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SUMMARY

Ependymomas exist within distinct genetic sub-
groups, but the molecular diversity within individual
ependymomas is unknown.Weperformmultiplatform
molecular profiling of 6 spatially distinct samples from
an ependymoma with C11orf95-RELA fusion. DNA
methylation and RNA sequencing distinguish clusters
of samples according to neuronal development gene
expression programs that could also be delineated
bydifferences inmagnetic resonancebloodperfusion.
Exome sequencing and phylogenetic analysis reveal
epigenomic intratumor heterogeneity and suggest
that chromosomal structural alterations may precede
accumulation of single-nucleotide variants during
ependymoma tumorigenesis. In sum, these findings
shed light on the oncogenesis and intratumor hetero-
geneity of ependymoma.

INTRODUCTION

Ependymal tumors of the central nervous system have diverse

demographic, anatomic, radiologic, clinical, andmolecular char-

acteristics (Pajtler et al., 2015). There are 9 molecular subgroups

of ependymomas (Pajtler et al., 2015), and the majority of supra-

tentorial ependymomas harbor a genetic fusion between the un-

characterized gene C11orf95 and the nuclear factor kB (NF-kB)

transcriptional activator RELA (Pajtler et al., 2015; Parker et al.,

2014). When expressed in neural stem cells, C11orf95-RELA is

sufficient to induce ependymoma formation in vivo, suggesting

that neural stem cells are a putative cell of origin for ependymal

tumors (Ozawa et al., 2018; Taylor et al., 2005).

Molecular heterogeneity among ependymomas is well estab-

lished (Capper et al., 2018; Johnson et al., 2010; Khatua et al.,
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2017; Modena et al., 2006; Pajtler et al., 2015; Parker et al., 2014;

Witt et al., 2011). In contrast, intratumor molecular heterogeneity

within individual ependymal tumors is incompletely understood.

Inothercentral nervoussystemmalignancies, intratumorheteroge-

neity encompassing cell composition, immune infiltration, and so-

matic mutations contributes to tumor growth and resistance to

therapy (M€uller et al., 2017; Parker et al., 2016; Patel et al., 2014;

Szerlip et al., 2012; Yung et al., 1982). Thus, we hypothesized

that molecular heterogeneity may exist within ependymoma and

that understanding ependymoma heterogeneity may shed light

on tumor development, patterns of recurrence, or potential thera-

peutic targets. To test these hypotheses, we performed multiplat-

formmolecularprofilingof6spatiallydistinctsamples fromasupra-

tentorial anaplastic ependymomawithC11orf95-RELA fusion. Our

findings reveal significant intratumorheterogeneityandamolecular

phylogeny containing regionally distinct stem-like, neuronal differ-

entiation, and immune-enriched regions within a single tumor. We

discover that stem-like regions of ependymal tumors can be delin-

eated on preoperative magnetic resonance perfusion and find that

chromosomal copy number changes are an early molecular event

in ependymoma tumorigenesis. Finally, we identify a previously

uncharacterized missense mutation in the histone methyltransfer-

ase SETD2 as an example of a potentially broader class of epige-

nomic modifiers of molecular heterogeneity within ependymoma.
RESULTS

Radiologic and Molecular Classification of
Supratentorial Anaplastic Ependymoma with C11orf95-

RELA Fusion
Wecollected 6 spatially distinct intraoperative samples from a 29-

year-old male who initially presented to medical attention after

experiencing a generalized seizure and was found to have a para-

sagittal mass on brain imaging (Figures 1A and 1B). Stereotactic

analysis at the time of resection showed that samples were
creativecommons.org/licenses/by-nc-nd/4.0/).
7

mailto:david.raleigh@ucsf.edu
https://doi.org/10.1016/j.celrep.2020.01.018
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B C D

Figure 1. Radiologic and Molecular Classification of a Supratentorial Anaplastic Ependymoma with C11orf95-RELA Fusion

(A) Preoperative magnetic resonance imaging and computed tomography shows a right parasagittal heterogeneously enhancing mass with peritumoral edema

(white arrowhead) and internal susceptibility (black arrowhead) that is distinct from a site of eccentric peripheral nodular calcification (black circle) and therefore

suggestive of internal hemorrhage. Of note, a significant difference in head tilt and imaging gantry influences the appearance of tumor location as denoted by

black arrowheads in images 4 and 6. A, anterior; FLAIR, fluid-attenuated inversion recovery; L, left; P, posterior; R, right.

(B) 3D stereotactic mapping of 6 samples (A–F) obtained for this study. Patient orientation is represented by the model in bottom left.

(C) Low- and high-power hematoxylin and eosin (H&E) images and immunohistochemical stains demonstrating strong L1CAM positivity, GFAP positivity in

cytoplasmic processes of perivascular pseudorosettes, paranuclear dot-like and ring-like EMA positivity, and a Ki-67 labeling index of 20%, all features that

support the diagnosis of anaplastic ependymoma, WHO grade III. Black scale bars, 100 mm.

(D) Break-apart fluorescence in situ hybridization (FISH) (red and green probes) shows rearrangement of C11orf95 and RELA, but not YAP1. Nuclei are shown in

blue. White scale bar, 10 mm.
separated by a median of 1.7 cm (range 0.6–3.4 cm) and were

closer to theperiphery of the tumor than to the centroid (FigureS1).

A separate sample that was designated for clinical pathology was

diagnosedasanaplasticependymoma,WorldHealthOrganization

(WHO) grade III, with a mitotic count of 15mitoses per 10 high po-

wer fields, a Ki-67 labeling index of 20%, and strong L1CAMcyto-

plasmic and membrane staining, consistent with C11orf95-RELA

fusion (Figure 1C). TargetedDNAsequencingusing aClinical-Lab-

oratory-Improvement-Amendment-certified panel of 510 cancer-

associated genes (Kline et al., 2017) showed multiple segmental

copy number variations along chromosome 11q consistent with

chromothripsis (Figure S2A). Break-apart DNA fluorescence in

situ hybridization demonstrated rearrangement of RELA and

C11orf95, but not YAP1 (Figure 1D), a gene fused to C11orf95 in

a minority of supratentorial ependymomas (Parker et al., 2014).

Cortical Development and Differentiation Gene
Expression Programs Define Intratumor Heterogeneity
in Ependymoma
We performed RNA sequencing (RNA-seq) of the 6 samples to

delineate gene expression heterogeneity. Pooled analysis of all
CELREP
samples using two independent fusion gene detectors identified

an in-frame fusion between exon 2 of C11orf95 and exon 2 of

RELA (Figure S2B), corresponding to the pathogenic RELAFUS1

fusion found in the majority of supratentorial ependymomas

(Parker et al., 2014). No other fusion genes were concordantly

detected by both methods, and the 6 samples expressed similar

levels of L1CAM, CCND1, C11orf95, and RELA (Figure S2C),

each of which are specific markers of C11orf95-RELA ependy-

moma (Parker et al., 2014).

Principal-component analysis (PCA) was performed to sepa-

rate the 6 samples based on gene expression variability (Fig-

ure 2A). The most variable genes in PCA space were used for hi-

erarchical clustering, revealing 3 clusters of samples (Figure 2B).

To identify drivers of intratumor heterogeneity, we ranked genes

based on their loading scores for the first three principal compo-

nents (Figure 2C). Gene Ontology analysis (Figure S2D) showed

that genes in axis 1 (samples C and D) were enriched for the

OLIG1 and OLIG2 co-expression networks (p = 0.01 and 0.04,

respectively), which are implicated in stem-like identity in glioma

(Aguirre-Cruz et al., 2004; Ligon et al., 2004, 2007) and early

phases of glial cell development (Novitch et al., 2001; Zhou
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Figure 2. Cortical Development and Differentiation Gene Expression Programs Define Intratumor Heterogeneity in an Ependymoma

(A) Principal-component analysis (PCA) of RNA-seq data reveal that 52% percent of variation among regional samples is explained by the first two principal

components. PC, principal component.

(B) Hierarchical clustering of samples using the top 250 most variable genes in RNA-seq identifies 3 subgroups.

(C) Scatterplot of gene loading scores in PCA with arrows indicating axes used for gene ranking.

(D) Gene expression heatmap of cell-type-specific genes in the developing human cerebral cortex (Zhong et al., 2018) recapitulates the same clusters as un-

biased transcriptome-wide analysis. EN, excitatory neurons; NPCs, neural progenitor cells; OPCs, oligodendrocyte progenitor cells.

(E and F) Preoperative T1 post-contrast and arterial spin labeling perfusion (E) and quantitative arterial spin labeling perfusion (F) of stereotactically defined

regions demonstrate enhanced cerebral blood flow in regions with stem-like identity (C and D). Red and white circles indicate sample locations. ASL, arterial spin

labeling; CBF, cerebral blood flow; MRI, magnetic resonance imaging.

(G) OLIG1 and OLIG2, which are implicated in stem-like identity in glioma and early phases of glial cell development, are enriched in samples C and D (OLIG1

p = 0.007; OLIG2 p = 0.002; Student’s t test).

(H) Analysis of published OLIG1, OLIG2, and NF-kB target genes reveals enrichment of OLIG1 (p = 9.5 3 10�6) and OLIG2 (p = 0.00045) targets in stem-like

samples C and D and enrichment of NF-kB targets in samples B and F (p = 0.00093), consistent with underlying activity of the C11orf95-RELA pathogenic fusion

gene (Kolmogorov-Smirnov test).
and Anderson, 2002). In contrast, genes in axis 2 (samples A and

E) were enriched for the TSHZ3 and LHX9 co-expression net-

works (p = 0.04 for each), which are involved in neuronal fate

specification in normal development (Bertuzzi et al., 1999; Cau-

bit et al., 2016; 2010; Liu et al., 2015; Peukert et al., 2011; Rétaux
1302 Cell Reports 30, 1300–1309, February 4, 2020
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et al., 1999). Genes in axis 3 (samples B and F) were enriched for

RELA target genes, including CXCL2 and HSPA1A (p < 0.0001

for each), which are suggestive of immune signaling (Hayden

and Ghosh, 2008; Karin et al., 2002) and underlying activity of

the C11orf95-RELA pathogenic fusion gene.
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Figure 3. Phylogenetic Analysis Identifies Early Chromosome Structural Alterations and Epigenomic Intratumor Heterogeneity in Ependy-

moma

(A) Hierarchical clustering of regional samples using the top 2,000 most variable methylation probes closely recapitulates gene-expression-based clustering.

(B) Intratumor phylogeny based on clonal ordering of copy number variants derived from methylation analysis suggests that chromosomal structural alterations

are an early event during ependymoma tumorigenesis. The number and identity of copy number variants defining each axis are indicated.

(C) Intratumor phylogeny based on clonal ordering of somatic variants suggests an epigenomic contribution to molecular heterogeneity. The number of somatic

variants defining each axis is indicated.

(D) Hierarchical clustering restricted to highly variable EZH2 and SUZ12 target gene expression recapitulates the same clusters of samples as unbiased tran-

scriptome-wide analysis.

(E) Confocal microscopy of total cellular fluorescence demonstrated equivalent expression of fluorescent fusions of SETD2K2R (K2R) and wild-type SETD2 (WT).

(F–H) K2R fused to EGFP demonstrates diminished nuclear qualitative (F) and quantitative (G) localization and increased perinuclear aggregation (dotted circles)

relative to WT fused to EGFP in SF11435 anaplastic ependymoma cells. Consistently, WT overexpression increases qualitative (F) and quantitative (H) nuclear

H3K36me3 intensity relative to vector (V) and K2R overexpression. SETD2 constructs are shown in green, H3K36me3 chromatin marks are shown in red, and

nuclei are marked with Hoechst 3342 in blue. Quantitative data are normalized to control. Scale bar, 10 mm. *p < 0.0001; Student’s t test.

(legend continued on next page)
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Supratentorial ependymomas have been proposed to arise

from radial glia neural stem cells (Taylor et al., 2005), and we

discovered that developmental gene expression programs

defined intratumor heterogeneity in ependymoma (Figures 2C

and 2D). Thus, we hypothesized that clusters of samples would

show molecular similarity to cell types in the developing brain

(Nowakowski et al., 2017). To test that hypothesis, we quantified

the mean expression signatures of marker genes for the major

cell types in the developing cerebral cortex in each sample (Zhong

et al., 2018). Consistent with PCAgene enrichment analysis, sam-

ples C and D were enriched for oligodendrocyte progenitor cell,

astrocyte, and interneuron markers; samples A and E were en-

riched for neural progenitor cell and excitatory neuron markers;

samplesBandFwere enriched for astrocytemarkers; and sample

F was further enriched for microglia markers (Figure 2D).

To determine whether preoperative imaging could distinguish

between regions of molecular heterogeneity in ependymoma,

we performed quantitative magnetic resonance imaging and

compared differences between sample locations. Arterial spin

labeling measurement of perfusion revealed that stem-like re-

gions C and D exhibited elevated cerebral blood flow compared

to other regions (Figures 2E and 2F). On diffusion tensor imaging,

regions C and D had elevated fractional anisotropy, likely relating

to differences in cellular architecture given the similar cellularity

across the samples (Figures S2E, S2F, and S4D). Further, we

found that sample F, which was closest to the tumor centroid

(Figure S1A), had low cerebral blood flow (Figure 2E) andwas en-

riched in HSPA1A by RNA-seq (Figure S2G), a transcriptional

target of RELA that is implicated in prolonged hypoxia (Lewis

et al., 1999; Rahat et al., 2011). Consistently, sample F was en-

riched in an immune gene expression program (Figures 2C and

S2D) characteristic of microglia (Figure 2D), and hypoxia is an

important regulator of immune activation (Lewis et al., 1999; Ra-

hat et al., 2011). Cellular metabolism is also known to impact

chromatin modification, and differential expression analysis re-

vealed that the histone deacetylase gene HDAC9 was sup-

pressed in samples C and D (Figure S3), the regions with the

highest cerebral blood flow (Figures 2E and 2F).

To further investigate the putative stem-like markers identified

in samples C and D, we investigated the expression of OLIG1

and OLIG2 and found that both were enriched in stem-like re-

gions relative to other samples (Figure 2G). We also analyzed

the expression levels of OLIG1 and OLIG2 target genes from

the ARCHS4 database (Lachmann et al., 2018) that were highly

variable in our RNA-seq data and found that these targets

were also increased in samples C and D (Figure 2H). Conversely,

we found elevated expression of highly variable RELA targets in

samples B and F (Figure 2H), which is likely reflective of the un-

derlying activity of the C11orf95-RELA pathogenic fusion gene

(Kuleshov et al., 2016). These data are consistent with the hy-

pothesis that regional variation in OLIG1 and OLIG2 expression

and NF-kB pathway activation underlie intratumor heterogeneity

in ependymoma. Moreover, our findings suggest that, in this
(I) K2R overexpression in SF11435 cells increases cell proliferation relative to

normalized to cell proliferation with WT overexpression. *p < 0.0001; Student’s t

(J) PRC2 target genes are depleted in regions with higher allelic frequency of SE

gene silencing.
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ependymoma, intratumor heterogeneity is defined by neuronal

development and immunologic gene expression programs

that can be delineated by quantitative preoperative imaging

characteristics.

Epigenomic Profiling of Intratumor Heterogeneity in
Ependymoma Corroborates Neuronal Development
Signatures
To validate our gene-expression-based clustering results, we

applied PCA toward 850KDNAmethylation profiles of the 6 sam-

ples. DNA-methylation-based clustering paralleled RNA-seq re-

sults and delineated regions C and D from the remaining regions

in the first principal component (Figure S4A). Hierarchical clus-

tering of the most variable methylation probes further revealed

3 clusters that were concordant to those obtained using RNA-

seq (Figures 2B and 3A). Analysis of signature probes showed

that sites of hypomethylation in samples C and D were associ-

ated with stem cell genes (false discovery rate [FDR] = 0.016;

Figure S4B). Finally, we applied DNA methylation profiles to a

methylation-based random forest classifier (Capper et al.,

2018) to confirm that each sample unambiguously classified as

RELA fusion ependymoma (Figure S4C).

Phylogenetic Analysis Identifies Early Chromosome
Structural Alterations and Epigenomic Intratumor
Heterogeneity in Ependymoma
To assess clonal relationships between the 6 samples, we per-

formed phylogenetic ordering of copy number variation (CNV)

profiles derived from methylation arrays. Eleven of 18 CNVs de-

tected were common to all regions, although samples enriched

in differentiation gene expression programs (A, B, E, and F) ex-

hibited more CNVs than stem-like samples (C and D; Figure 3B;

Table S1).

To determine whether differences in somatic variants may un-

derlie intratumor heterogeneity in ependymoma, we performed

exome sequencing of the 6 samples and matched normal DNA

from peripheral blood. Consistent with diffusion tensor imaging

(Figures S2E and S2F), cellularity and ploidy analyses from

exome sequencing revealed little variability across ependy-

moma samples (cellularity range: 0.75–0.9; ploidy range: 3.4–

3.5), suggesting equivalent proportions of tumor cells in each re-

gion (Figure S4D). Importantly, phylogenetic ordering of CNVs

derived from exome sequencing was concordant with methyl-

ation-derived CNVs (Figure S4E; Table S1).

We identified 102 somatic variants (single-nucleotide variants

and indels) from exome sequencing across all 6 samples, among

which 3 were common to all samples and 75 were private to in-

dividual samples (Table S1). Forty-one variants were described

in the COSMIC database (Forbes et al., 2017), and 15 were pre-

dicted to be pathogenic (Shihab et al., 2013). In contrast to

CNVs, phylogenetic ordering of somatic variants revealed early

divergence of the 6 samples (Figure 3C; Johnson et al., 2014).

One of the earliest somatic variants that was detected in all
WT overexpression. Data are representative of 3 biologic replicates and are

test.

TD2K2R (C and D), consistent with antagonism between H3K36me3 and PRC2
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Figure 4. Mutation of the Epigenomic Regu-

lator SETD2 Is Associatedwith AdverseOut-

comes across All Cancers

(A) Analysis of 42,199 samples from cBioPortal

reveals 1,548 cancers with SETD2 alteration, rep-

resenting 3.7% of all cases. The 40 most common

cancers with SETD2 alterations are shown, with

omission of 93 additional cancer types with known

SETD2 alterations at lower frequencies.

(B) Patients from cBioPortal with SETD2 mutant

cancers have lower overall survival compared

to patients with SETD2 wild-type cancers (p =

0.000017; log rank test).

(C) Ontology analysis of differentially expressed

genes in 276 renal cell carcinomas from cBioPortal

with genetic or transcriptional alterations SETD2,

compared to 258 renal cell carcinomas with

wild-type SETD2, reveals heterogeneous gene

expression programs that are normally reserved

for CD4 T cells, fetal lung, brain cingulate gyrus,

brain substantia nigra, and smooth muscle. In

contrast, renal cell carcinomas with wild-type

SETD2 are enriched in gene expression programs

associated with penis foreskin primary cells and

regulatory T (T reg) primary cells.
samples was a 5A > G (p.K2R) missense substitution in the his-

tone methyltransferase SETD2. Inactivating mutations in SETD2

are implicated in diverse pediatric brain tumors (Fontebasso

et al., 2013), and we confirmed the SETD2K2R mutation in all tu-

mor samples, but not in peripheral blood, by targeted DNA

sequencing (Figure S4F). Remarkably, the highest mutant allele

frequencies of SETD2K2R were detected in regions C (0.282)

and D (0.352), the samples defined by stem cell transcriptional

networks (Figure S2D).

To elucidate the molecular impact of SETD2K2R, we asked

whether gene expression programs distinguishing clusters of

samples were enriched for targets of epigenomic regulators.

Genes in axis 2 (samples A and E) were enriched for targets of

SUZ12 (p = 0.00001) and EZH2 (p = 0.001), both of which are crit-

ical components of the polycomb repressive complex 2 (PRC2)

(Figure S4G). PRC2 is an epigenomic regulator that is antago-

nistic to SETD2 (Lachmann et al., 2010), and the allelic frequency

of SETD2K2R was lower in samples defined by neuronal differen-

tiation gene expression programs (A, B, E, and F; mean 0.244).

Consistently, hierarchical clustering using only expression of

highly variable PRC2 target genes recapitulated the same clus-

ters as unbiased transcriptome-wide analysis (Figure 3D),

suggesting an epigenomic contribution to intratumor molecular

heterogeneity in ependymoma.

To investigate the functional impact of the K2R substitution,

we overexpressed fluorescent fusions of wild-type SETD2 and

SETD2 with the 5A > G substitution (SETD2K2R) in supratentorial

anaplastic ependymoma cells with RELA fusion (Figure 3E). The

K2R substitution is within the nuclear localization sequence of

SET2, and consistently, SETD2K2R displayed diminished nuclear

intensity and increased perinuclear aggregation compared to

wild-type SETD2 (Figures 3F and 3G). Consistent with the chro-

matin-modifying function of SETD2, overexpression of wild-type
CELREP
SETD2 increased nuclear H3K36me3 intensity, but SETD2K2R

did not (Figure 3H). Moreover, SETD2K2R overexpression

increased cell proliferation and viability relative to wild-type

SETD2 overexpression (Figure 3I).

SETD2 is the primary methyltransferase for histone H3 lysine

36 (H3K36), a chromatin mark associated with active tran-

scriptional elongation (Kolasinska-Zwierz et al., 2009; Kouzar-

ides, 2007). H3K36 methylation antagonizes histone H3 lysine

(H3K27) methylation (Yuan et al., 2011), a chromatin mark that

is induced by PRC2 and is associated with gene repression

(Kouzarides, 2007). As nuclear localization of SETD2K2R is

impaired (Figures 3F and 3G), we hypothesized that regions

with higher allelic frequency of SETD2K2R would show greater

gene silencing by PRC2. To test that hypothesis, we analyzed

the expression of PRC2 target genes and found that many can-

didates were suppressed in regions with higher allelic frequency

of SETD2K2R (C and D), consistent with antagonism between

SETD2 transcriptional elongation and PRC2 gene silencing (Fig-

ure 3J). In sum, these data support epigenomic misregulation as

a contributing factor to ependymoma cell proliferation and sug-

gest that this paradigm may be particularly important in regions

defined by stem cell transcriptional networks.

Mutation of the Epigenomic Regulator SETD2 Is
Associated with Adverse Outcomes across All Cancers
Although SETD2 is not recurrently mutated in ependymoma

(Mack et al., 2018), we hypothesized that mutation of epigenomic

regulators may be a common feature of molecularly heteroge-

neous tumors and could therefore represent a biomarker of

adverse outcomes in cancer. To test that hypothesis, we queried

42,199 samples across all human cancers and identified 1,548 tu-

mors with SET2D2 mutations, representing a surprising 3.7% of

all cases (Figure 4A; Gao et al., 2013). Consistent with the
Cell Reports 30, 1300–1309, February 4, 2020 1305
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prognostic significance of SETD2 mutation in pediatric high-

grade glioma (Fontebasso et al., 2013; Mackay et al., 2017), pa-

tients with SETD2 mutant cancers exhibited significantly lower

overall survival compared to patients with SETD2 wild-type can-

cers (Figure 4B). In contrast to ependymoma, genetic or tran-

scriptomic alterations in SETD2 are identified in a remarkable

52% of renal cell carcinomas (Ricketts et al., 2018). Thus, we

compared differentially expressed genes in 534 renal cell carci-

nomas with and without alterations in SETD2 and found that tu-

mors with SETD2 alterations were enriched in heterogeneous

gene expression programs that are normally reserved for CD4

T cells, fetal lung, brain cingulate gyrus, brain substantia nigra,

and smooth muscle (Figure 4C). In sum, these data support a

greater paradigm of epigenomic dysregulation as a regulator of

intratumor heterogeneity and, in conjunction with our findings in

ependymoma, suggest that regional differences in chromatin ar-

chitecture may promote tumor growth and resistance to therapy.

DISCUSSION

We find that transcriptional signatures of molecular compart-

ments in this ependymoma recapitulate critical aspects of hu-

man cerebral cortex development. Remarkably, gene expres-

sion programs associated with oligodendrocyte progenitor

cells, neural progenitor cells, and mature microglia are spatially

distinct within this tumor. These data are consistent with the

observation that supratentorial ependymomas are associated

with gene expression profiles of the embryonic brain (Johnson

et al., 2010) and are also enriched in neural differentiation genes,

such as LHX2 and FOXG1 (Andreiuolo et al., 2010). Moreover,

our results in ependymoma are reminiscent of embryonal brain

tumors and other pediatric cancers, which are also associated

with misactivation of signaling pathways that are critical for cen-

tral nervous system development.

The SETD2K2R point substitution we report has been

described in acute lymphoblastic leukemia, where its functional

consequences are unknown (Mar et al., 2014). We hypothesize

that regional differences in gene dosage regulate nuclear locali-

zation of SETD2, resulting in heterogeneous chromatin states

within ependymoma that promote distinct developmental or dif-

ferentiation gene expression programs to maintain or suppress a

stem-like state, respectively. Indeed, H3K27 methylation at CpG

islands can lead to a hypermethylated state that is associated

with malignant transformation (Ohm et al., 2007; Schlesinger

et al., 2007; Widschwendter et al., 2007). Consistently, we find

that PRC2 activity is increased in ependymoma regions with

higher allelic frequency of SETD2K2R. Notably, SETD2 is not

recurrently mutated in ependymoma, but in the context of lower

overall survival for SETD2mutant cancers than SETD2 wild-type

malignancies, we speculate that our discovery of SETD2 muta-

tion as an epigenomic feature of molecular heterogeneity in an

ependymoma may represent a foundational discovery support-

ing a greater paradigm in ependymoma and other tumors.

Modeling these findings, however, is challenging. Reductionist

cell culture systems are poorly suited to comprehensive investi-

gations of intratumor heterogeneity, and primary tissues are not

amenable to mechanistic studies that might identify molecular

drivers of heterogeneity. Further, we cannot exclude the possi-
1306 Cell Reports 30, 1300–1309, February 4, 2020
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bility that intratumor heterogeneity in RNA transcription or DNA

methylation were a consequence of driver events not captured

by our current study, such as mutation of non-coding regions

within the genome (Weinhold et al., 2014). We acknowledge

that profiling multiple regions from a single tumor will not fully

reflect tumor heterogeneity in all ependymomas. Future studies

will be aimed at extending our findings across additional ependy-

momas and correlating them with clinical outcomes. Nonethe-

less, epigenomic variability resulting in intratumor heterogeneity

has been postulated for other malignancies (Ohlsson et al., 2003)

and represents a compelling process that may have important

implications for targeted therapies for ependymoma patients.

Indeed, epigenomic regulators are frequently mutated in epen-

dymoma (Huether et al., 2014), and epigenomic alterations

define lethal pediatric ependymomas without identifiable recur-

rent mutations (Mack et al., 2014). Further, intratumor heteroge-

neity is a significant source of resistance to cancer treatment

(Levine et al., 2019; Watkins and Schwarz, 2018), and histone

modifiers function as drivers of cellular heterogeneity and resis-

tance to molecular therapy (Hinohara et al., 2018). Thus, our dis-

covery of a heterogeneously expressed epigenomic regulator of

ependymoma cell proliferation suggests that such genes could

play a crucial role in modulating tumor sensitivity to both tradi-

tional ependymoma therapies and molecular agents.
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RNA-seq data This paper SRA: PRJNA597052

WES data This paper SRA: PRJNA597052

Experimental Models: Cell Lines

Human: SF11435 ependymoma cell culture UCSF Clinical Cancer Genomics

Laboratory

SF11435

Oligonucleotides

G-blocks IDT N/A

Genotyping: SETD2 forward 50-TGTAAAACGACGG

CCAGTCCTGTTACTCCTCGCGCCG-30
This paper N/A

Genotyping: SETD2 reverse 50-CAGGAAACAGCTA

TGACCGGTCAAGCCAACAGCTGCAA-30).
This paper N/A

SETD2 L1962P correction forward: 50-GACGCTGA

AATAGAGCCCAAAGAGAGCAACGGC-30
This paper N/A

SETD2 L1962P correction reverse: 50-GCCGTTGC

TCTCTTTGGGCTCTATTTCAGCGTC-30
This paper N/A

SETD2 K2R mutagenesis forward: 50-TCCGCTAGCG

CCACCATGAGGCAGCTGCAGCCGCAGCCGCCTCC-30
This paper N/A

SETD2 K2R mutagenesis reverse: 50-GGAGGCGGCT

GCGGCTGCAGCTGCCTCATGGTGGCGCTAGCGGA-30
This paper N/A

Recombinant DNA

SETD2-EGFP This paper N/A

SETD2K2R-EGFP This paper N/A

C11orf95 BACPAC Resources CH17-67K13; CH17-388O01

RELA BACPAC Resources RP11-642F7; CH17-211O12

YAP1 BACPAC Resources RP11-11N20; RP11-1082I13

Software and Algorithms

3D Slicer v4.8.0 https://www.slicer.org https://www.slicer.org

R v3.4.3 https://www.r-project.org https://www.r-project.org

oro.dicom v0.5.3 Whitcher et al., 2011 https://cran.r-project.org/web/packages/

oro.dicom

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Kallisto v0.43.1 Bray et al., 2016 https://pachterlab.github.io/kallisto/

JAFFA v1.09 Davidson et al., 2015 https://github.com/Oshlack/JAFFA/

Tophat v2.1.0 Kim et al., 2013 http://ccb.jhu.edu/software/tophat/

Minfi v1.30.0 Aryee et al., 2014;

Fortin et al., 2017

https://bioconductor.org/packages/

release/bioc/html/minfi.html

Limma v3.40.0 Ritchie et al., 2015 https://bioconductor.org/packages/

release/bioc/html/limma.html

Conumee v1.3.0 https://bioconductor.org/packages/

release/bioc/html/conumee.html

https://bioconductor.org/packages/

release/bioc/html/conumee.html

Bcbio https://github.com/bcbio/bcbio-

nextgen

https://github.com/bcbio/bcbio-nextgen

Picard suite http://broadinstitute.github.io/picard http://broadinstitute.github.io/picard

Genome Analysis Toolkit McKenna et al., 2010 https://software.broadinstitute.org/gatk/

Varscan2 v2.4.0 Koboldt et al., 2012 http://dkoboldt.github.io/varscan/

Freebayes Garrison and Marth, 2012 https://github.com/ekg/freebayes

Vardict Lai et al., 2016 https://github.com/AstraZeneca-

NGS/VarDict

Snpeff v4.3 Cingolani et al., 2012 http://snpeff.sourceforge.net

Sequenza v2.1.0 Favero et al., 2015 https://cran.r-project.org/web/packages/

sequenza/index.html

Ape v5.0 https://cran.r-project.org/web/

packages/ape

https://cran.r-project.org/web/

packages/ape
LEAD CONTACT AND MATERIALS AVAILABILITY

SETD2 mutant constructs are available upon request. Cell lines (SF11435) are available upon request. Further information and re-

quests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David R. Raleigh (david.

raleigh@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
SF11435 cells (male) weremaintained at 37�C in a 5%CO2 atmosphere with 21%oxygen, and grown in a 1:1 ratio of DMEM/F12 (Life

Technologies, Carlsbad, CA) and Neurobasal medium (Life Technologies) supplemented with 5%FBS (Life Technologies), B-27 sup-

plement without vitamin A (Life Technologies), N-2 supplement (Life Technologies), 1X GlutaMAX (Life Technologies), 1mM NEAA

(Life Technologies), 100U/mL Anti-Anti (Life Technologies), 20ng/mL EGF (R&D systems, Minneapolis, MN), 20ng/mL FGF2 (Pepro-

tech, Rocky Hill). Cell lines were validated using short-tandem repeat profiling at the UCSF Clinical Cancer Genomics Laboratory.

Tumor sample acquisition
A 29 year old male patient was taken to the operating room for a fronto-parietal parasagittal craniotomy for tumor resection. The pre-

operative stereotactic magnetic resonance images (MRI) were registered to physical space using the stereotactic neuronavigation

system (BrainLab�, Munich, Germany). The accuracy of the registration was confirmed using anatomic landmarks. Surgical resec-

tion of the tumor was carried out in the usual manner. Throughout the resection, fresh tissue samples were obtained. The location of

each sample (including a screenshot and DICOM coordinates) was collected using the stereotactic probe immediately prior to col-

lecting the sample. Once collected from the single tumor, each of the six regional samples were immediately passed off the surgical

field and placed into liquid nitrogen for subsequent analysis.

METHOD DETAILS

Quantitative imaging analysis
Preoperative MR imaging was performed on a 3.0 tesla scanner (Discovery; GE Healthcare, Waukesha, WI) using a neuronavigation

protocol that included 3D volumetric structural sequences without and with gadolinium contrast as well as axial diffusion tensor

imaging (DTI) and axial arterial spin labeling (ASL) perfusion imaging encompassing the brain.
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The preoperative stereotactic MRI was imported into 3D Slicer v4.8.0. The brain and tumor were each segmented using the editor

module, and the tumor volume was quantified using the label statistics module. DICOM coordinates collected from the stereotactic

neuronavigation system were entered into the markups module and used to generate a 3D model of the tumor with sample sites.

Regions of interest (ROI) were created around each point and used for downstream image analysis.

For radiographic characterization of the tumor and each spatially-defined sample, the 3D T1 post-gadolinium, DTI, and ASL images

were transferred to a commercially available software system (AW Server; GE Healthcare) for diffusion and perfusion processing and

analysis. Mean diffusivity (MD) and fractional anisotropy (FA) maps were generated on a voxel-by-voxel basis from the DTI imaging

dataset. For ASL perfusion calculations, cerebral blood flow (CBF) maps were also created on a voxel-by-voxel basis. The 3D T1

post-gadolinoum images were aligned to the same axial location as the MD, FA, and CBF maps. To account for tissue shifts and

sampling margin of error, 100mm3 spherical ROIs were manually delineated about the six annotated sampling sites. Once validated,

ROIs were transferred to MD, FA, and CBF maps to allow for collection of quantitative diffusion and perfusion metrics.

Sample distance metric analysis
DICOM files corresponding to the tumor and sample ROIs were imported using the oro.dicom package in the R statistical environ-

ment (Whitcher et al., 2011). Pairwise distances of samples from one another, as well the minimum pairwise distance from each sam-

ple to the tumor’s periphery and centroid, were calculated from DICOM coordinates. Heatmaps of sample distances were generated

using the gplots R package.

Tissue processing and immunohistochemistry
Immunohistochemical (IHC), and hematoxylin and eosin (H&E) stains were performed on formalin-fixed, paraffin embedded tissue

sections at the University of California San Francisco Immunohistochemistry Laboratory and the University of California San Fran-

cisco Neuropathology Brain Tumor Center Biomarkers Laboratory. Primary antibodies used were as follows: MIB-1/Ki-67 (MIB-1,

Dako, Glostrup, Denmark, 1:50 dilution), L1CAM (clone UJ127.11, Sigma, St Louis, MO, 1:3000 dilution), GFAP (Polyclonal, Dako,

1:3000 dilution) and EMA (cloneGP1.4, Leica, Newcastle Upon Tyne, United Kingdom, prediluted). All staining was performed in Ven-

tana or Leica Bond automated staining processors.

Fluorescence In Situ Hybridization (FISH)
Dual-color FISH was performed on 4 mm paraffin embedded tissue sections. Probes were derived from BAC clones (BACPAC Re-

sources, Oakland, CA) and labeled with either AlexaFluor-488 or AlexaFluor-555 fluorochromes. BAC clones were used to develop

break apart probes for the following genes: C11orf95 (CH17-67K13 & CH17-388O01), RELA (RP11-642F7 & CH17-211O12), and

YAP1 (RP11-11N20 & RP11-1082I13). Probes were co-denatured with the target cells on a slide moat at 90�C for 12 minutes. The

slides were incubated overnight at 37�C on a slide moat and then washed in 4M Urea/2xSSC at 25�C for 1 minute. Nuclei were coun-

terstained with DAPI (200ng/ml, Vector Labs, Burlingame, CA) for viewing on an Olympus BX51 fluorescence microscope equipped

with a 100-W mercury lamp; FITC, Rhodamine, and DAPI filters; 100X PlanApo (1.40) oil objective; and a Jai CV digital camera.

Images were captured and processed using the Cytovision software (Leica Biosystems, Richmond, IL).

RNA-seq
RNA was isolated from tumor samples using the AllPrep DNA/RNA/miRNA Universal Kit (QIAGEN, Valencia, CA). Library preparation

was performed using the TruSeq RNA Library Prep Kit v2 (RS-122- 2001, Illumina, San Diego, CA) and 50 bp single end reads were

sequenced on an Illumina HiSeq 2500 to a mean of 7 million reads per sample at the Center for Advanced Technology at the Univer-

sity of California San Francisco. Quality control of FASTQ files was performed with FASTQ. Transcript abundances were quantified

using Kallisto version 0.43.1with the flags ‘-b 100–single -t 10 -l 200 -s 50’ usingGENCODE release 26, based onGRCh38 (Bray et al.,

2016; Harrow et al., 2012; Kim et al., 2013). Principal component analysis was performed in the statistical environment R version 3.4.3

using the base command ‘prcomp’ with the parameters ‘center = TRUE, scale. = FALSE’ on log2 transformed transcripts per million

(TPM) values with a pseudocount of 1. Genes were ranked by the absolute value of the maximum gene loading scores in PCA space

among the first three principal components, which was determined based on diminishing variance explained in principal components

four and greater. Hierarchical clustering was performed using complete linkage hierarchical clustering using the log2 transformed

TPM values with pseudocount of 1. The top 250 most variable genes in principal components 1 to 3 were used for clustering, and

cluster assignments were robust to both linkage method (average or complete linkage) and also number of genes used. Identical

clusters were obtained using up to 10,000 variable genes for clustering analysis.

Analysis of developmental gene expression signatures was performed by obtaining cell type specific markers from Zhong et al.

(2018) and overlapping this gene list with the top 2,500 most variable genes from PCA in our analysis. The mean TPM expression

of the remaining cell type specific genes for each of the cell types described in Zhong et al. (2018) was calculated for each of the

ependymoma regions. The log2 transformed TPM values were then clustered by complete linkage hierarchical clustering.

Gene ontology analysis was performed using Enrichr, and p values displayedweremultiple hypothesis corrected adjusted p values

(Chen et al., 2013). PRC2 target genes were obtained from the ChIP enrichment analysis (ChEA) database release 2016 (Lachmann

et al., 2010) by filtering the gene lists for those containing EZH2, SUZ12, or EED in their titles.
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Fusion gene analysis using RNA-seq reads was performed using two independent fusion gene detectors. JAFFA version 1.09 was

executed using the flags ‘readLayout = single’ against the merged fastq files for all ependymoma regions (Davidson et al., 2015). The

fusion detection function of Tophat version 2.1.0 was executed using the flags ‘–bowtie1–no-coverage-search–fusion-search’

against the merged fastq files for all ependymoma regions, using the GRCh38 reference annotation.

DNA Methylation Arrays
Genomic DNA was isolated from tumor samples using the AllPrep DNA/RNA/miRNA Universal Kit (QIAGEN, Valencia, CA). DNA

(1000 ng) is bisulfite converted using the Zymo EZ DNAmethylation kit (Zymo Research, Irvine, CA) according to the manufacturer’s

recommendations. The amount of bisulfite-converted DNA as well as the completeness of bisuflite conversion for each sample are

assessed using a panel of MethyLight-based real-time PCR quality control assays. Bisulfite-converted DNA is then used as a sub-

strate for the Illumina EPICBeadArrays. Each sample is whole genome amplified (WGA) and then enzymatically fragmented. Samples

are then hybridized overnight to an 8-sample BeadArray, in which the WGA-DNA molecules anneal to locus-specific DNA oligomers

linked to individual bead types. Adenine and thymine nucleotides are labeled with cy5 (red), while cytosine nucleotides are labeled

with cy3 (green). BeadArrays are scanned and the raw signal intensities are extracted from the *.IDAT files using the ‘noob’ function in

theminfiR package (Aryee et al., 2014; Fortin et al., 2017). Only probes with detection p < 0.05 in all samples were included for further

analysis. Data were normalized using functional normalization (Fortin et al., 2014). Probeswere filtered based on the following criteria:

(i) removal of probes targeting the X and Y chromosomes (n = 11,551), (ii) removal of probes containing a common single nucleotide

polymorphism (SNP) within the targeted CpG site or on an adjacent basepair (n = 24,536), and (iii) removal of probes not mapping

uniquely to the hg19 human reference genome (n = 9,993). A total of 815,630 probes were retained for further analysis. Principal

component analysis was performed in the statistical environment R version 3.4.3 using the base command ‘prcomp’ with the param-

eters ‘center = TRUE, scale. = FALSE’ against the normalized b enrichment values (b = methylated/[methylated+unmethylated]).

Complete linkage hierarchical clustering was performed using the top 2,000 most variable probes, based on their absolute value

of gene loading scores in the first three principal components, across all ependymoma samples. For probe-level differential methyl-

ation analysis, the limma Bioconductor package was used to fit a linear model accounting for the paired nature of the data with a

FDR < 0.001 considered significant (Ritchie et al., 2015). b values were used for visualization of methylation levels and M values

were used for statistical analysis (M = log2[methylated/unmethylated]) (Du et al., 2010). Sample type classification was performed

using the random forest classifier of DNA methylation profiles on the Molecular Neuropathology web portal (Capper et al., 2018).

CNV profiles fromDNAmethylation data were generated as described previously (Capper et al., 2018) using the conumeeR package

v.1.3.0. Segments with combined probe intensities greater than 0.05 or less than �0.05 log2 ratio compared to 2 sets of 50 control

tissues with balanced chromosome profiles (Capper et al., 2018) were identified as either gain or loss, respectively.

Whole exome sequencing
Library preparation, exome capture and sequencingwere performed at the Institute for HumanGenetics at the University of California

San Francisco. Sequencing libraries were prepared using the Kapa Hyper Prep Kit and exome capture was performed with the Nim-

blegen SeqCap EZ Human Exome Kit v. 3.0. Paired end sequencing with read length 100 base pairs was performed on the Illumina

HiSeq4000. All subsequent data analysis was performed with the bcbio pipeline with default parameters [https://github.com/bcbio/

bcbio-nextgen]. Reads were aligned with the Burrows-Wheeler aligner (Li and Durbin, 2009) to the reference human genome (build

hg19). Only uniquely aligned reads were included for further processing with the Picard suite (http://broadinstitute.github.io/picard/)

and the Genome Analysis Toolkit (McKenna et al., 2010) for de-duplication, local realignment and base quality score recalibration.

Alignment quality metrics were calculated with the Picard suite. Somatic variants (point mutations, small indels) were identified

from matched tumor-normal samples using Varscan2 (Koboldt et al., 2012), Freebayes (Garrison and Marth, 2012) and Vardict

(Lai et al., 2016) at a significance threshold p < 0.05, and results from each algorithm were merged into a single Ensemble callset

including only those significant hits identified in at least 2 callers. Hits were further filtered based on quality metrics using default pa-

rameters including (i) mean base quality > 25, (ii) > 5 reads in tumor and normal sample, (iii) > 10% variant reads in tumor, (iv) > 90%

reference reads in normal, and (v) strand bias. Variants were annotated using Snpeff v4.3 (Cingolani et al., 2012)and were further

filtered to only include those marked as high, moderate or low priority and occurring in protein coding or splice site locations. Anno-

tations were obtained by querying the COSMIC database (Forbes et al., 2017). Ploidy, cellularity analysis, and chromosome segmen-

tation was performed using Sequenza version 2.1.0 (Favero et al., 2015) using default parameters against reads above quality score

of 20. Segmentation output from Sequenza were then used for generation of CNV profiles from whole exome sequencing data using

default parameters (Favero et al., 2015).

Sanger sequencing
Samples were genotyped for the SETD2 mutation to validate whole exome sequencing reads. The first exon of SETD2 was PCR

amplified using the GC-RICH PCR System (Roche Applied Science, Pleasanton, CA). PCR was performed with the SETD2-forward

(50-TGTAAAACGACGGCCAGTCCTGTTACTCCTCGCGCCG-30) and SETD2-reverse primers (50-CAGGAAACAGCTATGACCGGT

CAAGCCAACAGCTGCAA-30). The amplification profile was 40 cycles of denaturing at 95�C, annealing at 60�C, and extension at

72�C. PCR products were purified using the QIAGEN Gel Extraction kit, and submitted for Sanger sequencing with the M13-forward

sequencing primer (50-TGTAAAACGACGGCCAGT-30).
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Phylogenetic analysis
Binarymutation calls were used to build a distancematrix across all samples using theManhattan distancemetric, including a normal

tissue sample for which all mutations were absent. A phylogenetic tree was constructed using an ordinary least-squares minimum

evolution approach (Desper and Gascuel, 2002) from the APE R package (Paradis et al., 2004). Each branch of the resulting tree was

annotated with the total number of mutations attributed to that branch.

SETD2 cloning
Full-length SETD2 was initially cloned into a CMV-Eos2.1 vector backbone to generate SETD2-Eos2.1. A customG-block was used to

generate the coding sequence of the N-terminal 503 amino acids of SETD2 (Integrated DNA Technologies, Coralville, IA), which was

fused to the coding sequence C-terminal 2062 amino acids from SETD2-GFP (Addgene, Cambridge, MA) by restriction ligation of

NheI and AgeI sites. An internal missensemutation (L1962P) was corrected using theQuikChange Lightning Site-DirectedMutagenesis

Kit (Agilent Technologies, Santa Clara, CA) per themanufacturer’s protocol with the following primers: 50-GACGCTGAAATAGAGCCCA

AAGAGAGCAACGGC-30 and 50-GCCGTTGCTCTCTTTGGGCTCTATTTCAGCGTC-30. The K2R substitution was also introduced using

the QuikChange Lightning Site-Directed Mutagenesis Kit per the manufacturer’s protocol with the following primers: 50-TCCGC

TAGCGCCACCATGAGGCAGCTGCAGCCGCAGCCGCCTCC-30 and 50-GGAGGCGGCTGCGGCTGCAGCTGCCTCATGGTGGCGC

TAGCGGA-30. For experimentation, the complete SETD2 coding sequences either with or without the K2R substitution were moved

to pLMJ1, a viral vector suitable for mammalian transduction which affixed a C-terminal EGFP tag onto each SETD2 construct.

Microscopy and proliferation assays
Formicroscopy, SF11435 cellswere grown on glass coverslips and transducedwith eitherwild-type SETD2-EGFP or SETD2K2R-EGFP

using polybrene at 70% confluency. Forty-eight hours post transfection, cells were fixed in 4% PFA for 8 minutes, blocked in 2.5%

FBS, 200mMglycine, and 0.1%Triton X-100 in PBS for 30minutes, incubatedwith anti-GFP and anti-H3K36me3 (Abcam, Cambridge,

UK) primary antibodies overnight at 4�C, washed, and incubated with Alexa Fluor secondary antibodies (Thermo Fischer Scientific,

Waltham, MA) for 1 hour at room temperature. Hoechst 3342 (Life Technologies) was added to the secondary antibody inclubation

to mark DNA. Following a final wash, cells were mounted in ProLong Diamond Antifade Mountant (Thermo Fischer Scientific), and

immunofluorescence images were collected using a Zeiss 780 confocal microscope system (Carl Zeiss AG, Oberkochen, Germany).

For cell proliferation assays, SF11435 cells were grown in a 96-well plate and transduced with either wild-type SETD2-EGFP or

SETD2K2R-EGFP using polybrene at 50% confluency. Forty-eight hours post-transfection, cell proliferation was assayed using the

CellTiter 96 Non-Radioactive Cell Proliferation Assay and a GloMax Discovery plate reader per the manufacturer’s protocols (Prom-

ega, Madison, WI).

QUANTIFICATION AND STATISTICAL ANALYSIS

For Figures 2A–2C, 3A, S3, and S4A analysis is described above in section ‘‘DNA Methylation Arrays.’’

For Figures 2D, 3D, and 3J, analysis is described above in section ‘‘RNA-seq.’’

For Figure 2H, boxplots demonstrate median with first and third quartiles, whiskers represent 1.5*IQR. Tests of significance using

the non-parametric Kolmogorov-Smirnov test, described in figure legends, to account for non-normally distributed data.

For Figure 3B, analysis is described above in section ‘‘Phylogenetic Analysis.’’

For Figures 3C and S4E, analysis is described above in section ‘‘Whole exome sequencing.’’

For Figure 3F, Signal intensities were quantified from 2D maximum intensity projections using ImageJ by outlining nuclei and

measuring the integrated density of SETD2 fluorescent fusion proteins relative to total cellular integrated density.

For Figures 3E and 3G–3I, data are representative of 3 biologic replicates and are normalized to cells with WT overexpression,

except that nuclear H3K36me3 nuclear intensity was normalized to cells transfected with empty vector. Tests of significance per-

formed with Student’s t test, described in figure legends.

For Figure 4, SETD2 mutational status was queried on the cBioportal in 42,199 pan-cancer samples (curated set of all non-redun-

dant samples) (Gao et al., 2013). Samples were then stratified by those with WT SETD2 or those with any alteration in SETD2

(including in-frame, missense, truncating, fusion, amplification, or deep deletion mutation). Overall survival was performed using

Kaplan-Meier analysis, and significance calculated using the log rank test. Described in main text and figure legends.

For Figure S1, analysis is described in above section ‘‘Sample distance metric analysis.’’

For Figures S2D and S4G Gene ontology analysis was performed using Enrichr, and p values displayed were multiple hypothesis

corrected adjusted p values (Chen et al., 2013).

For Figure S4B,Gene ontology analysis of differentially methylated regions was performed using the Genomic Regions Enrichment

of Annotations Tool (GREAT) using default settings.

DATA AND CODE AVAILABILITY

Methylation array data are deposited at GEO accession GEO: GSE142320. RNA-seq and whole exome-seq data are deposited at

SRA accession PRJNA597052.
e5 Cell Reports 30, 1300–1309.e1–e5, February 4, 2020

CELREP 7227



Cell Reports, Volume 30
Supplemental Information
Multiplatform Molecular Profiling

Reveals Epigenomic Intratumor

Heterogeneity in Ependymoma

S. John Liu, Stephen T. Magill, Harish N. Vasudevan, Stephanie Hilz, Javier E. Villanueva-
Meyer, Sydney Lastella, Vikas Daggubati, Jordan Spatz, Abrar Choudhury, Brent A.
Orr, Benjamin Demaree, Kyounghee Seo, Sean P. Ferris, Adam R. Abate, Nancy Ann
Oberheim Bush, Andrew W. Bollen, Michael W. McDermott, Joseph F.
Costello, and David R. Raleigh



A C

Figure S1, Related to Figure 1. Stereotactic mapping of an anaplastic ependymoma with C11orf95-RELA fusion. 
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Figure S2, Related to Figure 2. Genomic and radiologic characterization of an anaplastic ependymoma with C11orf95-RELA fusion.
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(A) Segmental chromosome 11q deletions and amplifications detected on targeted DNA sequencing, consistent with chromothripsis. 
(B) Number of exon junction spanning reads supporting C11orf95-RELA fusion as detected by JAFFA and Tophat Fusion (left), and gene 
fusion schematic with hg38 genomic coordinates (right). (C) Expression of ependymoma markers from RNA-seq reveals uniform 
enrichment of C11orf95-RELA target genes across samples. (D) Gene ontology analysis shows distinct enrichment patterns of stem-like, 
neuronal fate specification and immune signaling genes in stereotactic samples. (E, F) Quantitative MRI measurements of stereotactically-
defined regions demonstrates enhanced fractional anisotropy in samples with stem-like identity (C and D). White circles indicate 
stereotactic sample locations. DTI, diffusion tensor imaging; FA, fractional anisotropy; MD, mean diffusivity; MRI, magnetic resonance 
imaging. (G) RNA-seq expression of the hypoxia gene HSPA1A across samples shows enrichment in sample F, the sample closest to the 
tumor centroid. 



Figure S3, Related to Figure 2. Differences in cerebral blood flow drive intratumor heterogeneity within an anaplastic ependymoma 
with C11orf95-RELA fusion.
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(A) Differential RNA-seq expression analysis of high versus low blood flow regions reveals 515 significantly expressed genes. 
(B) RNA-seq expression of the histone deacetylase gene HDAC9 across samples shows depletion in samples C and D, the samples with 
the highest blood blow. 



Figure S4, Related to Figure 3. Intratumor heterogeneity within an anaplastic ependymoma with C11orf95-RELA fusion.
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(A) PCA of DNA methylation profiles reveals 69% percent of variation is explained by the first two principal components (PC). 
(B) Genomic Regions Enrichment of Annotations Tool (GREAT) gene ontology analysis of hypomethylated probes in samples and D is 
consistent with expression of stem cell genes. (C) DNA methylation profile based classification reveals RELA ependymoma in each 
sample (Capper et al., 2018). (D) Cellularity and ploidy results from Sequenza analysis demonstrates equivalent tumor composition in each 
sample. (E) Intratumor phylogeny based on clonal ordering of copy number variants derived from exome sequencing suggests that 
chromosomal structural alterations are an early event during ependymoma tumorigenesis. The number and identify of copy number variants 
defining each axis are indicated. (F) Sanger sequencing of SETD2 exon 1 reveals 5A>G (p.K2R) missense substitution in all tumor samples. 
(G) Chromatin Enrichment Analysis (ChEA) gene ontology of the top 200 genes in axis 2 from RNA-seq PCA shows enrichment for targets 
of SUZ12 and EZH2. Vertical dashed line corresponds to P=0.05.
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