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S1. Neural network description

Architecture. The neural network architecture extends the chemprop directed message
passing neural network (D-MPNN) framework by Yang et al.,! which uses messages associ-
ated with directed edges instead of vertices. The following description is similar to that by
Yang et al. but with important differences related to encoding reactions.

The same D-MPNN operates on the reactant and product graphs, Gr and G p, separately
to create a learned representation for each atom in the reactant and each atom in the product.
Hydrogens are explicit in the graphs because they are often directly involved in the reactions.
We subtract the representations for corresponding atoms between reactants and products
from each other to generate a reaction embedding for each atom. We then aggregate these
embeddings prior to the final activation energy prediction.

To operate on a molecular graph, G = (V, E) with vertices (atoms) V' and edges (bonds)
E, we require initial atom features {z, | v € V'} and initial bond features {e,, | vw € E}.
The atom features comprise a one-hot encoding of the atomic number, the degree, the formal
charge, the chiral tag, the total number of hydrogens, and the hybridization; an aromaticity
flag; the atomic mass; and whether the atom is in a ring of size s for s € [3,10]. The bond
features indicate whether the bond is a single, double, triple, or aromatic bond; whether it
is conjugated; whether it is in a ring; whether it is in a ring of size s for s € [3,10]; and they
contain a one-hot encoding of the bond stereochemistry. Since the ring membership features
for atoms and bonds are one-hot vectors, they are able to encode all different-size rings that
they are part of. We obtained all of the features using RDKit.52

The following illustrates the message passing procedure. Note that some layers may
include bias parameters, but the equations do not show them explicitly. We obtain the

initial hidden state of a bond vw in an embedding operation given by

RS, = 7 (W; cat(zy, eow)) (S1)



where 7(-) is the ReLU activation function, W; € R#*(hathe) i a Jearned matrix, and
cat(xy, epy) € RP=+he represents the concatenation of atom and bond features. h, and
h. are the sizes of the initial atom and bond features, respectively. We determined the opti-
mal hidden size to be h = 1800 using the hyperparameter optimization procedure described

later. The network calculates messages at the next time step as

mnt = Y hi (52)

ke{N(v)\w}

where N (v) denotes the neighbors of atom v. The hidden state is updated by
T =7 (Mg + Wnmne) (S3)

where W, € R"" is another learned matrix and adding k%, connects every hidden state to
its original embedding. This proceeds iteratively for ¢t € {1,...,T}, and we set T'= 5. We

then convert bond fingerprints to atom fingerprints according to

)

weN (v

hy, = T (W, cat(z,, m,)) (S5)

where W, € R (+h) is a third learned matrix. Equations (S4) and (S5) are another
message passing step, so the total number of message passing iterations is T+ 1 = 6. We
apply the operations in (S1)—(S5) to both the reactant and the product to yield AR and
hg,P), respectively, for all atoms v in the molecular graph.

Next, we obtain the embedded difference atom fingerprints as

d, =7 (Wy (BF) — hiD)) (S6)

v v

where W, € R"" is a learned matrix. We sum the difference fingerprints to obtain a feature



vector for the reaction
r=> d, (S7)

Before generating an estimate for the activation energy, we calculate 200 global molecular
features using RDKit®? for both the product and the reactant and append their difference

to the reaction feature vector

7 = cat(r, fp — fr) (S8)

where fp and fr are the product and reactant RDKit features, respectively. The purpose of
these features is to capture global structural information in addition to the local information
that is built up in the message passing steps. See Ref. S1 for more information.

Finally, the reaction feature vector with a linear activation enables estimation of the

activation energy

E, = wlr (S9)
where w, € R"2% is a learned vector. We observed that a multitask prediction of both the
activation energy and the enthalpy of reaction significantly improves the activation energy
estimate. Therefore, the model has a second output to predict the enthalpy of reaction

AH, = w7 (S10)

which is supplied during training but no longer used during evaluation.

Training and hyperparameter optimization. We partition the data into training, val-
idation, and testing sets using a scaffold split, which bins the data based on the Murcko
scaffolds of the reactants calculated by RDKit.5? Ref. S1 describes the exact partitioning pro-
cedure. To obtain a better measure of model performance, we use a 10-fold cross-validation
approach. The validation data sets, used for hyperparameter optimization and early stop-

ping, consist of 5% of the available data. Even though the model produces E, and AH, as



outputs, we only use the error in Ea to determine early stopping. The main paper shows the
variation in the training and test data fractions. We schedule the learning rate as follows: a
linear learning rate increase from the initial learning rate to the maximum learning rate over
a given number of warm-up epochs followed by an exponential decrease to the final learning
rate over the course of the remaining epochs.

Training proceeds in two parts. First, we train the base model with the low-level B97-
D3/def2-mSVP data. We then initialize the parameters of the final model using those of
the base model and train the final model on the high-level wB97X-D3/def2-TZVP data.
This transfer learning approach makes better use of all available data and enables improved
accuracy of the final model.

We determin the architecture and other hyperparameters using the hyperparameter op-
timization code supplied with the chemprop package.5! In addition to the hidden size, h,
and other architectural parameters, we optimize several training hyperparameters including
the batch size, the number of epochs, the initial learning rate, the maximum learning rate,
the final learning rate, and the number of warmup epochs. Table S1 shows the optimized

parameters.

Table S1: Optimized training hyperparameters.

Hyperparameter Base Model Final Model
Batch size 50 10
Number of epochs 80 60
Initial learning rate 107° 10~
Maximum learning rate 1073 10~
Final learning rate 1075 1076
Number of warm-up epochs 3 1




S2. RMG families
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Figure S1: Number of reactions that match each RMG family.



Reaction type examples
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Figure S2: Reaction examples of +C-H,—C-H,-C-C type.
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Figure S3: Reaction examples of +C-H,—~C-H,+C-C type.
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Figure S4: Reaction examples of +C-O,-C-C,—C-O type.
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Figure S5: Reaction examples of +C-H,+C=0,-O-H,—C-C,—-C-0O type.



0,-C-H,—C-C,—C-0 type.
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Figure S6: Reaction examples of +C-H,+C
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S4. MAE split by number of heavy atoms
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Figure S8: MAE split by the number of heavy atoms involved in each reaction.
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S5. Principal component analysis of learned reaction encodings
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Figure S9: Principal component analysis (PCA) of the learned reaction encodings for the
test set of the first fold. The first two components capture 46% of the total variance. The
reactions cluster in PCA space based on their reaction type. Shown are the six most frequent
reaction types (bottom). Each reaction type only includes the bond changes occurring in the
reaction, e.g., +C-H,—~C-H,—C-C means that a carbon-hydrogen bond is formed, a different
carbon-hydrogen bond is broken, and a carbon-carbon single bond is formed in the reaction.
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S6. Side chain analysis

The side chain analysis was conducted by selecting two reactions, one with a substitutable
hydrogen close to the reaction center (at a distance of 1) and one with a substitutable hydro-
gen far from the reaction center (at a distance of 3), and substituting the hydrogens using
different functional groups (side chains). The groups were chosen as the homologous methyl,
ethyl, and propyl chains; an amino group; and a hydroxy group. Figure S10 illustrates the

original and substituted reactions.
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Figure S10: Substitution of side chains at a location close to the reactive center (hydrogen 7)
for an example reaction (left) and at a location far from the reactive center (hydrogen 8)
for a different example reaction. The topmost reactions are the original reactions and the
following reactions involve different substitutions of the hydrogen atoms.
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As shown in Figure S11, both the amino and hydroxy groups have a significant negative
effect on the activation energy when the substitution occurs close to the reactive center.
Interestingly, the more electronegative hydroxy group does not reduce the barrier as strongly
as the amino group. The deep learning model agrees well with the DFT calculations, except
in the case of the hydroxy group, where it predicts a barrier lower than that for the amino
group. When the substitution occurs far from the reactive center, none of the side chains
results in significant differences from the original barrier; and the deep learning predictions

agree well with the DFT results.
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Figure S11: Change in activation energy due to the side chain substitutions illustrated in
Figure S10. The left plot corresponds to the left reactions in Figure S10 and the right
plot corresponds to the right reactions in Figure S10. The “true” activation energies for the
substituted reactions were calculated using DFT (wB97X-D3/def2-TZVP) and are compared
to the deep learning (DL) predictions. Note that the ordinate in both plots is scaled such
that both plots have the same spacing and that its range goes from 15 kcal mol~! below the
maximum barrier to 5 kcal mol~! above the maximum barrier, but does not start at zero.

The DFT results are available as a separate Supporting Information ZIP file, which
contains the geometries of the reactants and transition states for each reaction in Figure S10.
Each geometry file also contains the electronic energy and zero-point energy in Hartree, and

a list of all harmonic vibrational frequencies in cm~! on the comment line of each XYZ-file.
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