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1 The ProPrPCA-Krige model and algorithm

1.1 The model

The ProPrPCA-Krige assumes that X =
∑q

l=1

(
ulv

T
l +El

)
and ul = Rβl +ηl, where

ul ∈ Rn, vl ∈ Rp, βl ∈ Rk, Eij ∼ N (0, γ2), and ηl ∼ N (0,Σ(ξl)). For notation simplifica-
tion, we are going to ignore the subscript l for the following mathematical derivation. The
parameter estimation is the same for all PC. For each PC, the model becomes:

X = uvT +E,

u = Rβ + η,

Denote Θ = {v,β, γ2, ξ} as the collection of the model parameters. To solve for Θ, we first
rewrite the model in the conventional vectorized version. Denote W ∈ RN , for N = np, as
the vectorized version of X, i.e.

W =

W 1
...
W n

 =

X1:
...
Xn:

 ,
where X i: is the i-th row of X. The model assumes that W i = X i: = uiv + εi, for
i = 1, ..., n. Here v represents the transformation from the latent variable space to the
multi-pollutant exposure space, and εi’s are i.i.d. Gaussian noises distributed with mean
zero and variance γ2. The full model can then be written as W = V u+ε, where V = In⊗v
and ⊗ denotes the Kronecker product. The model also assumes that the latent variables
are normally distributed with a spatial mean model and covariance structure. That is,
u ∼ N (Rβ,Σ(ξ)). In this paper, we assume Σ(ξ) has an exponential structure with no
nugget effect. For identifiability, we assume that ‖v‖2 = 1. When every element of X is
observed, we have the following hierarchical model:

W | u ∼ N
(
V u, γ2IN

)
,

u ∼ N (Rβ,Σ(ξ)) .

In practice, not all pollutants are measured at every monitoring location. Denote
W o ∈ RNo as the collection of all observed elements of W , and Wm ∈ RNm as the collection
of all missing entries, where No+Nm = N . Algebraically, there exists a linear transformation
G such that

GW =

[
Go

Gm

]
W =

[
W o

Wm

]
,

where Go ∈ RNo×N and Gm ∈ RNm×N . Each row and column of G contains exactly one
element of one and (N − 1) zeros. Thus by construction, Go and Gm are both full row
rank, as well as GoG

T
o = INo and GmG

T
m = INm . The hierarchical model for the observed
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elements become:

W o | u ∼ N
(
GoV u, γ

2INo

)
,

u ∼ N (Rβ,Σ(ξ)) .

1.2 Estimation of model parameters when monitoring data is com-
plete

Our approach to estimate the model parameters is similar to the EM algorithm em-
ployed by Tipping and Bishop (1999). We consider the latent variable u to be the “missing”
portion. Thus the “complete” data consists of the observed data W , and the latent vari-
able u. The goal is then to maximize the joint likelihood of (W ,u), i.e. L = f(W ,u) =
f(W |u)f(u). The “complete” log-likelihood, up to a constant, is:

`c = −N
2

log γ2 − 1

2
log |Σ| − 1

2γ2
(W − V u)T(W − V u)− 1

2
(u−Rβ)TΣ−1(u−Rβ).

Because this log-likelihood involves u which is unobserved, in each E step, we find the
expectation of `c with respect to the conditional distribution of u|W . We first derive this
distribution as follows:

f(u|W ) ∝ exp

[
− 1

2γ2
(W − V u)T(W − V u)

]
× exp

[
−1

2
(u−Rβ)TΣ−1(u−Rβ)

]
∝ exp

{
− 1

2

[
uT

(
1

γ2
V TV + Σ−1

)
u− uT

(
1

γ2
V TW + Σ−1Rβ

)
−
(

1

γ2
W TV + βTRTΣ−1

)
u

]}
.

Thus the distribution of u|W is N (M ,S), where:

S =

(
1

γ2
V TV + Σ−1

)−1

,

M = S

(
1

γ2
V TW + Σ−1Rβ

)
.

We can further simplify these expressions by noticing that V TV = In and V TW =
Xv, using properties of Kronecker products. The conditional covariance and mean become

S =

(
1

γ2
In + Σ−1

)−1

,

M = S

(
1

γ2
Xv + Σ−1Rβ

)
.
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Given a current estimate Θ̃, the expectation of `c with respect to u|W is:

E
[
`c |W , Θ̃

]
= −N

2
log γ2 − 1

2
log |Σ| − 1

2γ2
E
[
(W − V u)T(W − V u) |W , Θ̃

]
− 1

2
E
[
(u−Rβ)TΣ−1(u−Rβ) |W , Θ̃

]
(1)

The conditional distribution u|W , Θ̃ is N (M̃ , S̃), where M̃ = M (Θ̃) and S̃ = S(Θ̃). This
implies that

V u−W ∼ N
(
V M̃ −W ,V S̃V T

)
,

u−Rβ ∼ N
(
M̃ −Rβ, S̃

)
.

Thus the first expectation term of (1) is

E
[
(W − V u)T(W − V u) |W , Θ̃

]
= Tr

(
V S̃V T

)
+ (V M̃ −W )T(V M̃ −W )

= Tr(S̃) + (V M̃ −W )T(V M̃ −W ).

The second expectation term of (1) is

E
[
(u−Rβ)TΣ−1(u−Rβ) |W , Θ̃

]
= Tr

(
Σ−1S̃

)
+ (M̃ −Rβ)TΣ−1(M̃ −Rβ)

Hence (1) can be simplified as

E
[
`c |W , Θ̃

]
= −N

2
log γ2 − 1

2
log |Σ| − 1

2γ2
Tr(S̃)− 1

2γ2
(V M̃ −W )T(V M̃ −W )

− 1

2
Tr
(
Σ−1S̃

)
− 1

2
(M̃ −Rβ)TΣ−1(M̃ −Rβ).

To solve for v, we effectively maximize {− 1
2γ2

(V M̃ −W )T(V M̃ −W )}, which can
be rewrite as follows:

− 1

2γ2
(V M̃ −W )T(V M̃ −W )

=− 1

2γ2

∥∥∥W − V M̃
∥∥∥2

2
= − 1

2γ2

∥∥∥∥

X1:

X2:
...
Xn:

−

v 0 ... 0
0 v ... 0
...

...
. . .

...
0 0 ... v



M̃1

M̃2
...

M̃n


∥∥∥∥2

2

=− 1

2γ2

n∑
i=1

∥∥∥X i. − M̃iv
∥∥∥2

2
= − 1

2γ2

n∑
i=1

p∑
j=1

(
Xij − M̃ivj

)2

.
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Differentiate this expression with respect to each vj, we get

v̆j =

∑n
i=1 XijM̃i∑n
i=1 M̃

2
i

=

∑n
i=1 XijM̃i∥∥M̃∥∥2

2

.

Thus, the solution for v can be written in closed-form as

v̂ =
v̆

‖v̆‖2

, where v̆ =
XTM̃∥∥M̃∥∥2

2

To solve for γ2, we maximize
{
− N

2
log γ2− 1

2γ2
Tr(S̃)− 1

2γ2
(V M̃ −W )T(V M̃ −W )

}
.

The closed-form solution for γ2 is simply

γ̂2 =
1

N

[
Tr(S̃) +

∥∥V M̃ −W
∥∥2

2
.
]

The solution for β by maximizing
{
− 1

2
(M̃ −Rβ)TΣ−1(M̃ −Rβ)

}
is

β̂ = (RTΣ−1R)−1RTΣ−1M̃ .

Finally, to solve for ξ, we maximize
{
− 1

2
log |Σ|− 1

2
Tr
(
Σ−1S̃

)
− 1

2
(M̃−Rβ)TΣ−1(M̃−

Rβ)
}

numerically, where Σ is a function of ξ. In this paper, we adopt the exponential

covariance structure for Σ. For identifiability, we assume that Σ has no nugget effect.

Thus, parameter estimation of ProPrPCA-Krige with complete monitoring data can
be summarized as:
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Algorithm: ProPrPCA-Krige with complete monitoring data

Input X, R, q, and tmax
for l in {1, ..., q} do

X l ←X l−1 − ûl−1v̂
T
l−1 where X0 = X, û0 = 0, and v̂0 = 0

Initialize v
(0)
l , (γ

(0)
l )2, β

(0)
l , ξ

(0)
l , and t = 1

Σ
(0)
l ← Σ(ξ

(0)
l )

while not converged or t < tmax do

S̃l ←
[
(γ

(t)
l )−2In + (Σ

(t)
l )−1

]−1

M̃ l ← S̃l

[
(γ

(t)
l )−2X lv

(t)
l + (Σ

(t)
l )−1Rβ

(t)
l

]
ṽl ←XT

l M̃ l/
∥∥M̃ l

∥∥2

2

v
(t+1)
l ← ṽl/‖ṽl‖2

(γ
(t+1)
l )2 ← (np)−1

[
Tr(S̃l) +

∥∥(In ⊗ v(t+1)
l )M̃ l − vec(X l)

∥∥2

2

]
ξ

(t+1)
l ← arg max

ξl

{
− log |Σl| −Tr

(
Σ−1
l S̃l

)
− (M̃ l −Rβ(t)

l )TΣ−1
l (M̃ l −Rβ(t)

l )
}

where Σl = Σ(ξl)

β
(t+1)
l ←

(
RTΣ̂(ξ

(t+1)
l )−1R

)−1

RTΣ̂(ξ
(t+1)
l )−1M̃ l

t← t+ 1
end while

v̂l ← v
(t)
l , γ̂2

l ← (γ
(t)
l )2, β̂l ← β

(t)
l , ξ̂l ← ξ

(t)
l

ûl = X lv̂l
end for

Output {v̂1, ..., v̂q}, {û1, ..., ûq}, {β̂1, ..., β̂q}, {γ̂2
1 , ..., γ̂

2
q}, {ξ̂1, ..., ξ̂q}

1.3 Parameter estimation and model-based imputation with miss-
ing monitoring data

The hierarchical model in the case of missing monitoring data can be written as

W o | u ∼ N
(
GoV u, γ

2INo

)
,

u ∼ N (Rβ,Σ(ξ)) .

Thus the “complete” log-likelihood becomes

`c = −No

2
log γ2 − 1

2
log |Σ| − 1

2γ2
(W o −GoV u)T(W o −GoV u)

− 1

2
(u−Rβ)TΣ−1(u−Rβ).

Similar to the case with complete data, we first derive the conditional distribution of
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u|W o as follows

f(u|W o) ∝ exp

[
− 1

2γ2
(W o −GoV u)T(W o −GoV u)

]
× exp

[
−1

2
(u−Rβ)TΣ−1(u−Rβ)

]
∝ exp

{
− 1

2

[
uT

(
1

γ2
V TGT

oGoV + Σ−1

)
u− uT

(
1

γ2
V TGT

oW o + Σ−1Rβ

)
−
(

1

γ2
W T

oGoV + βTRTΣ−1

)
u

]}
.

Thus the distribution of u|W o is N (M ,S), where:

S =

(
1

γ2
V TGT

oGoV + Σ−1

)−1

,

M = S

(
1

γ2
V TGT

oW o + Σ−1Rβ

)
.

Hence the expectation of `c with respect to the distribution of u|W o, Θ̃ is:

E
[
`c |W o, Θ̃

]
= −No

2
log γ2 − 1

2
log |Σ| − 1

2γ2
Tr(V TGT

oG
T
oV S̃)

− 1

2γ2
(GoV M̃ −W o)

T(GoV M̃ −W o)

− 1

2
Tr
(
Σ−1S̃

)
− 1

2
(M̃ −Rβ)TΣ−1(M̃ −Rβ) (2)

The solutions for γ2,β, and ξ that maximize (2), given current estimates, are relatively
similar to the complete case:

β̂ =
(
RTΣ−1R

)−1
RTΣ−1M̃ ,

ξ̂ = arg max
ξ

{
−1

2
log |Σ| − 1

2
Tr
(
Σ−1S̃

)
− 1

2
(M̃ −Rβ)TΣ−1(M̃ −Rβ)

}
,

γ̂2 =
1

No

[
Tr(V TGT

oGoV S̃) +
∥∥GoV M̃ −W o

∥∥2

2

]
.

7
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To solve for v, we maximize a slightly different function,

h(v) = − 1

2γ2
Tr(V TGT

oG
T
oV S̃)− 1

2γ2
(GoV M̃ −W o)

T(GoV M̃ −W o)

= − 1

2γ2


Tr





∑
j∈Ω1.

v2
j 0 ... 0

0
∑
j∈Ω2.

v2
j ... 0

...
...

. . .
...

0 0 ...
∑
j∈Ωn.

v2
j


S̃


+

n∑
i=1

∑
j∈Ωi.

(
Xij − M̃ivj

)2


= − 1

2γ2

[
n∑
i=1

∑
j∈Ωi.

S̃iiv
2
j +

n∑
i=1

∑
j∈Ωi.

(
Xij − M̃ivj

)2
]

= − 1

2γ2

n∑
i=1

∑
j∈Ωi.

[
S̃iiv

2
j +

(
Xij − M̃ivj

)2
]

= − 1

2γ2

n∑
i=1

[
S̃iiv

2
j +

(
Xij − M̃ivj

)2
]

1[j∈Ωi.].

Here Ωi. denotes the set of observed elements across the i-th row of X and 1[.] denotes the
indicator function. Taking derivative of h(v) with respect to each vj and setting it equal to
zero, we can find the closed-form unscaled solution

v̆j =

∑n
i=1 XijM̃i1[j∈Ωi.]∑n

i=1

(
S̃ii + M̃2

i

)
1[j∈Ωi.]

.

The final solution for v is then v̂ = v̆
‖v̆‖2

, where v̆ = (v̆1, ..., v̆p).

When some elements of the exposure data are missing, parameter estimation for each
PC is based only on the observed elements W o. Estimate for PC score can then be made
by projecting the model-based imputed exposure data onto the direction of v. The joint
distribution of W o and Wm can be written as

[
W o

Wm

]
∼ N

([
mo

mm

]
,

[
Coo Com

Cmo Cmm

])
= N (M ,C)

where M = GV Rβ and C = γ2GGT + GV ΣV TGT. The missing elements, Wm, can
then be imputed by the conditional mean,

E(Wm |W o) = mm + CmoC
−1
oo (W o −mo).

Thus, the parameter estimation of ProPrPCA-Krige with missing monitoring data can
be summarized as:

8
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Algorithm: ProPrPCA-Krige with missing monitoring data

Input X, R, Go q, and tmax
for l in {1, ..., q} do

X l ←Xzero
l−1 − û

zero
l−1 v̂

T
l−1 where Xzero

0 = X imputed with zeros, ûzero0 = 0, and v̂0 = 0
W o ← Govec(X l)

Initialize v
(0)
l , (γ

(0)
l )2, β

(0)
l , ξ

(0)
l , and t = 1

Σ
(0)
l ← Σ(ξ

(0)
l )

while not converged or t < tmax do

S̃l ←
[
(γ

(t)
l )−2V

(t)T
l GT

oGoV
(t)
l + (Σ

(t)
l )−1

]−1

where V
(t)
l = In ⊗ v(t)

l

M̃ l ← S̃l

[
(γ

(t)
l )−2V

(t)T
l GT

oW o + (Σ
(t)
l )−1Rβ

(t)
l

]
v

(t+1)
l ← ṽl/‖ṽl‖2 where the j−th element of ṽl (for j = 1, ..., p) is calculated as:∑n

i=1(X l)ij(M̃ l)i1[j∈Ωi.]∑n
i=1

(
(S̃l)ii + (M̃ l)2

i

)
1[j∈Ωi.]

(γ
(t+1)
l )2 ← (No)

−1
[
Tr(V

(t+1)T
l GT

oGoV
(t+1)
l S̃l) +

∥∥V (t+1)T
l GT

o M̃ l −W o

∥∥2

2

]
where V

(t+1)
l = In ⊗ v(t+1)

l

ξ
(t+1)
l ← arg max

ξl

{
− log |Σl| −Tr

(
Σ−1
l S̃l

)
− (M̃ l −Rβ(t)

l )TΣ−1
l (M̃ l −Rβ(t)

l )
}

where Σl = Σ(ξl)

β
(t+1)
l ←

(
RTΣ̂(ξ

(t+1)
l )−1R

)−1

RTΣ̂(ξ
(t+1)
l )−1M̃ l

t← t+ 1
end while

v̂l ← v
(t)
l , γ̂2

l ← (γ
(t)
l )2, β̂l ← β

(t)
l , ξ̂l ← ξ

(t)
l

Xzero
l ← X l with elements at missing indices replaced with zero

X imp
l ← X l with elements at missing indices replaced with conditional means

ûzerol = Xzero
l v̂l

ûl = X imp
l v̂l

end for

Output {v̂1, ..., v̂q}, {û1, ..., ûq}, {β̂1, ..., β̂q}, {γ̂2
1 , ..., γ̂

2
q}, {ξ̂1, ..., ξ̂q}
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2 The ProPrPCA-Spline model and algorithm

2.1 The model

For each PC, the ProPrPCA-Spline algorithm assumes the following model

X = ZβvT +E

Here Z contains both geographic covariates and the thin-plate spline basis functions. The
collection of model parameters Θ now includes {v,β, γ2}. Using the same vectorization
established in previous section, the model assumes W i = X i. = (Zβ)i v+εi, for i = 1, ..., n.
We can then rewrite this model in the vectorized form as

W | Θ ∼ N
(
V Zβ, γ2IN

)
,

where V = In ⊗ v. When there are missing data, the distribution of interest becomes

W o | Θ ∼ N
(
GoV Zβ, γ

2INo

)
.

2.2 Estimation of model parameters when monitoring data is com-
plete

To solve for the parameters, we maximize the log-likelihood (up to a constant) directly:

`(Θ |W ) = − 1

N
log γ2 − 1

2γ2
(W − V Zβ)T (W − V Zβ)

To solve for v, we effectively maximize the following function:

− 1

2γ2
(W − V Zβ)T (W − V Zβ)

Denote K = Zβ ∈ Rn×1, we can rewrite this function similarly to the function involved
v with complete data for ProPrPCA-Krige. Thus, the solution for v can be written in
closed-form as

v̂ =
v̆

‖v̆‖2

, where v̆ =
XTK∥∥K∥∥2

2

=
XTZβ∥∥Zβ∥∥2

2

.

The closed-form solution for β is straightforwardly a result of ordinary least squares,

β̂ =
[
(V Z)T(V Z)

]−1
(V Z)TW . This can be further simplified thanks to the constraint on

v and noticing that V TV = In. Thus we have, β̂ =
(
ZTZ

)−1
(Z ⊗ v)TW . Finally, the

solution for γ2 is simply γ̂2 = N−1
∥∥W −V Zβ∥∥2

2
. Thus parameter estimation of ProPrPCA-

Spline with complete monitoring data can be summarized as:

10
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Algorithm: ProPrPCA-Spline with complete monitoring data

Input X, Z, q, and tmax
for l in {1, ..., q} do

X l ←X l−1 − ûl−1v̂
T
l−1 where X0 = X, û0 = 0, and v̂0 = 0

Initialize v
(0)
l , (γ

(0)
l )2, β

(0)
l , and t = 1

while not converged or t < tmax do

v
(t+1)
l ← ṽl/‖ṽl‖2 where ṽl ←XT

l Zβ
(t)
l /
∥∥Zβ(t)

l

∥∥2

2

β
(t+1)
l ←

(
ZTZ

)−1
(
Z ⊗ v(t+1)

l

)T
vec(X l)

(γ
(t+1)
l )2 ← (np)−1

∥∥vec(X l)− (In ⊗ v(t+1)
l )Zβ

(t+1)
l

∥∥2

2

t← t+ 1
end while

v̂l ← v
(t)
l , γ̂2

l ← (γ
(t)
l )2, β̂l ← β

(t)
l

ûl = X lv̂l
end for

Output {v̂1, ..., v̂q}, {û1, ..., ûq}, {β̂1, ..., β̂q}, {γ̂2
1 , ..., γ̂

2
q}

11
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2.3 Parameter estimation and model-based imputation with miss-
ing monitoring data

The observed log-likelihood with missing monitoring data is

`(Θ |W o) = − 1

No

log γ2 − 1

2γ2
(W o −GoV Zβ)T (W o −GoV Zβ) .

The solutions for β and γ2 are trivial and fairly similar to those with complete data. To
solve for v, we maximize {− 1

2γ2
(W o − GoV Zβ)T(W o − GoV Zβ)}. We can rewrite the

function of v as

− 1

2γ2
(W o −GoV Zβ)T (W o −GoV Zβ)

=− 1

2γ2
(W o −GoV K)T (W o −GoV K)

=
n∑
i=1

∑
j∈Ωi.

(Xij −Kivj)
2 =

n∑
i=1

(Xij −Kivj)
2 1[j∈Ωi.],

Taking derivative with respect to each vj and setting it equal to zero, we can find the closed-
form unscaled solution

v̆ =

∑n
i=1XijKi1[j∈Ωi.]∑n
i=1K

2
i 1[j∈Ωi.]

.

The final solution for v is then v̂ = v̆
‖v̆‖2

, where v̆ = (v̆1, ..., v̆p).

When some elements of the exposure data are missing, parameter estimation for each
PC is based only on the observed elements W o. Estimate for PC score can then be made by
projecting the model-based imputed exposure data onto the direction of v. The missing ele-
ments, Wm, can then be imputed by its estimate GmV̂ Zβ̂. Thus the parameter estimation
of ProPrPCA-Spline with missing monitoring data can be summarized as:
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Algorithm: ProPrPCA-Spline with missing monitoring data

Input X, Go Z, q, and tmax
for l in {1, ..., q} do

X l ←Xzero
l−1 − û

zero
l−1 v̂

T
l−1 where Xzero

0 = X imputed with zeros, ûzero0 = 0, and v̂0 = 0
W o ← Govec(X l)

Initialize v
(0)
l , (γ

(0)
l )2, β

(0)
l , and t = 1

while not converged or t < tmax do

v
(t+1)
l ← ṽl/‖ṽl‖2 where the j−element of ṽl for j = 1, ..., p is calculated as:∑n

i=1(X l)ij(K l)i1[j∈Ωi.]∑n
i=1(K l)2

i1[j∈Ωi.]

, and K l = Zβ
(t)
l

β
(t+1)
l ←

[(
GoV

(t+1)
l Z

)T (
GoV

(t+1)
l Z

)]−1 (
GoV

(t+1)
l Z

)T
W o

where V
(t+1)
l = In ⊗ v(t+1)

l

(γ
(t+1)
l )2 ← No

−1
∥∥W o −GoV

(t+1)
l Zβ

(t+1)
l

∥∥2

2

t← t+ 1
end while

v̂l ← v
(t)
l , γ̂2

l ← (γ
(t)
l )2, β̂l ← β

(t)
l

Xzero
l ← X l with elements at missing indices replaced with zero

X imp
l ← X l with elements at missing indices replaced with conditional means

ûzerol = Xzero
l v̂l

ûl = X imp
l v̂l

end for

Output {v̂1, ..., v̂q}, {û1, ..., ûq}, {β̂1, ..., β̂q}, {γ̂2
1 , ..., γ̂

2
q}

13
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3 Simulations

3.1 Data generating mechanism for high-dimensional simulations

To further demonstrate the performance of ProPrPCA, we simulate multi-pollutant
exposure surfaces with p = 15. We first generate three underlying PC scores on the 100×100
grid (N = 10, 000), such that

uj ∼ N (Rjbj,Sj) , where j = 1, 2, 3,

R1 =
[
r1o r1u

]
, where r1o, r1u ∼ N (0,1), bT1 =

[
5 1

]
,

R2 =
[
r2o r2u

]
, where r2o, r2u ∼ N (0,1), bT2 =

[
5 2

]
,

R3 =
[
r3u

]
, where r3u ∼ N (0,1), b3 = 1.

In this setting, rjo’s are GIS covariates observed for the model, while rju’s are unobserved co-
variates, and used primarily to generate the scores themselves. That is, only R =

[
r1o r2o

]
is used in the spatial prediction model. Here S1 has exponential structure with no nugget
effect, partial sill of 5, and range of 50. Meanwhile, S2 = 7.5IN and S3 = 2IN . This setup
is created so that u1 is the most spatially predictable, u2 is moderately predictable in space,
and u3 is not spatially predictable. Here spatial predictability refers to how well the quantity
can be predicted at new locations using relevant and available covariates.

We then create two scenarios in which we scale the variance of uj’s differently,

Scenario 1: V ar(u1) = 10, V ar(u2) = 7.5, V ar(u3) = 5,

Scenario 2: V ar(u1) = 7.5, V ar(u2) = 5, V ar(u3) = 10.

In both scenarios, the multi-pollutant exposure surface is generated as

X = UV +E, where Eij ∼ N (0, 1)

V =
[
v1 v2 v3

]
, where vj =

v̆j∥∥v̆j∥∥2

, for j = 1, 2, 3

v̆T1 =
[
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

]
v̆T2 =

[
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

]
v̆T3 =

[
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

]
The use of such sparse loadings is to clearly identify the behavior of each dimension reduction
method. Because of the variance contribution setup, in scenario A we expect all three
methods to pick u1 as PC1, u2 as PC2, and u3 as PC3. In scenario B, however, we expect
TradPCA to pick u3 as PC1, u1 as PC2, and u2 as PC3, as u3 has the largest variance
contribution. Meanwhile, PredPCA and ProPrPCA-Spline will still pick u1 as PC1, u2 as
PC2.

For these high-dimensional simulations, we consider three MCAR scenarios (30%, 35%,
and 40%), and one MAR scenario. In the MAR scenario, we identify training locations with
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r1o value larger than its sample 60th percentile, and among x1 through x5, 75% of these
training locations become missing data. For the rest of the pollutants, from x6 to x15, each
has 25% of its locations missing completely at random. This setup guarantees a mild spatial
pattern in the missing data, as x1 to x5 are generated entirely by u1, which is the most
predictable score based on r1o.

3.2 Evaluation of computational burden

Figure 1: Computational time (average over 1,000 simulations under high-dimensional scenario
1) of PCA, PredPCA, ProPrPCA-Krige and ProPrPCA-Spline, with complete and MCAR 35%
missing data by training sample size.

Figure 1 compares the computation burden among PCA, PredPCA, ProPrPCA-Krige,
and ProPrPCA-Spline as the sample size increases. The results were averaged over 1,000
simulations under high-dimensional scenario 1, for complete data and MCAR 35% scenarios.
The results were mostly under 1 second, on average, for PCA, PredPCA, and the Spline
model. The computational burden of the Krige model is exponentially larger than the rest.
While there maybe computational and programming tricks to alleviate the time cost, the
Krige model would be likely to still take longer than other methods, given the nature of
difficult optimization and EM algorithm.
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4 Data Application

Table 1: Prediction R2’s from leave-one-site-out cross-validation on 2010 CSN data. Sites with
complete PM2.5 component data are used as test data. Training data may include only complete
sites (complete training data), or all available sites (full training data). The PCs are defined in the
order of which they are obtained, i.e. PC1, PC2, PC3 are the first, second, and third PCs returned
by the methods, respectively.

PC1 PC2 PC3
PCA (complete training data) 0.24 0.51 0.51
PredPCA (complete training data) 0.52 0.44 0.62
LRMC + PredPCA (full training data) 0.54 0.53 0.45
ProPrPCA-Spline (full training data) 0.57 0.35 0.69

In this section, we evaluate the predictive performance in leave-one-site-out cross-
validations. Table 1 shows the results when the PCs are simply defined in the order of
which they are obtained. As discussed in the main text of the manuscript, while having de-
cent performance for PC2 and PC3, using PCA applied to the complete training data yields
a poor result for PC1. PredPCA has similar performances for PC1 with either complete
or full training data. However, there is a trade-off in performances between PC2 and PC3,
which can potentially be explained by the switching between PC2 and PC3 observed in the
pollutant profile. ProPrPCA-Spline applied on the full training data shows the highest pre-
dictive performance for PC1 and PC3, but suffers from a decrease in the ability to predict
PC2 well.

Table 2: Prediction R2’s from leave-one-site-out cross-validation on 2010 CSN data. Sites with
complete PM2.5 component data are used as test data. Training data may include only complete
sites (complete training data), or all available sites (full training data). The PCs are defined in
the order of variance explained in the training data, i.e. PC1 is the component with the largest
variance contributed, and so on.

PC1 PC2 PC3
PCA (complete training data) 0.24 0.51 0.51
PredPCA (complete training data) 0.52 0.44 0.62
LRMC + PredPCA (full training data) 0.54 0.45 0.53
ProPrPCA-Spline (full training data) 0.57 0.41 0.65

Similar to Shen and Huang (2008), we also order the PCs by the variance explained
in the training data, as given in Table 2. That is, in each round of the cross-validation
procedure, out of the three PCs obtained by each PCA method, PC1 is defined as the
component with the largest variance explained in the training data, and so on for PC2 and
PC3. For spatially predictive methods, especially PredPCA, the order of variance explain
was not necessary the same as the order by which the PCs were produced. Thus, while
the results for PCA (and PredPCA) with complete training data were the same in both
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Tables, the results with full training data were slightly different for the last two PCs. With
this reordering approach, the results were more similar for PC2, and there was an apparent
advantage of using ProPrPCA-Spline compared to PredPCA after imputation.
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