, there exists a spline g*(-) € SY(A\) such that
[VEV2 (g — g) oo < CIA|H179792|g| 441 «, where C is a constant depending on d, and

the shape parameter .



(ii) For bi-integer (ay,as) with0 < a;+as < d, there exists a spline g**(-) € Sj(A) (d > 3r+2)
such that V3V (g — ¢%*) |eo < C|A[T797%2|g| 414 o, where C'is a constant depending

on d, r, and the shape parameter T.

Lemma|[B.2|shows that SY(A) has full approximation power, and S7j(A\) also has full approximation

power if d > 3r + 2.

Lemma B.3 (Lemma B.4 in Supplemental Materials, Yu et al. (2019)) Under Assumptions (A3)

and (A4), for any Bernstein basis polynomials B,,(z), m € M, of degree d > 0, one has

N
1
¥ o Bhlz) ~ [ Bh()dz| =0V A), 1< k<o,

N

1 —1/2

—— / s —_— ! = <

5, [ 2o B2 B2 | Bu(2)Bur(z)dz] = ONTPIA]), 1<k < o
N
1
max —25 G, (zj,2j)Bn(zj) B (zj) Gy(2,2")Bp(2) By (2))dzdz'| = O(N7V2| AP,
m,m’'eM = 02
L

2 2| _ 1 2N 20 2 2 _ ~1/2

max [[|o B[y — [lo Bm|*| = max N;:l B;.(z5)0%(2;) /QU (2)B,,(2)dz| = O(N~/7|A]).

The following lemma provides the uniform convergence rate at which the empirical inner product

approximates the theoretical inner product defined in (B.1).

Lemma B4 Let g1(2) = >, c vy 1mBm(2), 92(2) = >, e YomBm(2) be any spline functions

in S5(A\). Suppose Assumptions (Al), (A2) and (A4) hold, and N'/?|A\| — oo as N — oo, then

Wy = sup <91792>N - <91>g2> — Op (N’l/Q\A\’l) _ OP(l)-
01,92€85(2) [g11] {|g2]]



Proof. It is easy to see

Note that (g1, 92) = >, 2w VimVom Jo Bm(2)Bny(2)dz. Tt follows from Assumptions (A1),

(A2) and Lemma B.1|that, for any I = 1,2, G|APP 32, 47, < lall* < CIAPRY, Vi m» and

1/2 1/2
lof (S n ) < ol < ool (Tot ot
Therefore, one has
Zm m|<(d+2)(d+1 2|’71m’72m” 1 &
wy < = 2' (d+2)(d+1)/ I, max NZB (z;)B (zj)—/Bm(z)Bm,(z)dz
Cl’A| [Z Wlmz fYQm] Jj=1 Q
< C|A|2 Bo(2;)By(2:) — | By(2)Boy(2)dz| .
CIA? s | Z (2)Bor(2)) = [ Bu(2)Buulz)dz
The desired result follows from Lemma |
As a direct result of Lemma [B.4] we can see that
sup, |||9||N/||9||2—1\ Op (NT'2IA17Y) = op(1). (B.2)
geS d
Lemma B.5 Suppose Assumption (A4) hold, and N'/?|\| — oo as N — oo, then
S _ HgHOO A_l
N = sup gllv # 07 = O(A[), (B.3)
sesyio) Ulglly
Gy = lglle — O(IA|2 4
V= sup lglly #0p = O(A[T). (B.4)
gesya) Lllgln’

Proof. By Markov’s inequality, for any g € S5(A), |lgllee < CIAI glls llglle < CIAI2]|g]l-



\S)

Equation (B.2) implies that ||g||x/||g]| > [1 — Op {N*1/2|A|*1H1/2 . Thus, one has

Sy < CIA [1=0p {N"2A ] 2 = 0p (147,

Sy < CIA2[1=0p {N"2A ] 2 = 0p (14]72) .

Lemma[B.3]is established. m
B.3  Convergence of Penalized Spline Estimators

Let {ém(z), meM } be a set of transformed Bernstein basis polynomials and B(z) = Q] B(z),
then, for U = BQ; defined in Section U'U= Zj\le B(z;)BT(z;)and UTY = Zjvzl B(z,)Y};.

Denote by

1

N
FN,p - N Z{ﬁ(Zj)ﬁT(Zj>} + TILO—;/_Q;—[(Bm, Bm’>€]m,m’€MQ2 (BS)
j=1

a symmetric positive definite matrix.
The following lemma shows that the maximum and minimum eigenvalue of I'y , are bounded

by certain orders.

Lemma B.6 Under Assumption (A4), if N'?|A| — oo as N — oo, then there exist constants

0 < ¢, < C, < oo, such that with probability approaching 1 as N — oo, n — 00,

Pn
CplA’2 S )\min(FN,p) S )\max(FN,P> S Cp <‘A‘2 + TLN‘AP) .

Specifically, when p,, = 0, one has co|A* < Auin(Tno) < Amax(Tvo) < Col A2

Proof. For any vector 6 with the same dimension as that of B(z), there exists h € S} (A) such that
h(z) =BT (2)8 = BT (z)y, where v = Q.6 and

N
0'Tn,0 = 7 S {B(=)B ()17 + Ly (B, Buelmawenty = 11l + L 12

Jj=1
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By (B.2) and Lemma B.

p—

L one has |||2|%/]|7]|> — 1| < wy and

(1 —wy)|APIYIP < (1= ww)lIl* < 121G = (1 +wn)lAl* < O +wy) | AP]ly]*

Thus, Apin(Tn,,) > ¢,|A* for some positive constant c,,.
On the other hand, similar as in the supplement of Lai and Wang (2013), using the Markov’s
inequality and Lemma B.1} one has ||2]|z < C|A|~*[|A]|*> < C|A|72||y]||*. Thus, the largest eigen-

value of the matrix I'y , in satisfies that

1 P
< 2, Pn < 2 -
>\maX<FN,p) —C{(1+WN)|A| +TLN|A|2} <G (|A| +nN|A|2> 7

for some positive constant C,. ®

Using Iy, defined in (B.5]), the solution of the penalized regression problem (3)) is given by

Next we define

N n N 00
~ 1 - N 1 _
0, = ]‘_‘N}pﬁ > B(zj)u(z)), 0, = ]‘_‘N}pn_N > B(z)> &ndul(z)),
j=1 i=1 j=1 k=1
. 1 M
05 = F]_\f,lpm : Z B(Zj)O'(Zj)Eij. (B6)

Note that, the BPS estimator {1 in Section [2.1|can be written as 1(z) = [1°(z) + 7)(z) + £(2), where

~

i°(z) = B(2)76,, 7(z) =B(2)70,, &z)=B(2)76., (B.7)
Therefore,
fi(z) = p(z) = 1°(z) — p(z) +0(z) + €(2). (B.8)
Lemma B.7 Suppose Assumptions (A2)—(A4) hold and N*/?|\| — oo as N — oo, then ||§,7||2 =
Op(n~'| A7) and |82 = Op(n™' N~ A ).
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Proof. Note that
n N

— F”pni\f Z Z B(z)) Z Eindr(2;)-

=1 j=1

By Lemma B.6 one has
||077||2 QNQ‘A|4 Z Z B 2:] TB Z] Z gzk’gbk Zj gz’k’gbk’(zj)
i,i'=1j,57'=1 k,k'=
Note that by Assumption (A2), for any ¢ = 4/, j, j/, one has
E{ﬁ<zj ) "Bz Z Eindn (1) indw (2 } = Bu(2))Bu(2))Y Bl bi(2))pw (257) =
o,k = me e k!
Next, for any i, because B(z;) B(z;) = B(z;)TQ2QJ B(2;/) and the eigenvalues of Q,Q] are
either O or 1,

% Y>> E {E(zj)TE(zj,) 3 gikqak(zj)gik,qsk,(zj,)}

j=1 j'=1 kk'=

N N
< %ZZE{B z;) ' B(z; Z§k¢k ;) 0k (250 >}
=1 j/=1
! lj N N
=) WZZB’“ zj)Gy (25, z5)-
meM Jj=1j=1

Assumption (A4) and Lemma imply that
1 / !/ !/
3 > Bu(2))Bu(25)Gy(z, 2j0) = . Gy(z,2") By (2) By (2)dzdz
< {1+ O(NT2AP)} = o(Al").
Thus,

%ZZE {ﬁ(zj)TE(zj’) Z fikébk(zj)&k'%(zj/)} < O|AP

j=1 j'=1 k=1

Therefore, E||6,]> < C(n Y| A]72).
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Similarly, by the definition of 55 in and Lemma one has
1 N
”9 I = n2N2|A‘4 Z Z (25) TB(ZJ) (zj)o(zj)eiien;.
i,i'=17,7'=1
Note that for any i # ¢/, j, j', E(g;jei;7) = 0 and for any ¢, j # j', E(g;;€i5) = 0. Because the
eigenvalues of Q,Q, are either 0 or 1, by Assumption (A2) and Lemma for any ¢,

B{ % 3 Bz) Blzo(z)o(zy)eer;

33'=1

N
SCZ%ZBSI(,Z]‘ z] <C Z
emM

meM j=1

H/—’

1 N
_NZ (2;) Q2Q; B(2,)0°(2))

(z)dz{1 + O(N~2AI™)} = 0(1).

\

Therefore,

1
nN|A[EN

E|6.]? = ZB z;) " B(z,)0%(z;) < C(nN) 1A

The conclusion of the lemma follows. m

Next, the following lemmas give the uniform convergence rate of 7i(z) to u(z). We start by
introducing some notations for the specific situation when there is no penalty in the regression
problem, i.e., p, = 0. Denote Iy = + Zjvzl ]§(zj)]~3T(zj). Let{, = 23" &, forany k > 1,

andg; =+ > "' ¢ forany j =1,..., N, and denote

N

- 1 ~
6, = FN}ON Z B(z;)u(z;),
j=1

" 1 n N N 1 N &k .

6, = FJ_VlOn_N Z Z B(z;)n:(z;) FNION Z B(z;)&.x0x(25)
i=1 j=1 Jj=1 k=1

5 1 n N 5 1 N _

0. = FJ:flon_ Z Z B(z;)o(z;)ei; = F&loﬁ Z B(z;)o(z;)z,
i=1 j=1 7j=1

1°(z) = B(2)70,, 7j(z) = B(2)"8,, £(z) = B(2)"6.. (B.9)
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Lemma B.8 Under Assumptions (Al) and (A4), if N'/?|A| — oo as N — oo, the functions [i°(z)

satisfy [~ lle = O { fiplilace + (14 i ) 1A s o}

Proof. Note that || — [°l|oc < |12 = 1°l|oe + [|12° = 1°|| so» Where 71 is given in (B.9).
According to Proposition 1 in|Lai and Wang|(2013), ||72° — pt]|ec < C|A|* | 4t]d41,00- Thus we only

need to show the order of ||1° — [1°|| oo

By the definition of Sy in (B.3), one has

1147 = 1%l oe < Sl = 1 (B.10)

Note that the penalized spline 2° of p is characterized by the orthogonality relation: nN {(u —
1, 9)n = pa(®, g)e, forallg € Sj(A), while 11° is characterized by (1 — 1%, g)n = 0, for
all g € S;(4). Combining the two orthogonality relations, one has nN (i° — 11°, g) v = pn (1%, 9)s,

forall g € Sj(A). Inserting g = 1i° — pu° yields that

o

N (i = 71 = palii®s 7 — i = pu { (% %) — %12} = 0.

Thus, by Cauchy-Schwarz inequality, ||°|2 < (2% a%e < [|°/|e]|z°|le, which implies that
172°||¢ < ||72°||e. Meanwhile, by the definition of Sy,
nN|E° = 2% < pal @Ml = 2lle < paSNIElellZ” = 20l < puSnllEllellie” — 7% -

Therefore,

172 = Bl < pu(nN) S I e (B.11)

Combining (B.10) and (B.11) yields that ||i® — i°||oc < Sn||72° — 2°|lx < pn(nN) " SN SN |70 ¢

By Lemma |[B.2] one has

1l = Co{luloce + D IVEVE( = 1)} < Callplooo + A1 ptls1,00).

a1t+as=2
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1t follows |71 — 7i°l|oe = pn(nN) ' SnSnCo(|ptlae0 + |A]* |t as1,00)- By Lemma[B.5] one has

Sy = Op <|A‘_1) and §N =0Op (|A|_2) Thus,

Pn -
7 = 0l = Or { sl + 1A ik o)}

Hence, [[3° — ullse < G lunoe + Op {tis (Il + 181 s o) }. LemmalB.glis

established. m

Lemma B.9 Under Assumptions (A2)—(A4), if N'?|A| — oo as N — oo and n*/(*+%2) <«
nY2N2|IA|7L then ||E]|, = Op{(nN)~Y2(logn)Y?|A|71}. In addition, if Assumption (A6)

holds, then ||7]||o = Op{n~'?(logn)'/?}.

Proof. Note thate(z) = )~ §E7m§m(z) for some coefficients gg,m, so the order of £(z) is related

to that of @;m. In fact

n N T
_ 1
. = | BT [—sz (e
=1 j=1 4 meM|| oo
1 n N
-2
< C|A| 215%(, n_N;; o(zj)ei)

almost surely, where 55 = (gavm)me i With M being an index set of the transformed Bernstein basis

polynomials B,,(z). Next we show that with probability 1

ZZB z] z] Eij

11]1

= O {(logn)"?|Al/(nN)"/?}. (B.12)

maX
meM

To prove (B.12), let 7; = 7, = Zﬁvzl ém(zj)a(zj)sij. We decompose the random variable 7;

into a truncated part and a tail part,

N N
1 ~ 1 ~
T = — > Bu(z)o(z)eil {|ei] > Ln}, /5 = WZBm(Zj)U(Zj)%[{\&H < Lo} — i
j=1 Jj=1
1 &~
it = N > Bu(zj)0(2))E [ {|ei;] < Ln}],

15



where L,, = n®, and nlt/(4+02) <L nt K A/ Nlogn‘A‘ L

It is straightforward to verify that u/" = O(n~'L;?|/A|?). Next we show that tail part vanishes

almost surely. Note that

[e’s) E |€ J |4+(52 (4+5
Plle,:| > L,} < “ < s L e . B.13
; {l j’ } ; L4+52 Z ( )
By Borel Cantelli lemma, one has |§ i1 11 = Ous. (n_k) , forany £ > 0. Next, note that

E (TlL;) = 0, one has

Var(r/y) = ngivg Zéfn(zj)ffz(zj) {E (¢})) — B[}, I{les;| > Lo} — (E eI {less| < La})*}

Jj=1

= n2N"Y A

Using the independence of 75", i = 1,...,n, one has Var (31, 7/5') < (nN) ™' [A]

Now Minkowski’s inequality implies that

N
1 k

E}TZQ = ‘_NZ z] 6131{|€U|<L } Mzn

J:

1 N k—2 1 N 2
< {W ZBm(zj)auj)Ln} —NZ w(2))0(2))e5 1 {leg] < La}| +(ul") ]
AL,
2 (BEEY g s
o

Thus, E |7/3 < A‘Q) k\E|73'|* < oo with the Cramer constant ¢* = Cn~ ' L,,| A[%.
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By the Bernstein inequality, for any large enough 6 > 0,

logn logn
P( NZZB 2,)0(2))e;| 2 610 )— ( AARRIIN N)
=1 j=1
<5 52’A|210gn ) 52|A‘210gn
= Z2€xXp = 2exp
AVar (37, 7i5) + 2c76| Ay /282 e\ A2 4+ 2C L,n 18| A3 /182
2
—0°1
= 2exp 0" logn <2n73,

de + 2C L, 0| A4/ HHoen

given that L,, = n® = o (‘ /legn|A]_1>. Hence
00 n N
ZP (max

meM

ZZBm z;)0(2;5)€4;

171] 1

> 6|A| 10g”> oA 2Zn—3 < 0,

for such ¢ > 0. Thus, Borel-Cantelli’s lemma implies (B.12).

Similarly, for 7(z) = > Oy.m Bm (z) one has

ZZm z)B

11]1

17l < CIA[ 2maX

almost surely. Then we can show that with probability 1

nNZZnZ ZJ

=1 j=1

maX

=0 {n""?|A[(logn)'/?}

by decomposing mean 0 random variable u; = u;,, = + Z;VZI 1i(2;) Bm(2;) into

00 1 N "

uf’{ — Z {W Z Bm(zj)qﬁk(zj)} Ed {|&ik| > Thn},
k=1 Jj=1
00 1 N

uzg = Z {n_NZBm Zj )i ( Zj }fzk[{’fm‘ <T.}— ,Uz )
k=1 =1
00 1 JN

p = Z {n_NZBm Zj) (2, }E Cird {|&ir| < T},
k=1 Jj=1

where T,, = n® and n'/*%) < n® < (n/logn)"/2.
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Using Borel Cantelli lemma and similar method in (B.13]), we can show that tail part vanishes

n Tn

almost surely, i.e., i Uit

= Oy (n77), forany r > 0. As Eu; = 0, then it is straightforward
to verify that p" = —Fujt = O(n™'T, 2| A?).

Next, notice that Euz 5 = 0. Then, one has

Var (ug:’z‘) N {Z Z By ( z] m(2j1) O (21) or(2 )}

k=1 j=1j'=1

x { B(€}) - B|&. gl > T} — (Blead {I&xl < T.})*} = 02Al),

which indicates Var (37, uj3) = n~' A%
Similarly, we can show that there exists some constant C', such that for any » > 3, we have

E|u?§ < (C|APT,/n) ™ QT'Elu 2. Using Bernstein inequality, one has

|

Hence,

i U < 27173.

i=1

52
> 5n1/2\A\2(10gn)1/2} < 2exp{ 0" logn }

4¢ + 26CT, (logn)'/2n=1/2

Zu

for such § > 0. Thus, Borel-Cantelli’s lemma implies that ||7j||, = Op{n~"?(logn)'/?}. m

ZP{maX

o meM

> on 12| A (logn)l/Q} < C|A|IT 2271 < 00

n=1

Lemma B.10 Under Assumptions (A2)—(A4), one has

el = 0p { LBt b il = 0p [ LB
o0 N|A| | ndN32ALS [ o0 P NG n32N|AP [

Proof. We only show the infinity norm of €. The conclusion of ||7]|», follows similarly. Note that the
penalized spline € of ¢ is characterized by the orthogonality relations: nN (¢ — &, ) y = pn (€, 9) &>
for all g € Sj(A). In particular, € is characterized by (¢ — €, g), = 0, for all g € Sj(A). Inserting
g = 5= Eyield that N || = 2% = pu (85— D5 = pul(E De — [Elle).
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It follows, by Cauchy-Schwarz inequality, that ||2]|7 < (€,8), < ||&]l¢ ||Z]|¢ , which implies that

I€ll¢ < ||€]l¢- Thus, by Cauchy-Schwarz inequality and the definition of Sy in , one has
nN [|E—Elly < pullEllg 1€~ Elle < Snpa lEll IIE—Elly-
Hence, ||€ — &]|y < (nN)"'Snp, ||€]|¢. Using , we obtain
€= Elloe < Sy lIE—Elly < (nN) " SwSwpn lEle -
Finally, we use Markov’s inequality to get ||£]|; < C1|A|72||€]|. It therefore follows that

Pn
[Elloe < [IEllo0 + 1€ = Elloo < [Elloo + SNSN‘AIPHE‘HLQ-

According to Lemmas [B.5| [B.7| and [B.9| one has [|£]c = Op {(nN)""/?(logn)"/?|A|™'} and

o) — (logn /2 n
JE112, = 1AR18:]12 = Op(n~ N~ A|2). Hence, 6], = Op { o 4 on 1w

< |11 = pllz, +

17|z, + ||I]| .- By Lemmas[B.1]and B.7} one has
17ll7, = [AP[18,]1* = Op(n™h), E7, < IAPI6:]* = Op(n™ N7} AIT?),

and the asymptotic order of ||i® — 1|, is the same as ||1i° — p|| . By Lemmas|B.8|and B.10}

~o0 Pn d+1
- oo — 00 1 A oo (
17 = ke = O { i+ (1 L2 ) A o

L (log n)/? P _ (logn)'/? P
17lee = Op{ NG + BEN|AP ; [[Ellee = Op N + n32N32| A6 [

Thus, by Assumption (A5), ||7i — jt]|ec = 0p{(n"'log(n))/?} and ||i — p|z, = Op(n~Y?). m

B.4  Simultaneous Confidence Bands

B.4.1 Proof of Theorem

Lemma B.11 (Lemma A.5,[Cao et al| (2012)) Let &, = 13" &rands; = L3770 ;5 If As-
sumption (A2) holds, then there exists some constant Cg > 0 such that max<y<, I ]E o 7.k7§| <
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CpnP~t, and maxi<j<n [E — Zj.| = Oqs (1), for some 3 € (0,1/2), where {Ziké};g,kﬂ
and {Zijﬁ}?;]{j:l are iid N(0,1) variables and Z ¢ = %Z?:l Zike, Zoje = %Z?:l Zije, 1 <

J< N, 1<k<rk
Lemma B.12 Let7j(z) = 1 30 ni(2) = Yo, £40k(2), then under Assumptions (A2)~(A6), for

1(z) defined in (@), one has n'/?||7) — M| = 0p(1). In addition, as N — oo, n — o,

P {supnl/QGn(z,z)_1/2|ﬁ(z)| < Q1—a} —1—aq,

z€eQ

P {nl/an(z,z)_1/2|ﬁ(z)| < Zicapp} = 1—a, forany z € Q.
Proof. Denote (;(z) = Z.4edr(2), k=1,...,r, and define

K —1/2 K K
((z) = n'/? {Z ¢i(Z)} > Gl(z) =n"2Gy(z,2) Y Gi(2),

k=1 k=1

then {((z),z € Q} is a Gaussian random field with mean 0, variance 1 and covariance function

Cov {C(z), Z(Z')} — G, (z,2)72G, (2, 2/)G, (2, 2')"1/2. Therefore, {(z) has the same distribu-

tion as ((z), z € (.

Next, let ak(z) = E(z)TFJ_\,}p% Zjvzl ]§(zj)¢k(zj). Similar to the proof for Lemma [B.9, by

([ 6k]lo0 < C|A|2

@)

Lemma B. ]lv Zjvzl ﬁ(%)‘?k(%’)

< C1]|¢k||oo- According to Lemma [B.8]

" Pn Pn 1
— w0 =0pq ———— 00 1 AT stloo -
pr — ol P {nN|A]3|¢k|2’ + ( + nN‘Alg)) | AP k541, }
Therefore, by Assumptions (A4)—(A6), one has

B{nt2sup Gy (2, 2) 2 fi(z) = (2)|} = B [0 sup Gy (2, 2) /2|3 Efon(z) - c?sk(z)}u
k=1

20 z€Q
<n'2G(2,2) 2 (Z 6% — SellBIEL +C 3 nmumE\EkQ -
k=1 k=kKkn+1

20



Thus,
E{n'sup Gy (2, 2)"2fii() - 7(2)] }
z€Q
SV Pn 41
TATI A3 I+ A s+1,00
Y- {faplone + (1 g ) 161 o |

x BlExl+ Y BlEillonllc

k=rn+1
Pn S Pr
< 00 1 AS—’— s [ee] [e) -
—Cz{nNm,sZk:kah +( * N|A|5)§:| 16kl +k§ﬁn+jl||¢k|| } o(1).

Hence, n'/2sup, ., G, (2, 2)"/2|7j(z) =7(z)| = op(1). Under Assumption (A3), it follows that

17 = 7llee = 0p(n~"/?).

By Lemma B.11] for some 8 € (0,1/2),

> (Zie—E)en(2)

k=1

}

< O3 64l Zore — £l < TP 23" [
k=1 k=1

{sup ‘C —n?G, (2, 2) V(2 )‘ } =F {n1/2 sup G (z, z)7V/?

z€eQ zEQ

Thus, by Assumption (A6), sup, . ’g(z) —n'2G,(2z,2)" Yy ) = op(1). Finally, note that
P {supzeg ‘g(z)‘ < Ch—a} = 1 — . The lemma is proved. m

Proof of Theorem Note that “oracle” estimator 1(z) = u(z) + 7(z) implies that 1 — 1 =

[’ — pu+1n—17+ & By Lemmas B.10, Assumptions (A5) and (A6),

~o0 _ Pn d+1 _ —-1/2
- 0o — 00 1 A 00 - 9
17 = bl = O { =il b (1 ) 180 s = onl7)

(logn)'/? Pn 12
[€]lee = Op { \/W|A| + n32N3/2| A6 = op(n / )-

Thus, according to Lemma [B.12] the theorem is established. m
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B.4.2 Proof of Theorem

According to , for H = 1,2, we can decompose the unpenalized spline estimator fiy(-) as
tu(z) = 1% (z) + Nu(z) + €u(z). Therefore, asymptotic error (fiy — fia) — (11 — p2) can be
decomposed into three components: (1f — 1§ — p1 + pia) + (1 — 72) + (€1 — €3). Similar as the
proof of Theorem 2, the first and third components of the decomposition can be proved to have /n
asymptotic efficiency. Here we focus on the second component.

By Lemma one can find i.i.d Zpe ~ N (0,1),i = 1,...,ng such that max;<x<,, E\ZHk—
7H~k,£| < CynP~! and 7H-k,5 = n;ll Yo Zpike. Likewise, for the white noise sequence
{emij,i > 1}, one can also find iid Zp,. ~ N (0,1),% = 1,...,ny such that max;<j<n [Ep.; —
Zrjel = Ous(nP71), where 8 € (0,1/2). Let V (z,2') = G,1(2,2') + 7G,2(2, 2'), where
T = lim,, o, 11/n2, and define

K K2

W(z)=n?V (z,z)l/z{ 1 Zrkebrn(z) —

k=1 k=1

72~k,§¢2k(z)} .
Then, for any z € €2, W(z) is Gaussian with mean 0 and variance 1, and the covariance
E {W(z)W(z')} —V (2,2) 2V (2,2)V (2, 2) 2.

That is, the distribution of W(z), z € Q) and the distribution of W (z), z € () are identical. Similarly,

for H = 1,2, let gng(z) = ﬁH(z)TI‘I}}N,p% Zjvzl ﬁH(zj)¢Hk(zj). Note that

B 1 n KH _ R KH _ R
M (z) = n an(Z) = ZfH-kasz(z)a i (z) = ZfH-k¢Hk(z)-
i=1 k=1 k=1
And we have shown in Lemma that n}fHﬁH — T lloo = 0p(1).

Lemma B.13 If Assumptions (Al)—(A6), are modified for each group accordingly, then one has as
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N — 00, ny — 00,

P {sup ”}/QV(ZaZ)_l/le(z) —Ty(2)| < Q12,a} —1-a

z€Q

Proof. Note that, by similar discussion in Lemma B.12]

E Sup W(z) —n?V (2,2)* {7 (2) — y(2)} ‘]
=n,’E sup V (2,2) 2D (Zine — E0)0(2) = D (Zone — Ex)dulz)| | = 0(1).
=€ k=1 k=1

Therefore, one has sup,.q ‘W(z) — n}ﬂV (z,2) " {7,(2) —ﬁQ(z)}’ = op(1). Observe that

P {supzeg |W(z)| < Q12,a} =1—aq,forany a € (0,1),as N — 00, ny — 00

z€Q

p {supni/2v<z, 22 7, (2) — (=) < q} S1-a,

P LYV (2,22 71 (2) = =) < 21magp} > 1 -0y forall z€ 0

The conclusion of the lemma is proved. m
B.5 Convergence of the Covariance Estimator

Without loss of generality, we prove Theorem [2|based on the unpenalized bivariate spline estimator.
Using similar arguments in Section we can easily extend this proof to the penalized case.
Based on the estimated residuals R;j =Y, —u(z;),i=1,...,n,5 =1,...,N, denote Ez =
. N 3 T 2 . . . . . .
argming > ;- {Rij — B*(z,) Q;,@} , where B*(z) is the set of bivariate spline basis functions
used to estimate 7;(2), and the transpose of H* admits the following QR decomposition: H*" =

Q'R* = (Q; Q3) (gl) Then, the bivariate spline estimator of 7;(z) can be written as
mi(z) = B*(2)TQi8, = B*(2) 3, (B.14)
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LetI™y = + Zj\;l B*(z;)B*(2,)7, then one has
N ~
=Ty’ ZB* zj) Ry =Ty ZB*(ZJ‘){Yz‘j—ﬁ(Zj)}
N3

- r;‘v—% S B (a5) )~ e} + (25) + (250

Next we define 7(z) = B*(2) T 'L Z]  B*(z;)){u(z,) — fi(z;)}, and

m(z) =B'(2) Ty ZZB* z)mi(2)), Ei(z) = B(2) T ZZB* zj)o(25)ei;-

’Lljl 1—1]1

Then, the estimation error d;(z) = 7;(z) — n;(z) in (B.14) can be decomposed as the following:
di(z) = 7(2) +1i(2) — ni(2) + &(2).
For any z, 2’ € ), denote én(z, z') =n"t 3" ni(2)ni(2). The following lemma shows the

uniform convergence of CN;'n(z, z') to G, (2, 2') in probability over all (z, 2) € Q2.

Lemma B.14 (Lemma B.18,Yu et al.|(2019)) Under Assumptions (A1)~(A7), sup, ., eq> |én(z, z')—

Gy (2. 2')| = Opfn~"/2(logn) 2},

Proof of Theorem 2] (i). Note that

~

sup |Gy(2,2) — Gy(2,2)| < sup {|G,(2,2) — Gy(2,2)| +|G,(2.2') — Gy(z,2)[}

(2,2")eQ? (2,2")eQ?

where sup(, . cq: G,(2,2') — Gy(2, 2')] = op(1) according to Lemma B.14] and

sup |Gz, 7)) = Gy(2,2))| < sup e sup 00> i(2)di(2)
(2,2")eQ? ! ! (2,2")eQ? Z (z z')eq? ;
sup d;(
(z z’)692 Z

Similar to the proof of |Yu et al. (2019), one can show that

nzd nZTh z +n Zm i
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(z,2")eQ?




The desired result is established. m

Proof of Theorem [2| (ii). = Denote Ayy(z) = f(@ — G)(z,2)¢Yr(2")dz". By Theorem
(), |G — Glle = op(1). Thus, for any k& > 1, [|Atylls = op(1). According to Hall
and Hosseini-Nasab| (2006), let A, = [[[(G(z, 2") — G(z, 2'))2dzdz]"/2, then e — O =
> ek Ak = X)) A, )5 + O(||All3). Tt follows from Bessel’s inequality that s — pllo <

C(|Av||2, + O(]|Al13)) = op(1). By (2.9) in Hall and Hosseini-Nasab (2006),
M= x = [[(@ =6 i) dzds + Ol anlB).

Thus, using Theorem(i), one has ]Xk — M| = op(1),Vk > 1.
Next, note that
Nen(2) — Mdhn(2) = / Gz, 2')Bu(2)d2 — / Gz, 2 (=) d='
- / (@ - G)(2.2)(B(2') — ul#))d=' + / (@ — C)(z. 2 ) (2') 2’

- / G(z, 2) {p(2) — ¥i(2')}dz",
By Cauchy-Schwarz inequality and Theorem 2] (i), for all z € (2,

[ 6 - wna))i < ( e z')dz') 1~ tull = on(D),
/ (G - G)(2,2)((2) — ¥u(2))d2 < |G — Glluclltr — ill2 = 0p(1),
@ -6zt < 16 = Gl = or(1).
Therefore, || Axth — Mt lloo = 0p (1), and Agl|tr, — velloo < [Nkt — Mt oo + 1M — Al [ Dkl o0 =

op(1). It follows that ||¢ — 1y ||ec = op(1). m
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Lower SCC Upper SCC

=)

Triangulation

Figure Al: SCCs for quadratic function with n = 50 and a = 0.01.
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Lower SCC Upper SCC

=)

Triangulation

Figure A2: SCCs for quadratic function with n = 100 and o = 0.01.

28




Lower SCC Upper SCC
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Triangulation

Figure A3: SCCs for quadratic function with n = 200 and o = 0.01.
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Lower SCC Upper SCC

=)

Triangulation

Figure A4: SCCs for bump function with n = 50 and o = 0.01.
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Lower SCC Upper SCC

=)

Triangulation

Figure AS: SCCs for cubic function with n = 50 and o = 0.01.
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Triangulation Lower SCC Upper SCC
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Figure A6: SCCs for sine function with n = 50 and o = 0.01.

Figure A7: True mean function: (a) image map and (b) surface plot.
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(a) Bonferroni  (b) Cluster (0.1) (b) Cluster (0.05) (c) Cluster (0.01) (d) SCC

Figure A8: Signal discovery for one typical replication. Blue area shows the pixels correctly de-
tected; yellow area shows the false positive pixels; and green area shows the false negative pixels.
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Table Al: Empirical coverage rates of the SCCs (N = 3682).

a—010 a—0.05 a—001
n Al AZ A3 Al AQ Ad A1 AQ Ad
w(z) =20{(z1 — 0.5)? + (25 — 0.5)?}

0871 0876 0876 0937 0938 0937 0982 0984 0.984
S0 (0.643) (0.644) (0.644) (0.731) (0.732) (0.733) (0.902) (0.903) (0.903)
0885 0.881 0882 0939 0942 0941 0979 0979  0.979
100 0.460) (0.458) (0.458) (0.522) (0.521) (0.521) (0.643) (0.641) (0.642)
0901 0902 0883 0949 0949 0941 0987 0988  0.987
2000 0330) (0.331) (0.326) (0.374) (0.375) (0.370) (0.460) (0.461) (0.457)
w(z) =5exp[—15{(z1 — 0.5)* + (22 — 0.5)*}] + 0.5
0868 0871 0871 0934 0934 0934 0982 098 00982
50 (0.643) (0.644) (0.644) (0.731) (0.732) (0.733) (0.902) (0.903) (0.903)
0.896  0.893 0.880 0945 0944 0938 0980 0981 0.979
100 (0.465) (0.464) (0.458) (0.527) (0.526) (0.521) (0.648) (0.647) (0.642)
0901 0.899 0.898 0947 0947 0949 0987 0988  0.988
2000 0.330) (0.331) (0.331) (0.374) (0.375) (0.376) (0.460) (0.461) (0.462)
w(z) =32(—z3 +23) +24
0860 0870 0869 0927 0931 0929 0985 0987 00987
50 0.628) (0.628) (0.629) (0.716) (0.716) (0.718) (0.887) (0.887) (0.889)
0892 0.894 0895 0942 0947 0947 0982 0983  0.983
100 (0.451) (0.451) (0.452) (0.514) (0.514) (0.515) (0.635) (0.635) (0.635)
0899 0902 0.898 0942 0947 0949 0988 0988  0.989
2000 0320) (0.320) (0.320) (0.364) (0.365) (0.365) (0.451) (0.451) (0.451)
wu(z) = —10[sin{5m(z; + 0.22)} — sin{57 (22 — 0.18)}] + 2.8
0885 0892 0867 0940 0943 0928 0983 0985 00982
500 0.703) (0.717) (0.719) (0.790) (0.804) (0.807) (0.959) (0.973) (0.977)
0.894 0.890 0.883 0943 0946 0934 0979 0981 0977
100 0.500) (0.509) (0.516) (0.562) (0.571) (0.578) (0.681) (0.691) (0.699)
0.899 0.899 0.892 0946 0947 0946 0988 0988  0.987
2000 (0354) (0.361) (0.368) (0.398) (0.405) (0.412) (0.483) (0.490) (0.497)
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Table A2: Type I error and empirical power of two-sample test

)
n = 0.00 0.10 020 030 040 050 060 0.70 0.80
a=0.10
49 0.110 0.204 0.374 0.620 0.842 0.974 1.000 1.000 1.000
50 80 0.102 0.194 0.366 0.612 0.844 0.972 1.000 1.000 1.000
144 0.101 0.192 0.367 0.616 0.844 0.976 1.000 1.000 1.000
49 0.108 0.249 0.560 0.886 0.999 1.000 1.000 1.000 1.000
100 80 0.106 0.242 0.549 0.884 1.000 1.000 1.000 1.000 1.000
144 0.103 0.247 0.559 0.886 0.999 1.000 1.000 1.000 1.000
49 0.087 0.334 0.848 1.000 1.000 1.000 1.000 1.000 1.000
200 80 0.085 0.319 0.836 1.000 1.000 1.000 1.000 1.000 1.000
144 0.082 0.325 0.844 1.000 1.000 1.000 1.000 1.000 1.000
a = 0.05
49 0.053 0.110 0.250 0.474 0.700 0.900 0.992 1.000 1.000
50 80 0.049 0.101 0.244 0.467 0.692 0.894 0.988 1.000 1.000
144 0.051 0.107 0.252 0.472 0.699 0.899 0.989 1.000 1.000
49 0.058 0.153 0.414 0.779 0.973 1.000 1.000 1.000 1.000
100 80 0.056 0.150 0.405 0.766 0.966 1.000 1.000 1.000 1.000
144 0.056 0.151 0.415 0.770 0.969 1.000 1.000 1.000 1.000
49 0.037 0.217 0.697 0.992 1.000 1.000 1.000 1.000 1.000
200 80 0.037 0.211 0.685 0.992 1.000 1.000 1.000 1.000 1.000
144 0.035 0.217 0.696 0.992 1.000 1.000 1.000 1.000 1.000
a=0.01
49 0.014 0.026 0.088 0.241 0.462 0.692 0.882 0.982 1.000
50 80 0.012 0.025 0.087 0.228 0.453 0.677 0.875 0.977 1.000
144  0.010 0.027 0.089 0.235 0.463 0.690 0.882 0.983 1.000
49 0.013 0.032 0.181 0.509 0.825 0.976 1.000 1.000 1.000
100 80 0.012 0.032 0.172 0.486 0.817 0.978 0.999 1.000 1.000
144 0.012 0.032 0.186 0.509 0.828 0.979 0.999 1.000 1.000
49 0.009 0.071 0.417 0.890 0.999 1.000 1.000 1.000 1.000
200 80 0.009 0.065 0.402 0.884 0.998 1.000 1.000 1.000 1.000
144 0.009 0.068 0.420 0.884 0.998 1.000 1.000 1.000 1.000
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Table A3: FPRs, FNRs and FDRs for different methods.

o Method
n Criterion “ghferroni Cluster (0.10) Cluster (0.05) Cluster (0.01)  SCC
FPR 0.0000 0.0472 0.0233 0.0067 0.0090
100 ENR 0.3158 0.1288 0.1567 0.2071 0.1868
FDR 0.0000 0.0876 0.0449 0.0142 0.0169
FPR 0.0000 0.0534 0.0260 0.0044 0.0043
200 FNR 0.2497 0.0836 0.1051 0.1485 0.1377
FDR 0.0000 0.0893 0.0478 0.0081 0.0062
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