Supporting Information for

Seeing is Believing: Experimental Spin States from Machine Learning Model Structure Predictions

Michael G. Taylor^{1,#}, Tzuhsiung Yang^{1,#}, Sean Lin^{1,#}, Aditya Nandy^{1,2}, Jon Paul Janet¹, Chenru Duan^{1,2}, and Heather J. Kulik^{1,*}

¹Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

²Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

[#]These authors contributed equally.

Contents

Table S1 CSD structural properties for Fe(II)/Fe(III) spectrochemical homoleptics	Page S2
Figure S1 Fe(III) homoleptic complex spin splitting and structure vs. CSD	Page S2
Table S2 Hyperparameters and architecture of bond length ANN	Page S3
Text S1 Detailed description of equatorial plane assignment	Page S4
Figure S2 Degree of distortion in the eq. plane for all unique complexes	Page S5
Figure S3 Degree of distortion in the eq. plane for all ANN-compatible complexes	Page S5
Figure S4 Histogram of molecular weights for all unique complexes	Page S6
Figure S5 Histogram of molecular weights for all ANN-compatible complexes	Page S6
Table S3 Overall number of element types and frequency in unique complexes	Page S7
Table S4 Equatorial plane ligand type combinations in unique complexes	Page S8
Table S5 Axial plane ligand type combinations in unique complexes	Page S9
Table S6 Overall eq./ax. plane element type combinations in unique complexes	Page S10
Figure S6 Histograms of Fe(II)-L distances for identical coordinating atom cases	Page S11
Figure S7 Histograms of Fe(III)-L distances for identical coordinating atom cases	Page S11
Table S7 Covalent radii used for relative distance assignments	Page S12
Figure S8 Histogram of Fe-X bond lengths for all unique Fe(II) complexes	Page S13
Figure S9 Histogram of Fe-X bond lengths for all unique Fe(III) complexes	Page S14
Figure S10 Histogram of Fe-X bond lengths for ANN-compatible Fe(II) complexes	Page S15
Figure S11 Histogram of Fe-X bond lengths for ANN-compatible Fe(III) complexes	Page S16
Figure S12 Histograms of Fe(III)-L rel. dist. for HE cases with small data Fe(II)	Page S17
Table S8 Eq./ax. plane element type combinations for ANN-compatible complexes	Page S18
Table S9 Pairs of element types for subset of ANN-compatible complexes	Page S19
Figure S13 2D histogram of Fe-N/Fe-X relative distances in Fe(III) complexes	Page S20
Figure S14 Degree of distortion overall for all unique complexes	Page S21
Figure S15 Degree of distortion overall for all ANN-compatible complexes	Page S21
Figure S16 Degree of distortion in the ax. plane for all unique complexes	Page S22
Figure S17 Degree of distortion in the ax. plane for all ANN-compatible complexes	Page S22
Table S10 Spin state classification results on the AC set	Page S23
Table S11 Spin state classification of HE subset by coordinating element	Page S23
Table S12 Number of confident spin state assignments in NX set (X=Cl, O, S)	Page S24
Table S13 SCO complex predictions and properties	Page S25
References	Page S26

Table S1. Characteristics of spectrochemical series homoleptic complexes that were obtained from the CSD UO set for Fe(II) and Fe(III) complexes: the bond length (in Å) of the CSD complex, the name of the complex assigned during deposit, the nominal ligand, the molecular weight used to search for the complex, and the CSD ID of the complex are all shown. In several cases, no available experimental complex could be found, as indicated by --.

		Fe(II)			Fe(III)						
	MW	Name	CSD ID	Value	Name	CSD ID	Value				
H2O	163.935	hexakis(aqua)-iron(ii)	AMAVOB	2.12	hexaaqua-iron(iii)	MEWZAP	2.00				
acac	356.196										
NCS-	404.313										
NH3	158.031	hexaammine-iron(ii)	CACDIW	2.23							
phen	596.475	tris(1,10-Phenanthroline)-iron(ii)	AFIRAJ	1.98	tris(1,10-Phenanthroline-N,N')-iron(iii)	BIPGEN	1.98				
CN-	211.953	hexacyano-iron(ii)	BAMBAV	1.91	hexacyano-iron(iii)	XESMEQ	1.93				
CO	223.905										

Figure S1. Properties of homoleptic, octahedral mononuclear Fe(III) transition metal complexes with ligands ordered by their field strength in the spectrochemical series. Properties shown are evaluated with hybrid DFT (B3LYP, $a_{\rm HF} = 0.2$, sold lines and circle symbols) along with the range of properties evaluated at $a_{\rm HF} = 0.1$ -0.3 shown as a translucent shaded region. The high-spin to low-spin adiabatic spin splitting energy ($\Delta E_{\rm H-L}$, in kcal/mol) is shown at top, and the Fe–L bond lengths (in Å) for the high spin (HS) and low spin (LS) states are shown at bottom. Representative Fe–L bond lengths from crystal structures are shown as gray squares as indicated in inset legend, and vertical dotted lines are shown to enable comparison of bond-length-derived spin-state assignment (bottom) and energetic assignment (top).

Table S2. Hyperparameters and details of the RAC-155/ANN bond length model. The RAC-155 ANN hyperparameters were selected with Hyperopt. The hidden ANN topology is the number of nodes in each layer (i.e., 3 hidden layers for the RAC-155 ANN).

Hyperparameter	RAC-155 Bond length ANN
Hidden ANN topology	
	300x300x200
Activation function	tanh
Output layer activation function	linear
Learning rate	0.002
Optimizer	adam
Batch size	64
Epochs	1200
L2 regularization	1e-15
Dropout % (all hidden nodes)	5
Training data	Spin splitting data as per Ref. ¹ and
	Redox data set as per Ref. ²
Hyperparameter optimization	Hyperopt
Data partitioning	80% train (10% used in Hyperopt
	for validation) / 20% test

Text S1. Details of equatorial plane assignment.

The following general rules were used to resolve the equatorial planes in a consistent, repeatable, and physically informed manner accounting for as many as possible combinations of different ligand identity and denticity. First, if the highest denticity ligand in a structure lay entirely in a defined plane (e.g. tetradentate ligand with two *trans*-monodentate ligands), the highest denticity ligand plane was assigned as the equatorial plane. If the highest denticity ligand did not lie entirely in a single plane (e.g. tetradentate ligand with two *cis*-monodentate ligands), but an equatorial plane could be unambiguously assigned by any set of the lower denticity ligands, the equatorial plane was assigned by this unambiguous plane (e.g. the two cismondentate ligands and the tetradentate metal-connecting opposite them). For cases where the lowest denticity ligands did not unambiguously form a plane (e.g. three *fac*-monodentate ligands with a tridentate ligand), the plane with the highest molecular weight was assigned the equatorial plane or, for pentadentate ligands, the four contacts of the pentadentate ligand that form a plane were assigned as the equatorial plane. For hexadentate ligands, the plane that contains the metalconnecting atoms with the highest total molecular weight was assigned as the equatorial plane. For complexes with only monodentate ligands, identical ligands were treated like a single ligand of the denticity equal to the number of each type of identical ligand and were treated following identical rules as above. For cases where monodentate ligands formed binding conformations not physical with higher denticities (e.g. three pairs of *trans*-monodentates, where triple bidentate cases can only form equivalent "cis" conformations) the plane with the highest molecular weight was assigned as the equatorial plane. If, following all of these rules, an identified equatorial plane did not contain metal-connecting atoms of the same elements, the equatorial plane was reassigned to a plane containing only metal-connecting atoms of the same element.

Figure S2. Degree of distortion (i.e., max-min distances) for an equatorial plane selected to minimize the overall equatorial distortion for all 3,627 unique Fe(II) (shown in red) or Fe(III) (shown in green) complexes. A normalized histogram with 0.01 Å bins is shown with axis at left as well as an integrated fraction shown as a dotted line with the same coloring, axis shown at right. A black dashed horizontal line indicates where the fraction reaches 0.9.

Figure S3. Degree of distortion (i.e., max-min distances) in the equatorial plane for 2,201 complexes with equatorial symmetry (i.e., same elements in the equatorial plane), unique Fe(II) (shown in red) or Fe(III) (shown in green) complexes. A normalized histogram with 0.01 Å bins is shown with axis at left as well as an integrated fraction shown as a dotted line with the same coloring, axis shown at right. A black dashed horizontal line indicates where the fraction reaches 0.9.

Figure S4. Molecular weight distribution of all 3,627 unique mononuclear Fe octahedral complexes with Fe(II) shown at top and Fe(III) shown at bottom. The number of data points as well as the mean molecular weight of the data set is shown in inset.

Figure S5. Molecular weight distribution of all 2,037 unique mononuclear Fe octahedral complexes that are ANN compatible with distortion outliers removed. Fe(II) is shown at top and Fe(III) shown at bottom. The number of data points as well as the mean molecular weight of the data set is shown in inset.

instea in inc	reasing nume	Jei	of distinct	er	ement typ	es,	<u>IIOIII I to a max</u>	IIIIuI	11 01	<u>5 (101 Fe</u>	U	<u>11) OIII</u>	y).
Fe(II)	Fe(III)		Fe(II)	1	Fe(III)	1 -1/	Fe(II)	Fe	<u>∋(III)</u>	Fe(II)	_	Fe(III)
One liga	and elem type	4.0.4	I wo ligand e	ier	n types (con	τα)	I hree ligand elem ty	pes (c	ont a)	Four ligan	a 딦	elem ty	pes
	964 NININININ	184		2			NNNNUS	2	_	CCICINPP	6		15 4
000000	48000000	135	НННРРР	2				2			40		183
	1/555555	29	HPPPPP	2				2	_	Brccnns	30		152
SSSSSS	7CCCCCC	6	000000	2				1	_	CCCINPP	21	BrNNOC	S_1
PPPPPP		1	FF0000	1			BrCCCNN	1	_	CHHNPP	2		
		1	CICICICIOO	1			CCNNNP	1	_	CCINPPP	2		
AsAsAsAsAsAs			CCCCCS	1			CCCCIS	1	_	CNNPSS	2		
Two liga	nd elem types	1	BrBrBrCCC	1			CCCNSS	1	_	CINPPP	2		
NNNNOO	304NNNNOO	284	CICICICINN	1				1	_	CCINNPP	2		
NNOOOO	95NN0000	115	CICISSSS	1			NOSSSS	1	_	CCNOPP	1		
CICINNNN	75NNN000	105	CCSiSiSiSi	1			ASCCCHH	1		CINNNOS	4		
NNNNNO	41NNNNSS	68	CSSSSS	1			CCPPSeSe	1		CHNNPP	1		
CINNNNN	31CICICINNN	60	CCCIII	1			CCCNNO	1		HNNPPSi	1		
NNNNPP	31CICINNNN	58	CCCCCICI	1			NNNOSS	1		BrCCNPP	1		
CCNNNN	27NNNNNO	38	CCCCCP	1			CCPSSS	1	_	BrNNPSS	1		
NNPPPP	26CCNNNN	21	BrBr0000	1			CNSSSS	1		BrNNOSS	1		
NNNOOO	24CCCNNN	20	CCCCCCI	1			CNNNNS	1		BrCCOPP	1		
CNNNNN	23N00000	18	AsAsNNNN	1			BrBrNNNO	1		BrBrCCNP	1		
NNNNSS	22CI00000	9	AsAsAsAsII	1			CCCCINN	1		CINNOOS	1		
CCPPPP	17CICI0000	8	NNNNP	1			CINPPPP	1		CCCIPS	1		
CICIPPPP	17CCCCNN	8	000000	1			CISSSS	1		CCCHPSi	1		
NNNPPP	12CNNNNN	8	Three liga	anc	l elem types		CFPPPP	1		CCCIPPS	1		
NNSSSS	11CCCCCN	7	HNPPPP	14	CINNNOO	32	BrBrCCCTe	1		CCCOPSn	1		
BrBrNNNN	11CINNNNN	6	CICINNOO	11	CICINNNO	29	HOPPPP	1		Five ligan	d	elem ty	pes
CCCCNN	9BrBrNNNN	6	CICINNNO	8	CICICINNO	21	AsAsCCCP	1		CHNOPP	1		
OOPPPP	8 CICICICINN	5	CHPPPP	8	NNOOSS	19	CIPPPP	1		CHNPPSi	1		
N00000	7NNNSSS	5	CINNNNO	8	CICINNOO	18	HPPPPSe	1		CCINOP	1		
BrNNNN	7CICIPPPP	5	CCNNSS	7	CINNOOO	18	FNNNNS	1			Π		
CCSSSS	7000SSS	5	NNOOSS	6	CINNNNO	9	CCPPPS	1			Π		
CCCCCN	6NNNNPP	4	CINNNOO	6	NNNOOS	8	CCNNPP	1			Π		
CCCCSS	6NNSSSS	З	CCCNPP	5	CICINOOO	5	CCCSeSeTe	1			П		
CCCCII	6BrBrBrNNN	3	CCIPPPP	5	CNNNOO	5	CCCSeTeTe	1			Π		
BrBrPPPP	6FFNNNN	2	CNNNNO	4	CNNNNO	4	CCCIISe	1			Π		
CCCNNN	5PPSSSS	2	CCPPSS	4	CINOOOO	3	CICINNPP	1			Π		
CCCSSS	4FFFFOO	1	CCNPPP	4	CICICINNS	3	HNNPPP	1			Π		
OOSSSS	4FFFFFO	1	HPPPPS	4	BrNNNOO	3	CPPSSS	1			П		
CIPPPPP	4CICICIOOO	1	NNPPSS	4	CCNNOO	2	CINNNPP	1			Π		
NNNNS	3CICICICIOO	1	CIHPPPP	4	NNNNOS	2	ССННРР	1			П		
CCCCPP	3 CICICICICIO	1	CNPPPP	4	CICICINOO	1	BrCPPPP	1			Π		
PPSSSS	3FFFNNN	1	CCCIITe	4	FNNNNO	1	CCCHNN	1			ſŤ		
NNNNSeSe	3Br00000	1	CICINNSS	3	CICINNNS	1	BrBrCCCN	1			ſŤ		
CCCCSnSn	3NNNNNS	1	NPSSSS	3	CICIOOSS	1	CCCCHN	1			ſŤ		
BrCCCCC	2CICICISSS	1	CNNNPP	3	CNPPPP	1	CCIIPP	1			Π		
0000SS	2000SeSeSe	1	COPPPP	3	CCNNSS	1	CCICIPPP	1			П		
CICICINNN	2FNNNNN	1	CNNSSS	2	BrBrNNNO	1	NNOOPP	1			Π		
CICIOOOO	2NNNNNP	1	HHHNPP	2	CNNNSS	1	CCNNSiSi	1			П		
NNNSSS	2NNNNSeSe	1	CCCNNS	2	BrNNOOO	1	CCCIPPP	1			ſŤ		+
CCCCSiSi	20000SS	1	CINNNNS	2	NNNOSS	1	NOOPPP	1			ſŤ		+
CCCPPP	2AsAsAsAsII	1	CNNNSS	2	NNOOPP	1	CCCCIPP	1			ſŤ		+
INNNNN	20000SeSe	1	CPSSSS	2		† İ	CCCPPSn	1			П		+
IISSSS	2BrBrOOOO	1	HNNNPP	2		1		<u> </u>			П		+
PPPPSS	2	<u> </u>	CCOOPP	2		1					П		+
	_ _	1		£		1	1			1	<u>ы</u>		

Table S3. Overall number of element types and frequency of each occurrence observed in 3,627 unique mononuclear iron octahedral complexes (2,179 Fe(II) and 1,448 Fe(III)). Variations are listed in increasing number of distinct element types, from 1 to a maximum of 5 (for Fe(II) only).

Table S4. Combinations of equatorial ligand element types and frequency of each occurrence observed after assignment of equatorial plane in 3,627 unique mononuclear iron octahedral complexes (2,179 Fe(II) and 1,448 Fe(III)). The types of equatorial ligand elements are grouped by the total unique number of elements and listed in increasing order, where applicable. Only the one-element type subset is ANN-compatible.

Fe(II	I)	Fe(III))	Fe(III)		Fe(III)		
One liga	and e	lement ty	уре	Two ligand ele	m	ent types (cont	'd)	
N	1264	N	372	IPPP	1			
0	127	0	214	СССН	1			
Р	95	S	32	OOSS	1			
С	38	С	13	IIPP	1			
S	29	Р	5	BrBrNN	1			
CI	3	F	3	CCSiSi	1			
As	2	CI	3	CSiSiSi	1			
		As	1	PPPSe	1			
Two liga	nd el	ement tv	pes	CCCSn	1			
NNOO	124	NNNO	197	Three ligar	nd	element types		
NNNO	124	NNOO	176	CNPP	5	CICINO	19	
NNPP	46	CICINN	108	CINNO	5	NNOS	17	
CINNN	44	NOOO	71	CPPS	4	CINNO	15	
CICINN	25	NNSS	62	CNNS	4	CNNO	6	
CCNN	21	CINNN	51	CINPP	4	CINOO	3	
CPPP	18	CCNN	17	CCITe	4	BrNNO	2	
NOOO	14	CCCN	11	NPSS	2	CCNS	1	
NNSS	14	NNNS	7	CICINO	2		-	
NPPP	13	CICICIN	7	NPPSi	2			
CCCN	10	OOSS	6	CCSeTe	2			
OOPP	9		6	CCNS	1			
	8	CNNN	3		1			
	8		2	CPSS	1			
CCPP	8	BrBrBrN	2	CCOP	1			
CCCS	7	FENN	1		1			
2220	6	2221	1	CCPS	1			
CIPPP	6	0000	1	NNOS	1			
CCSS	5	OSSS	1	CNNP	1			
CCCI	5	CPPP	1		1			
	5	PPSS	1	CPPSe	1			
PSSS	3	PSSS	1		1			
	3	0000	1	Broon	1			
	3		1		1			
BrNNN	3		1		1			
NNSoSo	3	CICISS	1	Four ligan	d é	lement types		
NSSS	2	BrNNN	1		1			
ннни	2	OOSeSe	1	BrNOS	1			
ССНН	2	BrBrNN	1	DINCO	-			
PPPS	2	NNSeSe	1					
PPSS	2	0005e	1					
0000	2	00000						
HHPP	2							
0000	2							
BrBrCC	2							
CICISS	2	1						
BrPPP	2							
OPPP	1							
CCII	1	1						
ISSS	1							
FNNN	1							
IISS	1	1						

Table S5. Combinations of axial ligands and frequency of each occurrence observed after assignment of equatorial plane in 3,627 unique mononuclear iron octahedral complexes (2,179 Fe(II) and 1,448 Fe(III)). Symmetric axial ligand connecting atoms are listed first followed by two-ligand combinations.

Fe	e(II)	Fe(III)					
One l	igand e	lement	type				
N	1192	N	380				
0	197	0	251				
С	51	CI	53				
CI	47	S	37				
Р	39	С	24				
S	37	Br	6				
CI	17	Р	4				
Br	13	F	3				
I	4	I	1				
Si	2						
Н	2						
As	2						
Sn	2						
F	1						
Two li	gand el	ement	types				
NO	197	NO	414				
CIN	82	CIN	91				
CN	70	CIO	60				
CS	34	CN	44				
NP	21	OS	39				
HN	20	NS	14				
NS	19	BrN	7				
CP	17	со	5				
BrN	12	CIS	5				
HP	12	FO	2				
CCI	11	FN	2				
CIO	10	NP	2				
CO	9	OSe	2				
BrC	8	PS	1				
CH	8	BrO	1				
CIP	6						
BrP	5						
OS	4						
СІН	4						
HS	3						
IP	3						
AsC	2						
CSe	2						
но	2						
IN	2						
PS	2						
PSn	2						
	2						
CSi							
	1						
	1						
r 31 00-	1						
030	1	1					

Table S6. Overall combination of equatorial and axial ligand element types and frequency of each occurrence observed after assignment of equatorial plane in 3,627 unique mononuclear iron octahedral complexes (2,179 Fe(II) and 1,448 Fe(III)) with the 2,201 that are ANN-compatible indicated.

	Fe(II)									Fe(III)															
Α	NN c	ompa	atibl	е				A	NN ir	ICO	mpatible)				1	AN	N cor	npat	A	ANN	Incoi	mpatible	÷	
As	I	1 F	CIH	4	AsCCP	AsC	1	CCSS	CS	4	CPSS	CS	1	NPSS	CN2	2	As	I	1	BrBrBrN	N	2	NNNO	CIO	8
As	As	1 F	CIP	4	BrBrCC	BrC	1	CCSS	s	1	CSiSiSi	CSi	1	NSSS	CN2	2	С	CN	7	BrBrNN	BrN	1	NNNO	0	8
С	С	17 F	Br	4	BrBrCC	СТе	1	CICINN	N	22	CSSS	CS	6	OOPP	P 7	' (С	С	6	BrNNN	BrN	11	NNNO	OS	7
С	CN	6F	HS	3	BrBrNN	N	1	CICINN	CIN	1	FNNN	NS	1	OOPP	N 1	0	CI	0	1	BrNNO	BrN	11	NNNO	NS	1
C	BrC	2 F	CC	2	BrCCN	BrP	1	CICINN	Ô	1	ннни	Р	2	OOPP	NP 1	d	CI	CIO	1	BrNNO	os	11	NNNO	CIN	1
C	N	2 F	CO	2	BrNNN	BrN	3	CICINN	P	1	HHPP	HP	2	0055	N 1	d		CI	1	CCCN	CN	8	NNNS	NS	6
C	P	2 F	CN	2	BrNNO	BrN	1		NO	1	IIPP	C.	1	OPPP	CP 1	ſ	F	0	1	CCCN	N	31	NNNS	S	1
C	' Sn	2 F	PP	2	BrNOS	NS	1		N	1	1199	S	1	PPPS		ľ	F	EO	1		CN	17			87
C	01	1 6	НР	2	BrPPP	BrP	2		NS	1	IPPP	IP	1	PPPS	PS 1	ľ	F	F	1	CONS	NS	1		N	30
c	Gi	10		1	СССН	PSi	1			5	1999	 CS	1			ŀ	NI	N	18/		N	1			10
0		10		1	CCCI		5			0			116		0 1	ľ,		0	704		N	5			15
				4			о 7			2			110	PPSS		ľ,			/3			0			10
				4			1			1			4	PP33	001	Ľ,			30			21			
				1		P	1					5	1	2222		1		C C	18					Brin	3
	HIN			1		HIN	1			1			1	2222	P5 I	ľ,			16			321		112	+
C		11	S	1		Br	1	CINNN		35	NNNO	0	1			ľ			8		N	241			1
CI	0	11		1	0000	PSn	1	CINNN	CIO	5	NNNO	NS	1			ľ	N	CIN	6	CICINN	NO	201	NNOS	0S	17
CI	CI	11	BrC	;1	CCCO	CO	1	CINNN	NS	2	NNNS	NS	8			ľ	N	S	5	CICINN	CIO	17	NNSeSe	N	1
CI	N	15	5 N	9	CCCP	CP	1	CINNN	os	1	NNOO	N	68			ſ	N	Br	5	CICINN	0	5	NNSS	N	57
Ν	N	964 S	S	7	CCCP	IP	1	CINNN	CI	1	NNOO	0	20			ſ	N	CIO	4	CICINN	CI	5	NNSS	NS	3
Ν	0	120 S	0	4	CCCP	PSn	1	CINNO	CIO	2	NNOO	NO	20			ſ	N	CO	4	CICINN	CIS	31	NNSS	CN	1
Ν	NO	41 S	NP	3	CCCS	CS	6	CINNO	CIN	1	NNOO	CI	7			ľ	N	Р	4	CICINN	NS	1	NNSS	NO	1
Ν	CIN	31 S	CI	1	CCCS	CI	1	CINNO	Ν	1	NNOO	CIN	6			I	N	F	2	CICINN	OS	1	0000	NO	54
Ν	CN	23 S	NO	1	CCCSn	CSn	1	CINNO	OS	1	NNOO	S	3			1	N	FO	1	CICINO	NO	10	0000	Ν	10
Ν	CI	18 S	CN	1	CCHH	AsC	1	CINPP	CN	2	NNOS	OS	1			١	N	NS	1	CICINO	0	31	0000	CIN	6
Ν	С	18 S	CS	1	CCHH	Р	1	CINPP	С	1	NNPP	N	19			١	N	FN	1	CICINO	OS	31	0000	BrN	1
Ν	Р	128	P	1	CCII	CI	1	CINPP	CCI	1	NNPP	NP	12			١	N	NP	1	CICINO	CIN	2	NSSS	Ν	1
Ν	S	78	51	1	CCISe	CI	1	CIPPP	CP	3	NNPP	Р	5			١	N	OS	1	CICINO	N	10	200S	OS	1
Ν	BrN	7			CCITe	CI	4	CIPPP	CIP	2	NNPP	s	4			C	0	0	135	CICIOO	0	50	DOOSe	OSe	1
Ν	Br	7			CCNN	S	6	CIPPP	CCI	1	NNPP	ΗN	2			C	0	Ν	46	CICIOO	S	10	OOPP	Ν	1
Ν	CO	4			CCNN	CN	5	CNNN	CN	6	NNPP	CN	2			C	0	NO	18	CICISS	CIS	10	OOSeSe	OSe	1
Ν	CIO	3			CCNN	Ν	3	CNNN	Р	1	NNPP	СН	1			C	0	CIO	9	CINNN	CI	23	DOSS	OS	4
Ν	NS	3			CCNN	CS	2	CNNN	S	1	NNPP	CIN	1			0	0	CIN	3	CINNN	CIN	180	DOSS	Ν	2
Ν	IN	2			CCNN	BrC	1	CNNO	CO	1	NNSeSe	Ν	3			0	0	BrO	1	CINNN	CIO	40	DSSS	0	1
Ν	CS	1		Ι	CCNN	NP	1	CNNP	СР	1	NNSS	Ν	7			C	0	CI	1	CINNN	NO	4	PSS	S	1
Ν	As	1		Ι	CCNN	CO	1	CNNS	BrC	3	NNSS	NS	2			0	0	Br	1	CINNN	0	2	PSSS	PS	1
Ν	NP	1			CCNN	CCI	1	CNNS	CS	1	NNSS	S	2			F	Р	CI	5	CINNO	CIN	4	N		
Ν	OS	1			CCNN	Si	1	CNOP	СР	1	NNSS	0	1			S	S	S	29	CINNO	OS	4	N		
0	Ν	64			CCNO	IP	1	CNPP	СР	2	NNSS	CN	1			S	S	N	3	CINNO	NO	31	N		
0	0	48		Ī	CCNS	CS	1	CNPP	Н	2	NNSS	BrP	1			ľ				CINNO	CIO	21	N		
0	NO	7		Ī	CCOO	Р	2	CNPP	ΗΟ	1	NOOO	NO	11			ľ				CINNO	CIS	11	N		
0	S	2		Ī	CCOP	BrP	1	CPPP	СР	6	NOOO	N	3			ľ				CINNO	0	11	N		
Ō	CI	2		t	CCPP	CN	4	CPPP	HN	4	NPPP	HP	4			t				CINOO	CIO	21	N		
Ō	P	2		t	CCPP	NP	1	CPPP	С	2	NPPP	CCI	2			t				CINOO	CI	1	N		
0	F	1	1	t	CCPP	BrN	i	CPPP	ΗP	2	NPPP	CI	2			t					CIO	21	N	 	\square
0	Br	1		t	CCPP	CI	1	CPPP	CN	1	NPPP	CIN	2			t				CNNN	CN	31	N		
P	N	20	1	$^{+}$	CCPP	CCL	1	CPPP	NP	1	NPPP	CP	1		\vdash	╟					NO	5	N	<u> </u>	\vdash
P	CL	15	+	+	CCPS	CL	1	CPPP	09	1	NPPP	ни	1		\vdash	╟					00	1	• N		\vdash
P	C.	11	+	$^{+}$		CSe	1	CPPP	CCI	1	NPPP	NP	1			╉				CPPP	NP	1	• •	 	\vdash
P	ни	10	+	+	CCSeTe	CTo	1	CPPS	C9	1	NPPSi	СН	1		\vdash	╟				FENN	EN	- 1	• N		\vdash
P	СН	6	+	$^{+}$		C	1	CPPSo	000	1	NPPSi	ни	1			╉						172	• N	 	\vdash
P .		0	1	1	00000		11	00100	000			p n v	1 1		1 1							116		1	1

Figure S6. Normalized histograms of bond distances for 969 unique Fe(II) complexes with only a single element identity for the coordinating atom in the complex from the set of 1,447 complexes that have distortion outliers removed. All bond distances are shown in Å for the elements indicated in each inset.

Figure S7. Normalized histograms of bond distances for 347 unique Fe(III) complexes with only a single element identity for the coordinating atom in the complex from the set of 590 complexes that have distortion outliers removed. All bond distances are shown in Å for the elements indicated in each inset.

Table S7. Covalent radii and sums of covalent radii used for definitions of relative distances of Fe–X bonds (in Å) as well as the low-spin and high-spin bounds expressed as both a distance and relative to the average covalent radii. The average Fe covalent radius of 1.42 Å is used and a low spin (LS) estimate of 1.32 Å and high spin (HS) estimate of 1.52 Å defines the low spin and high spin bounds. To draw HS and LS borders on relative bond distances, we select 0.95 and 1.05 based on typical fractions for different elements.

Eo.Y	X radius	r _{Fe} +r _X		(I S frac	LS frac
LC-V	(Å)	Avg.	LS	НS	LS Hac	
		(Å)	(Å)	(Å)		
Fe-As	1.19	2.61	2.51	2.71	0.96	1.04
Fe-Br	1.20	2.62	2.52	2.72	0.96	1.04
Fe-C	0.73	2.15	2.05	2.25	0.95	1.05
Fe-Cl	1.02	2.44	2.34	2.54	0.96	1.04
Fe-F	0.57	1.99	1.89	2.09	0.95	1.05
Fe-H	0.31	1.73	1.63	1.83	0.94	1.06
Fe-I	1.39	2.81	2.71	2.91	0.96	1.04
Fe-N	0.71	2.13	2.03	2.23	0.95	1.05
Fe-O	0.66	2.08	1.98	2.18	0.95	1.05
Fe-P	1.07	2.49	2.39	2.59	0.96	1.04
Fe-S	1.05	2.47	2.37	2.57	0.96	1.04
Fe-Se	1.20	2.62	2.52	2.72	0.96	1.04
Fe-Si	1.11	2.53	2.43	2.63	0.96	1.04
Fe-Sn	1.39	2.81	2.71	2.91	0.96	1.04
Fe-Te	1.38	2.80	2.70	2.90	0.96	1.04

Figure S8. Normalized histograms of bond distances (in Å) for all unique Fe(II) complexes. The x-range of all graphs is fixed to 1.05 Å to 2.95 Å and the y-range between 0 and 20, causing truncation for some elements with narrow histograms. The averaged sum of covalent radii is indicated as a dotted line for each element. All bond distances are collected over all complexes in the data set, and data is shown for any element that occurs at least once as a coordinating atom in any complex in the data set.

Figure S9. Normalized histograms of bond distances (in Å) for all unique Fe(III) complexes. The x-range of all graphs is fixed to 1.05 Å to 2.95 Å and the y-range between 0 and 20, causing truncation for some elements with narrow histograms. The averaged sum of covalent is indicated as a dotted line for each element. All bond distances are collected over all complexes in the data set, and data is shown for any element that occurs at least once as a coordinating atom in any complex in the data set.

Figure S10. Normalized histograms of bond distances (in Å) for all ANN-compatible, low distortion, unique Fe(II) complexes. The x-range of all graphs is fixed to 1.05 Å to 2.95 Å and the y-range between 0 and 20, causing truncation for some elements with narrow histograms. The averaged sum of covalent radii is indicated as a dotted line for each element. All bond distances are collected over all complexes in the data set, and data is shown for any element that occurs at least once as a coordinating atom in any complex in the data set.

Figure S11. Normalized histograms of bond distances (in Å) for all ANN-compatible, low distortion, unique Fe(III) complexes. The x-range of all graphs is fixed to 1.05 Å to 2.95 Å and the y-range between 0 and 20, causing truncation for some elements with narrow histograms. The averaged sum of covalent radii is indicated as a dotted line for each element. All bond distances are collected over all complexes in the data set, and data is shown for any element that occurs at least once as a coordinating atom in any complex in the data set.

Figure S12. Normalized histograms of relative metal-ligand bond lengths for 347 mononuclear octahedral Fe(III) complexes (left) and P, Cl, or As Fe(II) complexes (right) in which all coordinating atoms are a single element, which is indicated in the upper left corner of each panel. The 347 Fe(III) complexes are obtained from the set of 590 complexes that have distortion outliers removed. Each relative metal-ligand bond length is obtained with respect to the sum of covalent radii of Fe and the ligand atom, and the value for each element is indicated in the bottom right corner of each panel. The total number of complexes used to compute each histogram is indicated in the top right corner of each panel, and each of the six bond lengths in the complex are used to construct the histogram. Vertical dotted lines indicate 0.95 and 1.05 relative metal-ligand bond length thresholds to nominally indicate low-spin or high-spin character, respectively. The 4 Fe(II) complexes are obtained from the Fe(II) dataset. Since there are only 1 or 2 complexes in these cases, it is difficult to reach conclusions about trends in bond lengths.

Table S8. Overall combination of equatorial and axial ligand element types and frequency of each occurrence observed after assignment of equatorial plane in 2,037 ANN-compatible, low-distortion, unique mononuclear iron octahedral complexes (1,447 Fe(II) and 590 Fe(III)). They are sorted by decreasing elemental symmetry – with homoelemental cases at top, followed by two ligand element types, followed by three ligand element types.

			Fe	(II)				Fe(III)					
eq.	ax.	num.	# typs.	eq.	ax.	num.	# typs.	eq.	ax.	num.	# typs.		
Ν	N	902	1	Р	CI	1	2	Ν	N	179	1		
0	0	45	1	Ρ	I	1	2	0	0	132	1		
С	С	11	1	S	Р	1	2	S	S	29	1		
S	S	7	1	S	I	1	2	С	С	5	1		
Р	Р	2	1	S	CS	1	2	CI	CI	1	1		
As	As	1	1	S	CI	1	2	F	F	1	1		
CI	CI	1	1	Р	ΗN	10	3	Ν	0	70	2		
Ν	0	111	2	Ρ	СН	6	3	Ν	NO	29	2		
0	N	57	2	Ν	СО	4	3	0	Ν	28	2		
Ν	NO	36	2	Ρ	CIH	4	3	Ν	С	18	2		
Ν	CIN	29	2	Ρ	HS	3	3	Ν	CI	13	2		
Ν	CN	23	2	S	NP	3	3	0	NO	10	2		
Р	N	20	2	Ν	CIO	2	3	Ν	CN	8	2		
Ν	CI	18	2	Р	CCI	2	3	С	CN	7	2		
N	С	16	2	Р	СО	2	3	Ν	CIN	6	2		
Р	CI	15	2	Р	CN	2	3	0	CIO	6	2		
N	Р	12	2	N	os	1	3	Ν	s	5	2		
Р	С	11	2	N	CS	1	3	Ν	Br	5	2		
N	s	7	2	Р	CF	1	3	Р	CI	5	2		
N	Br	7	2	Р	BrC	1	3	Ν	Р	4	2		
N	BrN	7	2	Р	HO	1	3	s	N	3	2		
0	NO	6	2	Р	CIN	1	3	N	F	2	2		
C	CN	5	2	S	CN	1	3	As	1	1	2		
S	N	5	2	-		-		CI	0	1	2		
P	Br	4	2					CI	CIO	1	2		
S	0	4	2					F	0	1	2		
N	NS	3	2					F	FO	1	2		
P	CIP	3	2					N	NP	1	2		
С	Sn	2	2					N	FN	1	2		
Ċ	N	2	2					N	NS	1	2		
Ň	IN	2	2					0	CI	1	2		
0	CI	2	2					0	BrO	1	2		
0	S	2	2					0	Br	1	2		
P	HP	2	2					Ň	CIO	4	3		
As	I	1	2					N	CO	4	3		
С	CI	1	2					0	CIN	3	3		
C	Si	1	2					N	OS	1	3		
C	I	1	2					N	FO	1	3		
C	CCI	1	2										
C	BrC	1	2										
C	CS	1	2										
CI	N	1	2										
CI	0	1	2										
N	As	1	2										
N	NP	1	2										
0	Br	1	2										
0	F	1	2		-								
õ	P	1	2										
P	S	1	2										
P	0	1	2										
	-	· ·	-	L	1			i					

Table S9. Matrix of coordinating atom element pairs (or single element type on the diagonal) present in 1,979 of the ANN-compatible complex subset for Fe(II) (1,402 complexes, top) and Fe(III) (577 complexes, bottom). From the 2,037 ANN-compatible, low-distortion unique mononuclear iron octahedral complexes, there are 45 cases (25 involving nitrogen) with 3 element types for Fe(II) and 13 with 3 element types (all involving nitrogen) for Fe(III) which are combinations not used in bond pair analysis. N-containing pairs are bolded.

	Fe(II)												
	С	N	0	Si	Р	S	As	Sn	Н	F	CI	Br	I
С	11	46	0	1	11	2	0	2	0	0	2	1	1
N	46	902	210	0	33	15	1	0	0	0	48	14	2
0	0	210	45	0	2	6	0	0	0	1	3	1	0
Si	1	0	0	0	0	0	0	0	0	0	0	0	0
Р	11	33	2	0	2	2	0	0	2	0	19	4	1
S	2	15	6	0	2	7	0	0	0	0	1	0	1
As	0	1	0	0	0	0	1	0	0	0	0	0	1
Sn	2	0	0	0	0	0	0	0	0	0	0	0	0
Н	0	0	0	0	2	0	0	0	0	0	0	0	0
F	0	0	1	0	0	0	0	0	0	0	0	0	0
CI	2	48	3	0	19	1	0	0	0	0	1	0	0
Br	1	14	1	0	4	0	0	0	0	0	0	0	0
I	1	2	0	0	1	1	1	0	0	0	0	0	0
		-	-			Fe	(III)		-				
	С	N	0	Si	Р	S	As	Sn	Н	F	CI	Br	I
С	5	33	0	0	0	0	0		0	0	0	0	0
N	33	179	137	0	5	9	0	0	0	3	19	5	0
0	0	137	132	0	0	0	0	0	0	2	9	2	0
Si	0	0	0	0	0	0	0	0	0	0	0	0	0
Р	0	5	0	0	0	0	0	0	0	0	5	0	0
S	0	9	0	0	0	29	0	0	0	0	0	0	0
As	0	0	0	0	0	0	0	0	0	0	0	0	1
Sn	0	0	0	0	0	0	0	0	0	0	0	0	1
Н	0	0	0	0	0	0	0	0	0	0	0	0	0
F	0	3	2	0	0	0	0	0	0	1	0	0	0
CI	0	19	9	0	5	0	0	0	0	0	1	0	0
Br	0	5	2	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	0	1	0	0	0	0	0	0

Figure S13. Fe–N vs. Fe–X (X indicated according to inset legend) bond length ratios computed relative to sums of covalent radii for mononuclear octahedral Fe(III) complexes: F, Cl, or Br halides (top left), O (top right), C or P (bottom left), and S (bottom right). Ratios of 0.95 and 1.05 are indicated by grey dashed lines. Circle symbols indicate cases where N is the majority coordinating element (i.e., equatorial plane and up to one of the axial positions), whereas square symbols reflect the reverse case. The Fe–N, Fe–X pair is computed from the average of all bonds of that type in the complex. Each element is colored with translucent fill to show high density regions according to each panel's inset legend, and the total number of cases is indicated in the legend.

Figure S14. Degree of distortion (i.e., max-min distances) overall for all unique Fe(II) (shown in red) or Fe(III) (shown in green) complexes. A normalized histogram with 0.01 Å bins is shown with axis at left as well as an integrated fraction shown as a dotted line with the same coloring, axis shown at right. A black dashed horizontal line indicates where the fraction reaches 0.9.

Figure S15. Degree of distortion (i.e., max-min distances) overall for ANN-compatible (i.e., same elements in the equatorial plane), unique Fe(II) (shown in red) or Fe(III) (shown in green) complexes. A normalized histogram with 0.01 Å bins is shown with axis at left as well as an integrated fraction shown as a dotted line with the same coloring, axis shown at right. A black dashed horizontal line indicates where the fraction reaches 0.9.

Figure S16. Degree of distortion (i.e., max-min distances) between axial metal–ligand distances based on equatorial plane selected to minimize the overall equatorial distortion for all 3,627 unique Fe(II) (shown in red) or Fe(III) (shown in green) complexes. A normalized histogram with 0.01 Å bins is shown with axis at left as well as an integrated fraction shown as a dotted line with the same coloring, axis shown at right. A black dashed horizontal line indicates where the fraction reaches 0.9.

Figure S17. Degree of distortion (i.e., max-min distances) between axial metal–ligand distances for ANN-compatible (i.e., same elements in the equatorial plane), unique Fe(II) (shown in red) or Fe(III) (shown in green) complexes. A normalized histogram with 0.01 Å bins is shown with axis at left as well as an integrated fraction shown as a dotted line with the same coloring, axis shown at right. A black dashed horizontal line indicates where the fraction reaches 0.9.

Detailed			Composite		
category	Fe(II)	Fe(III)	category	Fe(II)	Fe(III)
LS below, good Uncertainty	207	101	LS definite	288	180
LS between, good uncertainty	81	79			
LS below, bad uncertainty	490	178	LS lean	490	178
LS between, bad uncertainty	49	70			
Ambiguous	22	11	ambiguous	150	129
HS between, bad uncertainty	79	48			
HS above, bad uncertainty	200	28	HS lean	200	28
HS between, good uncertainty	180	67			
HS above, good uncertainty	139	8	HS definite	319	75
Total	1447	590		1447	590

Table S10. Results of spin state classification of the entire AC set: cases of each spin state classification type for HS and LS states along with total number are indicated.

Table S11. Number of overall HS or LS complexes classified in the HE set grouped by oxidation state (Fe(II) or Fe(III)) and ligand coordinating element, where relevant (P and As are shown only for Fe(II), whereas F is shown only for Fe(III)), as well as the subset for which the uncertainty score is less than or equal to 0.5 ('high confidence').

		Fe(II) overall												
	Z	С	0	S	C	Ρ	As							
LS	327	11	15	4	1	1	1							
HS	563	0	30	З	0	1	0							
Unk.	12	0	0	0	0	0	0							
Total	902	11	45	7	1	2	1							
	Fe(I	Fe(II) high confidence												
	Ν	С	0	S	CI	Ρ	As							
LS	194	11	10	2	0	1	1							
HS	199	0	21	1	0	1	0							
Total	393	11	31	З	0	2	1							
		Fe	(III) o	ove	ral	I								
	Z	С	0	S	C	F								
LS	160	5	77	17	1	1								
HS	19	0	51	12	0	0								
Unk.	0	0	4	0	0	0								
Total	179	5	132	29	1	1								
	Fe(I	II) ł	nigh	cor	nfid	ler	nce							
	Ν	С	0	S	CI	F								
LS	67	3	42	10	0	0								
HS	7	0	37	1	0	0								
Total	74	3	79	11	0	0								

Table S12. Number of confident spin state assignments (uncertainty score less than or equal to 0.5) in the NX set for X=Cl, O, S in Fe(II) or Fe(III) complexes as well as the total number of each type and the percentage of the total number assigned.

							ě						
				Fe(II)			Fe(III)						
	Assigned, high confidence						Assigned, high confidence						
	All	LS	HS	LS+HS	%	Assign	All	LS	HS	LS+HS	%	Assign	
N/CI	48	4	6	10		21%	19	3	2	5		26%	
N/O	210	11	78	89		42%	137	22	24	46		34%	
N/S	15	7	1	8		53%	9	5	0	5		56%	

Table S13. Summary of properties of 46 Fe(II) SCO complexes: LS and HS ANN equatorial bond length predictions (in Å) compared to the equatorially averaged low T and high T XRD structures. Classification based on the closest corresponding ANN prediction to the structure is shown in the class column, and the differences used for this calculation are also shown. Key minimum, maximum, and average values are also reported.

		max LS ANN HS ANN low		low T	high Tlow T		high TLS ANN-		HS ANN-	HS ANN-	LS ANN-	
	refcode	dent	eq	eq	eq av	eqav	class	class	low T	low T	high T	high T
1	PEJQIF	1	1.9547	2.3356	2.0010	2.1811	LS	HS	0.0463	0.3346	0.1544	0.2264
2	YAGYIP	1	2.0300	2.3162	2.0887	2.2208	LS	HS	0.0587	0.2275	0.0954	0.1908
3	BEXXOT	2	2.0031	2.2696	1.9947	2.1607	LS	HS	0.0084	0.2750	0.1089	0.1576
4	DOQRAC	3	2.0184	2.2779	2.0190	2.1343	LS	LS	0.0006	0.2589	0.1436	0.1158
5	BAKGUR	2	2.0032	2.2271	2.0082	2.2052	LS	HS	0.0050	0.2189	0.0219	0.2020
6	ECODOS	2	2.0074	2.2271	1.9873	2.1839	LS	HS	0.0201	0.2398	0.0432	0.1765
7	OLAYAC	2	2.0441	2.2629	2.0023	2.1658	LS	HS	0.0418	0.2606	0.0971	0.1217
8	AKENAF	2	1.9680	2.1841	1.9491	2.0929	LS	HS	0.0190	0.2350	0.0913	0.1248
9	ECODIM	2	1.9954	2.1958	2.0335	2.1835	LS	HS	0.0381	0.1624	0.0123	0.1881
10	ZERDOS	2	1.9857	2.1854	1.9962	2.1469	LS	HS	0.0106	0.1891	0.0384	0.1613
11	WUCLAJ	2	1.9666	2.1663	1.9946	2.1923	LS	HS	0.0280	0.1717	0.0260	0.2256
12	IDUHAT	2	1.9495	2.1488	1.9790	2.1753	LS	HS	0.0295	0.1698	0.0266	0.2259
13	SEYDAD	2	1.9941	2.1892	1.9832	2.2006	LS	HS	0.0109	0.2061	0.0114	0.2065
14	FIWXOZ	3	1.9575	2.1461	2.0056	2.1747	LS	HS	0.0481	0.1405	0.0286	0.2172
15	MALJIT	3	2.0005	2.1856	1.9833	2.1595	LS	HS	0.0172	0.2023	0.0261	0.1590
16	BAYZEH	2	1.9147	2.0992	1.9781	2.1443	LS	HS	0.0634	0.1211	0.0450	0.2296
17	MUCRUZ	3	1.9426	2.1236	1.9349	2.1279	LS	HS	0.0077	0.1887	0.0043	0.1853
18	OTUJUJ	2	1.9680	2.1471	1.9946	2.1959	LS	HS	0.0266	0.1525	0.0488	0.2279
19	QUNYEE	2	1.9367	2.1116	1.9588	2.1581	LS	HS	0.0221	0.1528	0.0465	0.2215
20	IMAHIO	2	2.0459	2.2182	1.9817	2.1198	LS	LS	0.0642	0.2365	0.0984	0.0739
21	MAVVUD	3	1.9727	2.1419	1.9547	2.1616	LS	HS	0.0180	0.1872	0.0197	0.1889
22	RESWIW	3	1.9736	2.1389	1.9933	2.1631	LS	HS	0.0197	0.1456	0.0242	0.1895
23	IGERIX	3	1.9200	2.0773	1.9672	2.1781	LS	HS	0.0473	0.1101	0.1008	0.2581
24	CEVXOT	2	2.0029	2.1589	1.9880	2.1610	LS	HS	0.0149	0.1709	0.0021	0.1581
25	FEYWIR	2	2.0270	2.1818	1.9857	2.1958	LS	HS	0.0413	0.1961	0.0140	0.1688
26	EKAKIM	3	1.9261	2.0662	1.9388	2.1538	LS	HS	0.0128	0.1274	0.0876	0.2277
27	UFIPIJ	2	1.9282	2.0632	1.9601	2.1619	LS	HS	0.0319	0.1031	0.0987	0.2337
28	MUCREJ	3	1.9269	2.0584	1.9316	2.1350	LS	HS	0.0047	0.1267	0.0766	0.2081
29	SEYDUX	2	2.0034	2.1336	1.9863	2.2092	LS	HS	0.0171	0.1473	0.0757	0.2058
30	RIPZAS	3	1.9643	2.0942	2.0487	2.1451	HS	HS	0.0844	0.0455	0.0509	0.1808
31	QALYOU	2	1.9650	2.0948	1.9741	2.1422	LS	HS	0.0091	0.1207	0.0474	0.1772
32	NETGEA	2	2.0810	2.2064	1.9901	2.2124	LS	HS	0.0909	0.2164	0.0059	0.1314
33	AFANEB	3	1.9610	2.0778	1.9519	2.1529	LS	HS	0.0090	0.1259	0.0751	0.1920
34	PEJPOK	2	1.9975	2.1131	1.9969	2.2109	LS	HS	0.0006	0.1162	0.0978	0.2134
35	ABISOV	4	1.9827	2.0969	1.9616	2.1153	LS	HS	0.0211	0.1353	0.0184	0.1327
36	EXOMOU	3	1.9712	2.0696	1.9673	2.1504	LS	HS	0.0039	0.1023	0.0808	0.1792
37	GEFCAY	3	1.9622	2.0601	1.9642	2.1596	LS	HS	0.0019	0.0959	0.0995	0.1973
38	IXAQEF	5	1.9722	2.0614	2.0141	2.1215	LS	HS	0.0419	0.0473	0.0601	0.1494
39	QERDIB	3	1.9723	2.0580	1.9957	2.1767	LS	HS	0.0233	0.0623	0.1187	0.2044
40	JEJROI	4	1.9925	2.0681	1.9901	2.1504	LS	HS	0.0023	0.0779	0.0823	0.1579
41	JEJREY	4	1.9982	2.0403	1.9964	2.1563	LS	HS	0.0018	0.0439	0.1160	0.1581
42	PASDOD	6	1.9798	2.0184	1.9767	2.1943	LS	HS	0.0031	0.0416	0.1760	0.2145
43	TIHTAF	4	2.0506	2.0839	2.0097	2.1865	LS	HS	0.0408	0.0742	0.1026	0.1359
44	DIHCUV	4	2.0486	2.0657	2.0290	2.1964	LS	HS	0.0195	0.0367	0.1308	0.1479
45	VASYUL	4	1.9968	2.0137	1.9924	2.1381	LS	HS	0.0045	0.0214	0.1244	0.1413
46	IMANIT	6	1.9833	1.9914	2.0810	2.1773	HS	HS	0.0977	0.0896	0.1860	0.1941
		Avg	1.9836	2.1359	1.9896	2.1659			0.0267		0.0704	
		Min	1.9147	1.9914	1.9316	2.0929			0.0006		0.0021	
		Max	2.0810	2.3356	2.0887	2.2208			0.0977		0.1860	

References

- 1 Janet, J. P. & Kulik, H. J. Predicting Electronic Structure Properties of Transition Metal Complexes with Neural Networks. *Chem. Sci.* **8**, 5137-5152 (2017).
- Janet, J. P. & Kulik, H. J. Resolving transition metal chemical space: feature selection for machine learning and structure-property relationships. *Journal of Physical Chemistry A* 121, 8939-8954 (2017).