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I. DERIVATION OF THE SPECTRAL ANGULAR POWER OF EMITTED RADIATION FROM A SINGLE ELECTRON

We derive an analytical expression of the spectral angular power of emitted radiation for the setup shown in Fig. 1a (main
text). We consider the interaction of a single electron launched parallel to the nanograting with velocity v = vẑ. The magnetic
near-field generated by the nanograting has two nonzero components, Bz and Bx. We assume that the electron is launched
sufficiently close to the surface of the nanograting such that the fields are periodic with the nanograting period d. Further, we
assume that the electron’s transverse velocity oscillations are small enough such that γ and β are approximately constant, i.e.
ż ≈ v and z ≈ vt+z0. The result is that the forces on the electron due toBz are small, andBz can be ignored for the purpose of
the derivation. Since Bx is periodic, we Fourier expand the field as B(x, y, z) =

∑
n
Bn sin ( 2πz

dn
)x̂, where Bn is the amplitude

and dn = d/n is the period of the n-th Fourier component of Bx.
The general formula for the spectral angular distribution of the energy radiated by an electron is

d2W

dΩdω
= 2ε0cR

2|E(ω)|2, (1)

where d2W
dΩdω is the energy radiated by an electron per unit solid angle dΩ per unit angular frequency dω, R is the distance from

the electron to the observer, and E(ω) is the frequency spectrum of the electric field at the observer1. Considering that the far
field E(ω) is given by

E(ω) =
ieω

4π
√

2πcε0R

∫ ∞
−∞

(n× (n× β))eiω(t′+
R(t′)

c )dt′, (2)

where n = R
R is the unit vector pointing from the electron to the observer and β = v

c is the electron velocity relative to the
speed of light1, we thus have

d2W

dΩdω
=

e2ω2

16π3cε0

∣∣∣∣∣
∫ ∞
−∞

(n× (n× β))eiω(t′+
R(t′)

c )dt′

∣∣∣∣∣
2

. (3)

Using the fact that R(t′) = x− r(t′), where x is the observer’s position from the origin and r(t′) is the electron’s position from
the origin, we can rewrite the term in the exponent of Eq. 3 as

t′ +
R(t′)

c
= t′ +

n · x
c
− n · r

c
. (4)

Since x is fixed, we can ignore the n·x
c term, since this becomes an overall phase shift in Eq. 3. We now have

d2W

dΩdω
=

e2ω2

16π3cε0

∣∣∣∣∣
∫ T/2

−T/2
(n× (n× β))eiω(t′−n·r

c )dt′

∣∣∣∣∣
2

, (5)

where we have replaced the integration limits −∞ to∞ with −T/2 to T/2, where T = Nd
v is the electron’s total interaction

time with the nanograting and N is the number of periods in the nanograting. We proceed by deriving expressions for r and β
using the relativistic Lorentz force law dp

dt = q(E+v×B), where p = γmv. Then the equations of motion for the electron are

ẍ =
−e
γm

(ẏBz − żBy) = 0, (6)

ÿ =
−e
γm

(żBx − ẋBz) = − ev

γm

∑̀
n=1

Bn sin

(
2πz

dn

)
= −

∑̀
n=1

evBn
γm

sin

(
2πvt

dn

)
. (7)

Integrating the equation for ÿ, we find

ẏ =
∑̀
n=1

eBndn
2πγm

cos

(
2πz

dn

)
=
∑̀
n=1

Knc

γ
cos (Wnt), (8)

y =
∑̀
n=1

Knc

γWn
sin (Wnt), (9)
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where Kn = eBndn
2πmc is the magnetic deflection parameter and Wn = 2πβc

dn
the angular frequency of oscillation due to the n-th

Fourier component. We can now write the expressions for n, r, and β (assuming that dn
dt = 0, which is true in the far field case):

n =

sin θ cosφ
sin θ sinφ

cos θ

 , r =


0∑̀

n=1

Knc
γWn

sin (Wnt)

βct

 , β =


0∑̀

n=1

Kn

γ cos (Wnt)

β

 . (10)

We then have

n× (n× β) =

β sin θ cos θ cosφ
β sin θ sinφ cos θ
−β sin2 θ

+
1

γ

 sin2 θ sinφ cosφ
− sin2 θ cos2 φ− cos2 θ

sin θ sinφ cos θ

∑̀
n=1

Kn cos (Wnt)

= A + B
∑̀
n=1

Kn cos (Wnt),

(11)

where we have separated the vector into time-independent and time-dependent components due to the factors of cos (Wnt). For
the phase in Eq. 5 we have

t− n · r
c

= (1− β cos θ)t− sin θ sinφ

γ

∑̀
n=1

Kn sin (Wnt)

Wn
. (12)

Eq. 5 now becomes

d2W

dΩdω
=

e2ω2

16π3cε0

∣∣∣∣∣
∫ T/2

−T/2
(A + B

∑̀
n=1

Kn cos (Wnt)) exp

[
iω(1− β cos θ)t−

∑̀
m=1

iω sin θ sinφKm sin (Wmt)

γWm

]
dt

∣∣∣∣∣
2

=
e2ω2

16π3cε0

∣∣∣∣∣
∫ T/2

−T/2
(A + B

∑̀
n=1

Kn cos (Wnt)) exp

[
iω(1− β cos θ)t+

∑̀
m=1

iξm sin (Wmt)

]
dt

∣∣∣∣∣
2

,

(13)

where ξm = −Kmω sin θ sinφ
Wmγ

is the amplitude of oscillation in the y direction normalized to the y component of the wave vector

ky = ω sin θ sinφ
c . For the dimensions of interest, ξm andKm are small, and we proceed by approximating exp

[ ∑̀
m=1

iξm sin (Wmt)

]
as 1 +

∑̀
m=1

iξm sin (Wmt) and by dropping terms of order KnKm. We have

e2ω2

16π3cε0

∣∣∣∣∣
∫ T/2

−T/2
(A + B

∑̀
n=1

Kn cos (Wnt))e
iω(1−β cos θ)t

(
1 +

∑̀
m=1

iξm sin (Wmt)

)
dt

∣∣∣∣∣
2

=
e2ω2

16π3cε0

∣∣∣∣∣
∫ T/2

−T/2
Aeiω(1−β cos θ)tdt+

∑̀
n=1

∫ T/2

−T/2
BKn cos (Wnt)e

iω(1−β cos θ)tdt

+
∑̀
m=1

∫ T/2

−T/2
iAξm sin (Wmt)e

iω(1−β cos θ)tdt+
∑̀
n,m=1

O(KnKm)

∣∣∣∣∣
2

.

(14)

The first term of the expression does not contribute radiation and can be dropped. To see this, we can directly evaluate the
integral and consider the limit as the interaction time T →∞:

lim
T→∞

∫ T/2

−T/2
eiω(1−β cos θ)tdt

= lim
T→∞

T sinc

(
Tω(1− β cos θ)

2

)
= δ

(
ω(1− β cos θ)

2

)
.

(15)
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The result is a delta function which only has a nonzero contribution at ω = 0, and the term contributes no radiation. For the
remaining terms, we expand cos (Wnt) and sin (Wmt) in terms of complex exponentials. We have

e2ω2

16π3cε0

∣∣∣∣∣12 ∑̀
n=1

∫ T/2

−T/2

[
BKn(eit[ω(1−β cos θ)+Wn] + eit[ω(1−β cos θ)−Wn])

+Aξn(eit[ω(1−β cos θ)+Wn] − eit[ω(1−β cos θ)−Wn])

]
dt

∣∣∣∣∣
2

.

(16)

Any terms containing exponentials of the form eit[ω(1−β cos θ)+Wn] do not contribute radiation and can be dropped. To see this,
we again directly evaluate the integral of the exponential and take the limit as T →∞:

lim
T→∞

∫ T/2

−T/2
eit[ω(1−β cos θ)+Wn]dt

= δ

(
ω(1− β cos θ) +Wn

2

)
.

(17)

The delta function is only nonzero for negative ω and thus has no contribution to the single-sided spectrum. Finally, we simplify
the expression by evaluating the remaining integrals, which leaves us with

d2W

dΩdω
=
e2ω2T 2

64π3cε0

∣∣∣∣∣ ∑̀
n=1

(
BKn −Aξn

)
sinc

(
T [ω(1− β cos θ)−Wn]

2

)∣∣∣∣∣
2

, (18)

where we have simplified Eq. 5 to this form. Dividing Eq. 18 by T yields the final form for the spectral angular distribution of
the power radiated by an electron:

d2P

dΩdω
=

e2ω2T

64π3cε0

∣∣∣∣∣ ∑̀
n=1

(
BKn −Aξn

)
sinc

(
T [ω(1− β cos θ)−Wn]

2

)∣∣∣∣∣
2

. (19)

II. SPECTRAL ANGULAR POWER OF EMITTED RADIATION FROM A BUNCHED ELECTRON BEAM

The radiation power of the source can be enhanced by using a bunched electron beam. Here we consider the interaction of
a bunched electron beam with the nanograting, where the beam is sent parallel to the nanograting with uniform initial velocity
v = vẑ. We consider a beam which is one electron thick, consisting of M electrons which are equally spaced along z by a
distance ∆z. The spectral angular power of radiation is then given by

d2Ptot

dΩdω
= M [1 + (M − 1)

∣∣f ∣∣2]
d2Psing

dΩdω
], (20)

where

f =
1

Q

∫
ρ(r) exp(k · r)dr. (21)

Here d2Psing

dΩdω is the spectral angular radiation power due to a single electron (given by Eq. 19), f is the Fourier transform of the

charge distribution ρ(r),Q is the total charge, and k is the wave vector for the radiation2. In this case, ρ(r) =
M−1∑
n=0
−eδ(z−n∆z),

and Q = −Me. Then for
∣∣f ∣∣2 we have

∣∣f ∣∣2 =

∣∣∣∣∣ 1

−Me

∫ M−1∑
n=0

−eδ(z − n∆z) exp(ikzz)dz

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

M

M−1∑
n=0

exp

(
iω cos (θ)n∆z

c

)∣∣∣∣∣
2

=
1

M2

sin2
(Mω cos (θ)∆z

2c

)
sin2

(ω cos (θ)∆z
2c

) .
(22)
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The power spectrum due to d2Psing

dΩdω will be enhanced whenever the bunching resonant enhancement condition |f |2 = 1 holds,
which occurs when ω cos θ = 2cmπ

∆z for integers m. Finally, d2Ptot
dΩdω can be written as

d2Ptot

dΩdω
=

[
M +

(
M − 1

M

)
sin2

(Mω cos (θ)∆z
2c

)
sin2

(ω cos (θ)∆z
2c

) ]d2Psing

dΩdω
. (23)

III. RADIATION DUE TO BREHMSSTRAHLUNG

In addition to inverse-Compton radiation, we expect that bremsstrahlung radiation will be prevalent in our system due to
free electrons colliding with the sample. Here, we estimate the power of bremsstrahlung radiation due to a single electron and
compare it to the power of inverse-Compton radiation. We use the parameters of the reference nanograting used throughout
the main text, where µ = 1.4 × 106A/m, d = 150 nm, a = 110 nm, h = 40 nm and N = 313. The ferromagnetic material
of the nanograting is composed of Fe81Ga19, and the substrate is GaAs. We take the substrate thickness to be on the order
of 1 µm, which is much larger than the ferromagnetic material height. In this case, we expect most of the energy loss due to
bremsstrahlung radiation to come from the substrate material.

Here we estimate the power of bremsstrahlung radiation due to a single electron with a kinetic energy of 5 MeV colliding with
the sample. The radiative stopping power for a 5 MeV electron in GaAs is 2.704× 10−1 MeV cm2 g−14. Multiplying this value
by the density of GaAs (5.31 g cm−34) and the velocity of the electron (v ≈ c) yields the approximate energy loss per second
of the electron. Since the spectral width of bremsstrahlung radiation is approximately equal to the electron’s kinetic energy5, we
can estimate the power per unit angular frequency of bremsstrahlung by dividing the energy loss per second by the electron’s
kinetic energy. Then the power per unit angular frequency of bremsstrahlung is approximately 1.38×10−9 W eV−1. The power
per unit angular frequency per unit solid angle of bremsstrahlung is given by the power per unit angular frequency divided by
4π, which is 1.10× 10−10 W eV−1 sr−1.

FIG. S1. Inverse-Compton power spectra due to a single electron with a kinetic energy of 5 MeV. a, Analytical results of the spectral
radiation power integrated over all solids angles from a single electron, in units of W eV−1. b, Analytical results of the spectral angular
radiation power from a single electron, in units of W eV−1 sr−1.

We now compare the power of bremsstrahlung radiation estimated above to that of inverse-Compton radiation. We calculate
the inverse-Compton radiation using the analytical formula in Eq. 2 of the main text. The calculation is carried out using the
parameters of the reference nanograting and an electron with a kinetic energy of 5 MeV, launched in the z direction with initial
height x0 = 1 nm above the nanograting surface. In Fig. S1a, we plot the power per unit angular frequency (W eV−1) of
inverse-Compton radiation integrated over all solid angles. The spectrum peaks at photon energies of 1.87 keV and 3.77 keV,
with powers of 1.31× 10−16 W eV−1 and 4.21× 10−17 W eV−1 respectively. In Fig. S1b, we plot the power per unit angular
frequency per unit solid angle (W eV−1 sr−1) of inverse-Compton radiation (Fig. 2d in the main text). The angular spectrum
peaks at photon energies of 1.91 keV and 3.82 keV, with powers of 1.82× 10−13 W eV−1 sr−1 and 1.07× 10−13 W eV−1 sr−1.

Although bremsstrahlung results in a broad frequency spectrum, the energy transfer from electrons to photons in bremsstrahlung
is more efficient than in inverse-Compton scattering. By the above calculations, the power of bremsstrahlung integrated over
all solid angles is at least seven orders of magnitude larger than the peak powers of inverse-Compton radiation integrated over
all solid angles. However, since inverse-Compton is more directional than bremsstrahlung, the power per unit solid angle of
bremsstrahlung is only three orders of magnitude larger than that of inverse-Compton. Therefore, it is critical that bremsstrahlung
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is minimized in the system as much as possible. The experimental setup should be chosen such that the electron beam collides
minimally with the sample. For an electron beam with a conical profile, the setup should be arranged similarly to Fig. 3b in
the main text. In choosing the initial height of the electron beam, there will be a tradeoff between bremsstrahlung and inverse-
Compton radiation: lowering the initial height allows electrons to interact closer to the nanograting surface which enhances
inverse-Compton, but it also increases the chance that electrons collide with the nanograting which enhances bremsstrahlung.
Other ways to lessen the effects of bremsstrahlung include minimizing the thickness of the substrate and choosing substrate
materials with smaller radiative stopping powers, since the spectral power is approximately proportional to the radiative stopping
power. Finally, inverse-Compton radiation can be enhanced by increasing the length of the nanograting along z, since the power
of inverse-Compton scales with the electron interaction time (Eq. 2 in the main text), and bunching the electron beam, as detailed
in the main text.
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