Appendix A: Supporting Materials for

2D J-Correlated Proton NMR Experiments for Structural Fingerprinting of Biotherapeutics

Robert G. Brinson and John P. Marino*

Institute for Bioscience and Biotechnology, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States

* Corresponding author, e-mail: john.marino@nist.gov

Fig. S1. 2D ¹H COSY spectral fingerprints of ¹H_N - ¹H_{aliphatic} region of HEWL collected at 600 MHz and 25 °C. (A) 2D ¹H DQF-COSY; (B) 2D IP-COSY. Positive contours are shown in black and negative contours in red. The upfield aliphatic region is included for comparative purposes. While setting 3.0 ppm as the upfield cut-off for the fingerprint region, only a few upfield H α resonances are lost for subsequent analysis. However, as can be seen from the TOCSY spectra (Figure S2A, B), many other side chain ¹H resonances appear \leq 3.0 ppm. Choosing this cut-off predominantly selects for ¹H_N-¹H_{$\alpha} correlations.$ </sub>

Fig. S2. 2D ¹H homonuclear spectra of ${}^{1}H_{N}$ - ${}^{1}H_{aliphatic}$ region of the NIST-Fab collected at 600 MHz and 50 °C. (A) 2D ¹H IP-COSY; (B) 2D ¹H COIN-TACSY using DIPSI-2rc. Positive contours are shown in black and negative contours in red. Negative artifacts in panel B are from residual water, apodization artifacts, or magnetization leakage in the COIN-TACSY. The IP-COSY was collected with 32 scans per transient and the COIN-TACSY with 16 scans per increment, affording total experimental times of 3 hours 19 minutes and 8 hours 23 minutes, respectively. All other experimental parameters were as described in the Materials and Methods section and Table S2.

Fig. S3. 2D ¹H TOCSY-type spectra of ¹H_N - ¹H_{aliphatic} region of lysozyme collected at 600 MHz and 25 °C. (A) 2D ¹H TOCSY using DIPSI-2; (B) 2D ¹H TOCSY using DIPSI-2rc; (C) 2D ¹H COIN-TACSY using DIPSI-2; (D) 2D ¹H COIN-TACSY using DIPSI-2rc. Positive contours are shown in black and negative contours in red. ROE artifacts in panels A and C are removed by the addition of a relaxation compensation delay in the DIPSI-2rc pulse train (panels B and D). Additional positive and negative artifacts in panels C and D are from magnetization leakage in the COIN-TACSY.

Fig. S4. Pulse sequence for 2D COIN-TACSY experiment with DIPSI-2rc. Thin and thick bars represent nonselective 90° and 180° pulses, respectively. The selective 90° pulses was achieved with the e-SNOB shape pulse, which provides a 270° rotation [1]. For setting parameters for the e-SNOB pulse, it was empirically determined that suppression of up field resonances was best achieved using a pulse duration of 771 µs, corresponding to an excitation bandwidth of 2,100 Hz, and an offset of -2,000 Hz. The isotropic mixing period, τ , is represented by rectangles with diagonal slashes, was achieved with two cycles of the DIPSI-2 [2] or DIPSI-2rc [3] pulse trains. For preferred implementation of the COIN-TACSY using DIPSI-2rc, an rf amplitude of 38.5 kHz with a τ period of 8.98 ms was used. The cross relaxation compensation delay was set to 41.6 µs. Phases used are $\varphi_1 = \{x, -x\}; \varphi_2 = \{x, x, x, x, -x, -x, -x\}; \varphi_3 = \{x, x, -x, -x\}; \varphi_4 = \{x, -x, -x, -x, -x, -x, -x\}$. Quadrature detection using States-TPPI was achieved by incrementing φ_1 . The δ delay, pread post TACSY mixing period, was 10 µs. Water suppression was achieved by presaturation and 3-9-19 Watergate. PFG designates the pulse field gradients applied along the z-axis: G1 = G2 = 20 G/cm with a duration of 1.0 ms.

Note: It was found that implementation of the COIN-TACSY using DIPSI-2rc required a Bruker AVANCE III or later console vintages due to console memory requirements. In contrast, the original COIN-TACSY using DIPSI-2 could be implemented on any Bruker AVANCE console. The pulse sequence was not tested on an instrument of another manufacturer, such as an Agilent/Varian or a JEOL NMR system.

Table S1: Relative peak intensities: qualitative comparison of the sensitivity of the 2D ¹H, ¹H *J*-correlated spectra

	Relative Peak Height ⁺						
	Slice at 5.05 ppm		Slice at 4.07 ppm				
	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5		
Clean TACSY	1.00	1.00	1.00	1.00	1.00		
TACSY	0.63	0.66	0.76	0.77	0.78		
TOCSY	0.89	1.09	0.75	0.65	0.80		
Clean TOCSY	0.33	0.35	0.46	0.27	0.82		
IP-COSY	0.26	0.26	0.08	0.09	0.08		

⁺Each peak is normalized to the intensity in the clean COIN-TACSY experiment. The five peaks are labeled accordingly in Fig. 3.

Table S2: Selected Experimental parameters and overall experimental times.See Materials and MethodsSection for complete details.

	Peak Type	F1, total points	F2, total points	Mixing Time	Scans	Experimental Time
Clean TACSY	H_N - H_α	2,690	1,024	85 ms	8	3 h
TACSY	H_N - H_α	2,690	1,024	83 ms	8	3 h
Clean TOCSY	H_N - H_{all}	2,690	1,024	80 ms	8	3 h
TOCSY	H_N - H_{all}	2,690	1024	80 ms	8	3 h
IP-COSY ⁺	H_N - H_α	2,690	208	N/A	8	0.5 h
DQF-COSY	H_N-H_{α}	2,690	1,024	N/A	32	12 h

⁺Due to the use of a constant time period for t_1 evolution, the maximum number of total points that could be collected was 208.

Supplementary References

- 1. Kupce, E., J. Boyd, and I.D. Campbell, *Short selective pulses for biochemical applications*. J Magn Reson B, 1995. **106**(3): p. 300-3.
- 2. Shaka, A.J., C.J. Lee, and A. Pines, *Iterative schemes for bilinear operators; application to spin decoupling.* J Magn Reson (1969), 1988. **77**(2): p. 274-293.
- 3. Cavanagh, J. and M. Rance, Suppression of cross-relaxation effects in TOCSY spectra via a modified DIPSI-2 mixing sequence. J Magn Reson (1969), 1992. **96**(3): p. 670-678.