Supporting Information for: NHC-Copper Mediated Ligand-Directed Radiofluorination of Aryl Halides

Liam S. Sharninghausen,[†] Allen F. Brooks, [‡]Wade Winton,[‡] Katarina J. Makaravage, [†] Peter J. H. Scott^{*‡} and Melanie S. Sanford^{*†}

† Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States

‡ Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States

Table of Contents

		<u>Page No.</u>
1.	General	S3
2.	Materials and Methods	S3
3.	Stoichiometric Fluorination of Aryl Halides	S3
	3.1. General procedure for the stoichiometric fluorination of aryl halides	S3
	3.2. Additional screening	S4
	3.3. Unsuccessful substrates	S6
	3.4. Effect of DMAP additive on the fluorination reaction	S7
	3.5. Fluorination using IPrCuOTf/KF	S8
	3.6. Identification of NHC-aryl side product	S8
4.	Synthesis of IPrCuF with KF	S8
5.	Radiofluorination of Aryl Halides	S8
	5.1. Radiofluorination materials and methods	S8
	5.2. Preparation of K ¹⁸ F	S9
	5.3. General procedure for the radiofluorination of aryl halides	S9
	5.4. Identification and quantification of radiofluorinated products	S9
	5.5. HPLC conditions	S10
	5.6. Automated synthesis of 1-18F	S10
	5.7. Molar activity calculations	S10
	5.8. Additional radiofluorination screening	S11
	5.9. Negative controls for optimized radiofluorination reaction	S14
	5.10. Unsuccessful substrates for radiofluorination	S15
	5.11. Reactions with Ag ¹⁸ F	S16
6.	Synthesis of Novel Compounds	S16
	6.1. Preparation of imines	S16
	6.2. Preparation of additional directed substrates	S22
	6.3. Preparation of probenecid derivatives	S24
	6.4 Preparation of vismodegib derivatives	S25
	6.5. Preparation of MK-2 inhibitor derivatives	S27
	6.6. Preparation of (NHC)CuF complexes	S29
7.	X-Ray Crystallography	S31
8.	NMR Spectra of Novel Compounds	S36
9.	HPLC Traces of Radiofluorination Reactions	S123
10.	References	S143

1. General

The syntheses of organometallic complexes and preparation of stoichiometric and radiofluorination screening reactions were carried out in a N₂-filled glovebox. NMR spectra were obtained on a Varian VNMR 700 (699.76 MHz for ¹H; 175.95 MHz for ¹³C), Varian VNMR 500 (500.09 MHz for 1H; 470.56 MHz for ¹⁹F; 125.75 MHz for ¹³C), or Varian VNMR 400 (401 MHz for ¹H; 376 MHz for ¹⁹F; 123 MHz for ¹³C) spectrometer. ¹H and ¹³C NMR chemical shifts are reported in parts per million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. ¹⁹F NMR chemical shifts are reported in parts set in the NMR data are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Yields of reactions that generated fluorinated products were determined by ¹⁹F NMR spectroscopic analysis using a relaxation delay of 5 s. Mass spectral data were obtained on a Micromass Magnetic Sector Mass Spectrometer in electrospray ionization mode. X-ray crystallographic data were collected on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer. Flash chromatography was performed using a Biotage Isolera One system with cartridges containing high performance silica gel.

2. Materials and Methods

Unless otherwise stated, reagents were purchased from commercial suppliers and used as received. The following reagents were prepared according to literature procedures: IPrCuCl,¹ sIPrCuCl,² IAdCuCl,³ slCyCuCl,⁴ IPrCuOTf,⁵ Cu(tBuCN)₂OTf,⁶ 1-Br,⁷ 1-Cl,⁸ 1-I,⁹ 1-F,¹⁰ 2-F,¹¹ 3-Br,¹² 3-F,¹² 6-Br,¹³ 7-F,¹⁴ 8-Br¹⁵ and 2-fluoro-5-(methoxyphenyl)boronic acid.¹⁶ Imines 4-Br,¹⁷ 4-Cl,¹⁷ 9-Br,¹⁸ 11-Br,¹⁹ 18-Br²⁰ and 18-F²¹ were prepared according to the general procedure described in Section 6.1 and spectra of these compounds matched those previously reported. IPrCuF,²² sIPrCuF,⁵ and sICyCuF⁴ were prepared according to novel procedures (See Section 6.6), and spectral data for these compounds matched those in the literature. Cu(CH₃CN)₄OTf and Cu(CH₃CN)₄PF₆ were purchased from Millipore Sigma and recrystallized from a CH₃CN/Et₂O mixture under an inert atmosphere. Aldehydes were purchased from commercial suppliers. Potassium fluoride (KF) was supplied by The Dow Chemical Company. Tetramethylammonium fluoride (TMAF, anhydrous) was purchased from Millipore Sigma. N,Ndimethylformamide (DMF, 99.8%, Millipore Sigma), N.N-dimethylacetamide (DMA, 99%, Millipore Sigma), dimethylsulfoxide (DMSO, 99.8%, Acros), acetonitrile (CH₃CN, 99.9%, Millipore Sigma), Nmethylpyrrolidinone (NMP), and N,N'-dimethylpropyleneurea (DMPU) were transferred directly into a N₂ glovebox prior to opening and dried over activated molecular sieves for at least 3 days prior to use. The water content in the DMF was determined to be 6 ppm via Karl Fischer titration. Tetrahydrofuran (THF). toluene, dichloromethane (DCM), and pentane were sparged with argon, dried over alumina columns using an Innovative Technologies solvent system, and further dried over activated molecular sieves for at least 3 days prior to use. Dioxane was purchased from Acros and dried over activated molecular sieves. THF and dioxane were further dried by the addition of a small amount of metallic sodium. Molecular sieves were activated under vacuum at 180 °C for 3 days.

3. Stoichiometric Fluorination of Aryl Halides

3.1 General procedure for the stoichiometric fluorination of aryl halides

In a N₂-containing glovebox, a 4 mL vial containing a stir bar was charged with dry, air-free DMF (450 µL), a stock solution of aryl halide in DMF (0.006 mmol aryl halide, 100 µL), and a stock solution of (NHC)CuF in DMF (0.006 mmol in 100 µL). The vial was capped with a PTFE-lined screw cap (Thermo ScientificTM 13 mm Autosampler Vial Screw Thread Caps with septa, catalog # 03-378-316), sealed with electrical tape, removed from the glovebox, and heated to 120 or 140 °C on a hot plate equipped with an aluminum multi-reaction heating block. The homogeneous colorless to pale yellow solution was allowed to stir at this temperature for 21 h. After cooling to room temperature, α, α, α -trifluorotoluene or 4,4'-difluorobiphenyl was added as an internal standard, and the reaction yield was quantified using ¹⁹F NMR spectroscopy. Product identity was confirmed by ¹⁹F NMR spectroscopy by spiking the sample with the authentic product. Control reactions using other fluoride sources were carried out analogously to those with the (NHC)Cu complexes but with the following modification: the fluoride reagent was weighed into the 4 mL vial rather than using a stock solution, since the fluoride sources are not soluble in DMF at room temperature. Time-course reactions were run in screw-cap NMR tubes using the following modified

procedure: In a N₂-containing glovebox, an NMR tube fitted with a screw-cap was charged with dry, air-free DMF (350 μ L), a stock solution of aryl halide in DMF (0.01 mmol aryl halide, 100 μ L), a stock solution of (NHC)CuF in DMF (0.01 mmol in 100 μ L) and a stock solution of and 4,4'-difluorobiphenyl in DMF (0.01 mmol in 100 μ L) as the internal standard. The NMR tube was capped with a PTFE-lined screw cap, sealed with electrical tape, removed from the glovebox, and heated at 140 °C in an oil bath.

3.2 Additional screening

Table S1. Solvent screen for the stoichiometric fluorination of **1-Br.** The general procedure described in Section 3.1 was followed while varying the solvent.

 Table S2.
 Temperature screen for the stoichiometric fluorination of 1-Br.
 The general procedure described in Section 3.1 was followed while varying the temperature.

^aYield reported as sum of fluorinated imine product (37%) and a small amount of aldehyde (3%).

 Table S3. NHC ligand screen for the stoichiometric fluorination of 1-Br. The general procedure described in Section

 3.1 was followed while varying the copper complex.

Table S4. Screen of alternative fluoride sources. The general procedure described in Section 3.1 was followed while varying the fluoride source.

3.3. Unsuccessful substrates

Figure S1. Attempted fluorination of non-directing substrates.

The following non-directing substrates yielded no observed fluorinated product when subjected to our optimized reaction conditions:

3.4. Effect of DMAP additive on the fluorination reaction

 Table S5. Effect of DMAP additive on stoichiometric fluorination reaction. The general procedure described in Section 3.1 was followed.

2	1-Br	none	120	65
3	4-Br	DMAP	140	44 ^a
4	4-Br	none	140	40 ^b
/ield reported a	s sum of fluorinated	t imine product (40%) au	nd a small amount	of aldehvde (4%

^aYield reported as sum of fluorinated imine product (40%) and a small amount of aldehyde (4%). ^bYield reported as sum of fluorinated imine product (37%) and a small amount of aldehyde (3%).

Figure S2. Effect of DMAP on reaction rate^{a,b}

^aReactions were run in screw-cap NMR tubes. Yields were determined by integration vs. the internal standard 4,4'-difluorobiphenyl. ^bThe procedure for time-course reactions described in Section 3.1 was followed.

3.5. Fluorination using IPrCuOTf/KF^a

^aConditions: IPrCuOTf (0.006 mmol), KF (1 or 2 equiv.), additive (0 or 1 equiv), substrate (1 equiv) DMF (0.01 M).

3.6. Identification of NHC-aryl side product

An NHC-aryl coupled species was identified by electrospray HRMS as a side product in the fluorination reaction. The observed mass (542.3535) closely matches that predicted for the compound (542.3533).

4. Synthesis of IPrCuF with KF

Experimental Procedure:

In a N₂-containing glovebox, a 4 mL vial was charged with KF (0.009 mmol) and a stock solution of IPrCuX (X = CI or OTF; 0.006 mmol, 650 µL DMF). The vial was capped with a PTFE-lined screw cap (Thermo Scientific[™] 13mm Autosampler Vial Screw Thread Caps with septa, catalog # 03-378-316), removed from the glovebox, and heated at 140 °C for 30 min with stirring. The mixture was cooled to room temperature, the vial was transferred into the glovebox, and 4,4'-difluorobiphenyl was added as an internal standard. The mixture was analyzed by ¹⁹F NMR spectroscopy. IPrCuF was identified based on its ¹⁹F NMR shift, and the yield was quantified by integration versus the internal standard.

5. Radiofluorination of Aryl Halides

5.1 Radiofluorination materials and methods

See the Materials and Methods (Section 2) for details on the synthesis and purification of chemicals. Unless otherwise stated, reagents were purchased from commercial suppliers and used as received. Solvents N,N-dimethylformamide (DMF, 99.8%, Millipore sigma), N,N-dimethylacetamide (DMA, 99%,

Millipore Sigma), dimethylsulfoxide (DMSO, 99.8%, Acros), and acetonitrile (CH₃CN, 99.9%, Millipore Sigma) were transferred directly into a N₂ glovebox prior to opening and dried over activated molecular sieves for 3 days prior to use. KOTf and K₂CO₃ were purchased from Fisher Scientific. Sterile product vials were purchased from Hollister-Stier. QMA-light Sep-Paks were purchased from Waters Corporation. QMA-light Sep-Paks were flushed with 10 mL of ethanol, followed by 10 mL of 90 mg/mL KOTf solution, and 10 mL of sterile water prior to use.

5.2 Preparation of K¹⁸F

K¹⁸F was synthesized according to our previously reported procedure using a TRACERLab FX_{FN} automated radiochemistry synthesis module (General Electric, GE). Anhydrous, air-free DMF (4 mL) was transferred from a sealed vial to an argon-filled vial in the automated reactor using a syringe under a positive flow of argon. [18F]Fluoride was produced via the 18O(p,n)18F nuclear reaction using a GE PETTrace cyclotron (55 µÅ beam for 2-5 min generated ca. 150-375 mCi of [18F]fluoride). The [¹⁸F]fluoride was delivered to the synthesis module in a 2.5 mL bolus of [¹⁸O]water and trapped on a QMA-light Sep-Pak preconditioned with potassium triflate (10 mL, 0.5 M) to remove [¹⁸O]water and other impurities. [¹⁸F]Fluoride was eluted into the reaction vessel using 550 µL of an aqueous solution containing 10 mg of potassium triflate and 50 µg of potassium carbonate. CH₃CN (1 mL) was added to the reaction vessel, and the resulting solution was dried by azeotropic distillation to provide anhydrous K¹⁸F. Azeotropic drying/evaporation was achieved by heating the reaction vessel to 100 °C and drawing vacuum for 6 min. The reaction vessel was then simultaneously subjected to an argon stream and vacuum draw for an additional 6 min. Anhydrous, air-free DMF was added to the dried reagent, and the sample was cooled to 40 °C and then transferred to an S10 sterile vial for subsequent use in reactions. As an example, approximately 50 mCi of prepared K¹⁸F in 4 mL of DMF was isolated with a 3 min cvclotron beam. It should be noted that percent recovery data is only relevant for manual reactions, not automated one-pot syntheses. Note: All loading operations were conducted under a positive flow of argon, which was used as a pressurizing gas during automated sample transfers. Ag¹⁸F/K_{2.2.2} was prepared and dried according to our previously reported procedure²³ and eluted with DMF. Ag¹⁸F was prepared was prepared analogously but without the addition of K_{2.2.2}.

5.3 General procedure for the radiofluorination of aryl halides

In a N₂-containing glovebox, a 4 mL vial was charged with a stock solution of aryl halide in DMF (0.005 mmol, 100 µL), a stock solution of IPrCuOTf in DMF (0.005 mmol, 100 µL), and a stock solution of 4dimethylaminopyridine (DMAP) in DMF (0.005 mmol, 25 µL). The vial was capped with a PTFE-lined screw cap (Thermo Scientific[™] 13mm Autosampler Vial Screw Thread Caps with septa, catalog # 03-378-316), removed from the glovebox, and transferred to the University of Michigan PET center. Freshly prepared K¹⁸F in DMF (100 µL) was added to the capped vial through the septum, and the reaction mixture was heated at 120, 140 or 160 °C for 30 min on a hot plate equipped with an aluminum multireaction heating block. The time between preparation of the sample and the addition of K¹⁸F was generally 2–3 h. Radiochemical conversion (RCC) was quantified using radio-TLC (Eckert and Ziegler Bioscan AR 2000 Radio-TLC scanner) and product identity was confirmed by an HPLC unit equipped with a radiation detector (Eckert and Ziegler Flow Count). Reactions using Cu complexes other than IPrCuOTf were carried out analogously to those with IPrCuOTf, but with the following modification: Cu complexes not soluble in DMF at room temperature were weighed into the 4 mL vial rather than being drawn from a stock solution. Similarly, for reactions using additives not soluble in DMF, the additive was weighed directly into the vial rather than using a stock solution.

The following parameters were varied: Cu source; additives; fluoride source; temperature (120, 140, 160 °C).

5.4 Identification and quantification of radiofluorinated products

Radiochemical conversion (RCC) was determined using radio-TLC. The crude reaction mixture was spotted on a silica gel TLC plate using 1:1 ethyl acetate:hexane as the eluent. The distribution of ¹⁸F was visualized using a Bioscan AR 2000 Radio-TLC scanner (Eckert and Ziegler), and the conversion was

determined by integrating the peak corresponding to the fluorinated product and dividing by the total integrated area of ¹⁸F on the plate. For complex substrates **19-Br** and **20-CI**, more polar developing mixtures (100% ethyl acetate (**19-Br**) and 4:1 DCM:methanol (**20-CI**) were used. For these substrates, more than one ¹⁸F-containing spot was observed on the TLC plate. The peak corresponding to the desired product was identified by co-spotting with the authentic ¹⁹F product to determine the R_f of the desired product. Integrating this peak gave the radiochemical conversion, and its identity was further confirmed by radio-HPLC analysis (see below). The identity of the radiofluorinated products was determined through HPLC analysis. For each substrate, the crude reaction mixture was spiked with a small amount of the authentic ¹⁹F-containing product and injected into the HPLC unit. Both UV and RAD traces were collected. The presence of the ¹⁸F product was confirmed by the presence of a RAD peak with a retention time corresponding to that of the UV peak due to the co-injected authentic ¹⁹F-containing product. The UV and RAD detectors are sequentially aligned (with the sample passing through the UV detector first), resulting in a ~0.2 min delay between the corresponding UV and RAD peaks.

5.5 HPLC conditions

HPLCs of reaction mixtures and authentic standards were run using the following method: Column: Phenomenex Luna 5 µm C18(2) 100 Å 150 mm x 4.6 mm Flow Rate: 2 mL/min Solvent A: H₂O Solvent B: MeCN Gradient: 0–3 min, 5% B; 3–17 min, linear gradient, 5–95% B; 17–20 min, 95% B; 20–30 min, 5% B

Isocratic HPLC for compound $1^{-18}F$ was run using a Gemini C18, 250 x 4.6 mm, 5 µm column with a flow rate of 2 mL/min. The eluent was 40% CH₃CN with 50 mM NH₄HCO₃ at pH 10.

5.6 Automated synthesis of 1-¹⁸F

All loading operations were conducted under a positive flow of Ar, which was used as a pressurizing gas during automated sample transfers. K¹⁸F was prepared using a TRACERLab FX_{FN} automated radiochemistry synthesis module (General Electric, GE). [18F]Fluoride was produced via the 18O(p,n)18F nuclear reaction using a GE PETtrace cyclotron. K¹⁸F was produced as indicated above. In a N₂-filled glovebox, stock solutions of 1-Br (0.02 mmol in 0.5 mL of DMF), IPrCuOTf (0.02 mmol in 0.5 mL of DMF), and DMAP (0.02 mmol in 0.3 mL of DMF) were added to a 4 mL vial. The vial was capped with a PTFElined screw cap (Thermo Scientific™ 13mm Autosampler Vial Screw Thread Caps with septa, catalog # 03-378-316) and removed from the glovebox. The solution was transferred to an Ar-filled vial in the synthesis module under a positive flow of Ar. Subsequently, this solution was transferred to a reactor containing dry K¹⁸F by applying Ar gas through the valve containing the reagent solution. Open valves leading out of the reactor were closed, and the mixture was stirred for 30 min at 140 °C. The mixture was then cooled to 50 °C with compressed air cooling, and 2 mL of HPLC buffer (30% MeCN, 10 mM NH₄HCO₃, pH 10) was added to the reactor. This mixture was allowed to stir for approximately 1 min and was then transferred to an HPLC loop for injection and purification by semi-preparative chromatography (Phenomenex Gemini, 250 x 10 mm, 10µm, 4 mL/min). The product was collected and diluted in a flask containing H₂O (50 mL). Compound 1-¹⁸F was then trapped on a C18 extraction disk, washed with 10 mL of sterile water, eluted with 1 mL of EtOH, and then rinsed with 9 mL of saline solution. Compound 1-18F was produced in a 14.3 ± 3.2% decay corrected radiochemical yield (RCY, 119.9 mCi ± 28, n=2).

5.7 Molar activity calculations

An aliquot of the sample was injected onto an analytical HPLC using the isocratic conditions described in Section 5.5. The UV peak corresponding to the radiofluorinated product was determined by overlaying the UV and RAD traces (with a 0.2 min offset as described in the HPLC section). The UV area was then used to calculate the concentration of the product based on linear regression analysis of the appropriate fluoroarene standard. A standard curve was generated from the standard solutions, each run in duplicate (0.0001 mg/mL to 1.0 mg/mL). This provided the concentration of the product in mmol/mL. Dividing the activity concentration (Ci/mL) by the HPLC-derived concentration of product (mmol/mL) provided the

molar activity in Ci/mmol. This reflects an end of synthesis (EoS) molar activity. Compound 1-18F was produced with a molar activity of 1614 ± 353 Ci/mmol (n=2).

5.8 Additional radiofluorination screening

	с	u(CH ₃ CN) ₄ PF ₆ +	Br Solvent, 120°C, 30r	.) nin ¹⁸ F	
Entry	M ¹⁸ F	solvent	Additive	Temperature (°C)	RCC (%)
1 ^a	Ag ¹⁸ F ^b	CH₃CN	NBu ₄ PF ₆	120	0 ^{d,e}
2ª	Ag ¹⁸ F ^b	CH₃CN	DMAP	120	0
3°	K ¹⁸ F	DMF	NBu ₄ PF ₆	120	0
4 ^c	K ¹⁸ F	DMF	NBu ₄ PF ₆	140	0
5°	K ¹⁸ F	DMF	NBu ₄ PF ₆ , DMAP	140	0
6°	K ¹⁸ F	DMF	DMAP	140	0
7°	K ¹⁸ F	DMF	none	140	0

Table S7. Radiofluorination reactions using conditions similar to those reported in reference 25.

^aConditions (analogous to ref. 25): Substrate (0.05 mmol), additive (1 equiv), Cu(CH₃CN)₄PF₆ (0.2 equiv), Ag¹⁸F solution in CH₃CN (0.25 mL).

^bAg¹⁸F was prepared according to the procedure in ref. 23.

^cReactions were run under the general conditions described in Section 5.3 using Cu(CH₃CN)₄PF₆ and the specified additive(s).

^dSubstituting imine substrate **4-Br** for phenylpyridine **1-Br** also gave 0% RCC under these conditions. ^eCarrier added reaction with 1 equiv of Ag¹⁹F also gave no detected product.

Table S8. Radiofluorination temperature screen. The general procedure described in Section 5.3 was followed while varying the temperature.

Entry	Substrate	Temp (°C)	RCC (%) ^a
1	1-Br	120	47±9 (n=3)
2	1-Br	140	65±7 (n=18)
3	1-Br	160	71 (n=1)
4	1-CI	140	8±2 (n=2)
5	1-CI	160	11±3 (n=3)
6	4-CI	140	1 (n=1)
7	4-CI	160	6±2 (n=3)
8	20-CI	140	3±1 (n=3)
9	20-CI	160	5±1 (n=3)

aRCC determined by radio-TLC

Table S9. Radiofluorination solvent screen.ª

^aThe general procedure for automated synthesis in Section 5.6 was followed while varying the solvent. No chromatographic separation was carried out.

^bRCY was calculated by determining the percent yield of activity in the crude reaction mixture and multiplying this by the radiochemical purity of the product as measured by radio-HPLC.

 Table S10. Additive equivalents screen for radiofluorination. The general procedure described in Section 5.3 was followed while varying the additive.

^aRCC determined by radio-TLC. ^bAlthough 5 equiv of DMAP increased the yield for substrate **1-Br**, this was not general for other substrates (See entries 12–17). Therefore, 1 equiv of DMAP was used as standard conditions.

 Table S11. Radiofluorination Cu source screen. The general procedure described in Section 5.3 was followed while varying the Cu source.

			0. DC	
		$DG = K^{18}F$		
		DMF		
	\searrow	140 °C, 30	min V	
Substrate			RCC (%) ^a	
			65±7 (n=18)	
			0	
	C	Cu(CH ₂ CN) ₄ PF ₂	0	
U N		u(CH₃CN)₄OTf	0	
Ý"	(Cu(^t BuCN) ₂ OTf	1	
, в		[CuOTf] ₂ C ₆ H ₆	1	
ΓΎ		CuCl	0	
<u></u>		IPrCuOtBu	0	
•		Cu(OTf)2	0	
1-Br		IPr ligand only	0	
		none	0	
1	-	IPrCuOTf	54±6 (n=3)	
	C	U(CH ₃ CN) ₄ PF ₆	2±3 (n=3)	
	C		3±3 (n=3)	
~ ∕ ∕∕	(Cu('BuCN)₂OTf	5±3 (n=4)	
, J Br			2 ± 1 (n=2) 3 ± 1 (n=2)	
			0 0	
L I		none	0	
3-Br				
Су		IPrCuOTf	53±10 (n=8)	
U V		slCyCuOTf	0	
H∕≤N	C	Cu(CH₃CN)₄PF6	0	
L Br	C	Cu(CH ₃ CN) ₄ OTf	4±4 n=5	
	(Cu('BuCN)2OIT	2±1 n=3	
L 🔪			2±1 n=3	
\sim			0	
4-Br		IPr ligand only	0	
4 81		none	Ő	
			33+8 (n=3)	
Cy	C	u(CH₃CN)₄PEs	0	
H、⊘N	Ċ	u(CH₃CN)₄OTf	1	
Ť	C	Cu(^t BuCN)₂OTf	0	
Br		[CuOTf]₂Ć ₆ H ₆	1	
		Cu(OTf)2	1	
\checkmark		none	1	
l Dr				
Br 14-Br				
C	1	IPrCuOTf	49+9 (n=3)	
	C	u(CH₃CN)₄OTf	1	
⊓⋞∾	(Cu(^t BuCN)₂OTf	1	
l	Br	none	1	
	, 01			
਼ੈ∦∕				
s 🔨				
^N `O16-Br				

Reactions with yield >1% were run at least twice. ^aRCC determined by radio-TLC. The RCCs using simple Cu salts [Cu(CH₃CN)₄PF₆, Cu(CH₃CN)₄OTf, Cu(ⁱBuCN)₂OTf, [CuOTf]₂C₆H₆, and Cu(OTf)₂] under identical conditions but in the absence of DMAP additive were comparable to or lower than those reported here.

5.9 Negative controls for optimized radiofluorination reaction

 Table S12. Radiofluorination control reactions without Cu.^{a,b} The general procedure described in Section 5.3 was followed but with no Cu added.

5.10 Unsuccessful substrates for radiofluorination

^aRCC determined by radio-TLC. ^bProduct identity not confirmed by radio-HPLC. Imine substrates were prepared using the procedure described in Section 6.1.

5.11 Reactions with Ag¹⁸F

Scheme S2. Radiofluorination reactions with Ag¹⁸F and **1-Br**. The general procedure described in Section 5.3 was followed using Ag¹⁸F/K_{2.2.2} instead of K¹⁸F.^a

^aAg¹⁸F/K_{2.2.2} was prepared according to the procedure reported in ref. 23.

6. Synthesis of Novel Compounds

6.1 Preparation of imines

Imines were prepared using a previously reported procedure.²⁴ The respective aldehyde (1 mmol) and amine (1 mmol) were added to a 20 mL vial under N₂ and dissolved in DCM (4 mL). Activated molecular sieves (1 g) were added, and the reaction was allowed to stir at room temperature for 24 h. The solution was then filtered and concentrated *in vacuo* to afford the corresponding imine. The spectra of **4-Br**,¹⁷ **4- Cl**,¹⁷ **9-Br**¹⁸, **18-Br**²⁰, and **18-F**²¹ matched those reported in the literature.

2-lodobenzaldehyde cyclohexylimine (4-l)

Colorless oil, 120 mg, 38% yield

¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H), 7.95 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.41–7.31 (m, 1H), 7.13–7.02 (m, 1H), 3.38–3.23 (m, 1H), 1.96–1.51 (m, 7H), 1.48–1.21 (m, 3H).

 ^{13}C NMR (101 MHz, CDCl_3): δ 162.01, 139.61, 137.51, 131.79, 129.01, 128.50, 100.03, 69.73, 34.46, 25.76, 24.84.

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₆IN]H⁺ 314.0406; found: 314.0412

2-Fluorobenzaldehyde cyclohexylimine (4-¹⁹F)

Colorless oil, 150 mg, 73% yield

¹H NMR (700 MHz, CDCl₃): δ 8.62 (s, 1H), 8.02–7.95 (m, 1H), 7.40–7.33 (m, 1H), 7.26 (s, 1H), 7.18–7.13 (m, 1H), 7.08–7.03 (m, 1H), 3.28–3.20 (m, 1H), 1.86–1.81 (m, 2H), 1.77–1.72 (m, 2H), 1.70–1.66 (m, 1H), 1.64–1.55 (m, 2H), 1.43–1.33 (m, 2H), 1.32–1.23 (m, 1H)

¹³C NMR (176 MHz, CDCl₃): δ 162.30 (d, J = 251.5 Hz), 152.04 (d, J = 4.7 Hz), 131.95 (d, J = 8.6 Hz), 127.93 (d, J = 3.0 Hz), 124.39 (d, J = 3.5 Hz), 124.38 (d, J = 8.4 Hz), 115.75 (d, J = 21.2 Hz), 70.41, 34.48, 25.78, 24.90

¹⁹F NMR (377 MHz, CDCl₃): δ –117.77 to –126.06 (m, 1F)

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₆FN]H⁺ 206.1345; found: 206.1342

2-Fluorobenzaldehyde mesitylimine (9-¹⁹F)

Yellow oil, 175 mg, 72% yield

¹H NMR (400 MHz, CDCl₃): δ 8.56 (s, 1H), 8.31–8.21 (m, 1H), 7.50 (dddd, *J* = 8.3, 7.3, 5.3, 1.8 Hz, 1H), 7.35–7.25 (m, 1H), 7.16 (dd, *J* = 10.6, 8.4 Hz, 1H), 6.92 (s, 2H), 2.31 (s, 3H), 2.15 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 162.91 (d, J = 253.2 Hz), 156.41 (d, J = 4.9 Hz), 148.92, 133.35, 133.01 (d, J = 8.6 Hz), 128.91, 127.73 (d, J = 2.7 Hz), 127.11, 124.60 (d, J = 3.5 Hz), 124.02 (d, J = 9.4 Hz), 116.05 (d, J = 21.1 Hz), 20.88, 18.35.

¹⁹F NMR (376 MHz, CDCl₃): δ –119.53 to –124.14 (m, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₆H₁₆FN]H⁺ 242.1345; found: 242.1348

2-Bromo-5-fluorobenzaldehyde cyclohexylimine (10-Br)

White crystalline solid, 240 mg, 85% yield, mp = 46.0-48.0 °C

¹H NMR (700 MHz, CDCl₃): δ 8.59 (d, J = 2.4 Hz, 1H), 7.75 (dd, J = 9.4, 3.2 Hz, 1H), 7.51 (dd, J = 8.8, 5.0 Hz, 1H), 6.98 (ddd, J = 8.8, 7.6, 3.2 Hz, 1H), 3.35–3.27 (m, 1H), 1.88–1.80 (m, 2H), 1.78–1.71 (m, 2H), 1.71–1.65 (m, 1H), 1.62–1.53 (m, 2H), 1.43–1.34 (m, 2H), 1.33–1.24 (m, 1H).

¹³C NMR (176 MHz, CDCl₃): δ 162.20 (d, J = 247.5 Hz), 156.80 (d, J = 2.2 Hz), 136.95 (d, J = 7.3 Hz), 134.32 (d, J = 7.6 Hz), 118.94 (d, J = 3.2 Hz), 118.92 (d, J = 23.2 Hz), 115.66 (d, J = 24.1 Hz), 69.86, 34.40, 25.75, 24.77.

¹⁹F NMR (377 MHz, CDCl₃): δ –112.77 to –115.66 (m, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₅BrFN]H⁺ 284.0450; found: 284.0453

2,5-Difluorobenzaldehyde cyclohexylimine (10-¹⁹F)

Colorless oil, 175 mg, 78% yield

¹H NMR (700 MHz, CDCl₃): δ 8.55 (d, *J* = 2.3 Hz, 1H), 7.68 (ddd, *J* = 8.7, 5.5, 3.1 Hz, 1H), 7.09–6.99 (m, 2H), 3.29–3.22 (m, 1H), 1.86–1.80 (m, 2H), 1.77–1.71 (m, 2H), 1.71–1.66 (m, 1H), 1.63–1.53 (m, 2H), 1.42–1.33 (m, 2H), 1.32–1.23 (m, 1H).

¹³C NMR (176 MHz, CDCl₃): δ 159.01 (dd, *J* = 242.8, 2.2 Hz), 158.27 (dd, *J* = 248.0, 2.2 Hz), 151.00 (dd, *J* = 4.2, 2.2 Hz), 125.75 (dd, *J* = 11.9, 7.6 Hz), 118.52 (dd, *J* = 24.9, 8.9 Hz), 117.00 (dd, *J* = 24.2, 8.4 Hz), 113.81 (dd, *J* = 25.0, 3.5 Hz), 70.20, 34.39, 25.75, 24.79.

¹⁹F NMR (377 MHz, CDCl₃): δ –118.58 (ddt, *J* = 13.4, 6.7, 2.2 Hz, 1F), –127.54 to –128.91 (m, 1F). HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₅F₂N]H⁺ 224.1251; found: 224.1249

2-Fluoro-5-methoxybenzaldehyde cyclohexylimine (11-¹⁹F)

Pale tan oil, 175 mg, 74% yield

¹H NMR (700 MHz, CDCl₃): δ 8.58 (s, 1H), 7.46 (dd, *J* = 5.6, 3.2 Hz, 1H), 6.97 (t, *J* = 9.3 Hz, 1H), 6.90 (ddd, *J* = 9.0, 4.2, 3.2 Hz, 1H), 3.82 (s, 3H), 3.24 (tt, *J* = 10.6, 4.1 Hz, 1H), 1.83 (dt, *J* = 13.7, 3.7 Hz, 2H), 1.77–1.72 (m, 2H), 1.71–1.66 (m, 1H), 1.64–1.54 (m, 2H), 1.37 (qt, *J* = 12.7, 3.5 Hz, 2H), 1.32–1.22 (m, 1H).

¹³C NMR (176 MHz, CDCl₃): δ 157.02 (d, J = 244.4 Hz), 155.95 (d, J = 2.0 Hz), 152.01 (d, J = 4.3 Hz), 124.60 (d, J = 10.7 Hz), 118.96 (d, J = 8.4 Hz), 116.59 (d, J = 23.5 Hz), 110.25 (d, J = 2.8 Hz), 70.30, 56.07, 34.46, 25.78, 24.91.

¹⁹F NMR (377 MHz, CDCl₃): δ –132.26 to –133.55 (m, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₄H₁₈FNO]H⁺ 236.1451; found: 236.1450

2-bromo-3-methoxybenzaldehyde cyclohexylimine (12-Br)

The title compound was synthesized using the general procedure described in Section 6.1 but on a 0.35 mmol scale.

Colorless solid, 79 mg, 77% yield, mp = 64.5–66.3 °C

¹H NMR (700 MHz, CDCl₃) δ 8.72 (s, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.29–7.26 (m, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 3.92 (d, *J* = 2.1 Hz, 3H), 3.33–3.26 (m, 1H), 1.87–1.80 (m, 2H), 1.75 (d, *J* = 13.1 Hz, 2H), 1.71–1.66 (m, 1H), 1.63–1.55 (m, 2H), 1.43–1.34 (m, 2H), 1.31–1.23 (m, 1H).

¹³C NMR (176 MHz, CDCl₃) δ 158.22, 156.00, 136.69, 128.09, 121.02, 114.86, 113.21, 70.02, 56.62, 34.47, 25.78, 24.88.

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₄H₁₈BrNO]H⁺ 296.0650; found: 296.0644

2-fluoro-3-methoxybenzaldehyde cyclohexylimine (12-¹⁹F)

Colorless oil, 170 mg, 72% yield

¹H NMR (700 MHz, CDCl₃) δ 8.63 (s, 1H), 7.54 (dd, *J* = 7.2, 3.8 Hz, 1H), 7.06 (dd, *J* = 8.1 Hz, 1H), 6.98 (dd, *J* = 8.1 Hz, 1H), 3.89 (s, 3H), 3.28–3.20 (m, 1H), 1.87–1.79 (m, 2H), 1.73 (d, *J* = 13.0 Hz, 2H), 1.70–1.64 (m, 1H), 1.63–1.54 (m, 2H), 1.41–1.32 (m, 2H), 1.31–1.23 (m, 1H).

¹³C NMR (176 MHz, CDCl₃) δ 152.40 (d, 252.1 Hz), 151.97 (d, *J* = 5.9 Hz), 147.90 (d, *J* = 10.3 Hz), 125.16 (d, *J* = 6.9 Hz), 123.98 (d, *J* = 4.5 Hz), 118.90 (d, *J* = 2.0 Hz), 114.83 (d, *J* = 2.0 Hz), 70.40, 56.50, 34.43, 25.75, 24.86.

¹⁹F NMR (377 MHz, CDCl₃) δ –144.89 to –145.00 (m, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₄H₁₈FNO]H⁺ 236.1451; found: 236.1446

2-Bromo-6-chlorobenzaldehyde cyclohexylimine (13-Br)

Colorless oil, 250 mg, 83% yield

¹H NMR (700 MHz, $CDCl_3$): δ 8.34 (s, 1H), 7.50 (dd, J = 8.1, 1.1 Hz, 1H), 7.35 (dd, J = 8.1, 1.1 Hz, 1H), 7.14–7.09 (m, 1H), 3.37–3.31 (m, 1H), 1.88–1.81 (m, 4H), 1.71–1.61 (m, 3H), 1.44–1.35 (m, 2H), 1.32–1.23 (m, 1H).

¹³C NMR (176 MHz, CDCl₃): δ 155.60, 135.28, 134.28, 131.51, 130.28, 129.04, 123.37, 70.45, 33.99, 25.60, 24.59.

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₅BrCIN]H⁺ 300.0155; found: 300.0155

2-Chloro-6-fluoro cyclohexylimine (13-¹⁹F)

Colorless oil, 220 mg, 92% yield

¹H NMR (700 MHz, CDCl₃): δ 8.49 (s, 1H), 7.26–7.21 (m, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.05–6.99 (m, 1H), 3.29–3.22 (m, 1H), 1.87–1.76 (m, 4H), 1.72–1.60 (m, 3H), 1.42–1.33 (m, 2H), 1.31–1.22 (m, 1H). ¹³C NMR (176 MHz, CDCl₃): δ 161.31 (d, J = 256.5 Hz), 152.06 (d, J = 2.1 Hz), 135.15 (d, J = 4.6 Hz), 130.72 (d, J = 9.8 Hz), 125.66 (d, J = 3.6 Hz), 123.66 (d, J = 13.9 Hz), 115.13 (d, J = 22.3 Hz), 71.33, 34.33, 25.70, 24.80.

¹⁹F NMR (658 MHz, CDCl₃): δ –112.49 (d, *J* = 8.8 Hz, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₅CIFN]H⁺ 240.0955; found: 240.0960

2-Bromo-6-fluoro cyclohexylimine (13-¹⁹F')

Colorless oil, 230 mg, 81% yield

¹H NMR (700 MHz, CDCl₃): δ 8.53 (s, 1H), 7.89–7.84 (m, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.26 (dd, J = 9.9, 1.8 Hz, 1H), 3.27–3.20 (m, 1H), 1.86–1.80 (m, 2H), 1.75–1.70 (m, 2H), 1.72–1.64 (m, 1H), 1.61–1.53 (m, 2H), 1.41–1.32 (m, 2H), 1.31–1.22 (m, 1H).

¹³C NMR (176 MHz, CDCl₃): δ 161.82 (d, J = 256.2 Hz), 151.03 (d, J = 4.2 Hz), 129.03 (d, J = 3.7 Hz), 127.90 (d, J = 3.7 Hz), 124.78 (d, J = 9.8 Hz), 123.50 (d, J = 9.7 Hz), 119.40 (d, J = 24.5 Hz), 70.38, 34.39, 25.74, 24.82.

¹⁹F NMR (377 MHz, CDCl₃): δ –118.61 to –121.12 (m, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₅BrFN]H⁺ 284.0450; found: 284.0446

2,4-Dibromobenzaldehyde cyclohexylimine (14-Br)

White crystalline solid, 260 mg, 75% yield, mp = 43.7-45.4 °C

¹H NMR (700 MHz, CDCl₃): δ 8.57 (d, *J* = 0.8 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 1.9 Hz, 1H), 7.45 (dd, *J* = 8.4, 1.9 Hz, 1H), 3.33–3.24 (m, 1H), 1.88–1.80 (m, 2H), 1.78–1.72 (m, 2H), 1.71–1.66 (m, 1H), 1.62–1.53 (m, 2H), 1.43–1.34 (m, 2H), 1.31–1.23 (m, 1H).

¹³C NMR (176 MHz, CDCl₃): δ 156.77, 135.34, 134.14, 131.00, 130.08, 125.30, 124.92, 70.02, 34.42, 25.75, 24.80.

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₅Br₂N]H⁺ 345.9629; found: 345.9630

4-Bromo-2-fluorobenzaldehyde cyclohexylimine (14-¹⁹F)

Colorless oil, 204 mg, 72% yield

¹H NMR (700 MHz, CDCl₃): δ 8.41 (s, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.20–7.14 (m, 1H), 7.09–7.02 (m, 1H), 3.31–3.23 (m, 1H), 1.88–1.77 (m, 4H), 1.72–1.60 (m, 3H), 1.43–1.33 (m, 2H), 1.32–1.23 (m, 1H). ¹³C NMR (176 MHz, CDCl₃): δ 161.08 (d, J = 257.5 Hz), 153.74 (d, J = 2.6 Hz), 131.11 (d, J = 9.4 Hz), 128.80 (d, J = 3.7 Hz), 125.16 (d, J = 13.8 Hz), 124.14 (d, J = 3.7 Hz), 115.76 (d, J = 22.3 Hz), 71.09, 34.30, 25.71, 24.80.

¹⁹F NMR (377 MHz, CDCl₃): δ –110.18 to –112.76 (m, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₅BrFN]H⁺ 284.0450; found: 284.0447

2-Bromo-4-fluorobenzaldehyde cyclohexylimine (14-¹⁹F')

Colorless oil, 220 mg, 77% yield

¹H NMR (700 MHz, CDCl₃): δ 8.59 (s, 1H), 8.03 (dd, J = 8.8, 6.3 Hz, 1H), 7.29 (dd, J = 8.2, 2.5 Hz, 1H), 7.07–7.02 (m, 1H), 3.31–3.24 (m, 1H), 1.87–1.80 (m, 2H), 1.77–1.71 (m, 2H), 1.71–1.65 (m, 1H), 1.61–1.53 (m, 2H), 1.42–1.33 (m, 2H), 1.31–1.22 (m, 1H).

¹³C NMR (176 MHz, CDCl₃): δ 163.60 (d, J = 254.5 Hz), 156.53, 131.56 (d, J = 3.5 Hz), 130.42 (d, J = 8.8 Hz), 125.06 (d, J = 9.7 Hz), 120.05 (d, J = 24.7 Hz), 115.24 (d, J = 21.2 Hz), 69.90, 34.47, 25.75, 24.83. ¹⁹F NMR (377 MHz, CDCl₃): δ -108.29 to -109.17 (m, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₅BrFN]H⁺ 284.0450; found: 284.0450

3-Bromo-4-pyridinecarboxaldehyde cyclohexylimine (15-Br)

Colorless oil, 165 mg, 78% yield

¹H NMR (400 MHz, CDCl₃): δ 8.72 (s, 1H), 8.57 (s, 1H), 8.50 (d, *J* = 5.0 Hz, 1H), 7.84 (d, *J* = 5.0 Hz, 1H), 3.41–3.24 (m, 1H), 1.96–1.10 (m, 10H).

¹³C NMR (106 MHz, CDCl₃): δ 155.77, 152.78, 148.56, 141.81, 122.39, 122.18, 70.17, 34.19, 25.64, 24.60.

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₂H₁₅BrN₂]H⁺ 267.0497; found: 267.0491

3-Fluoro-4-pyridinecarboxaldehyde cyclohexylimine (15-¹⁹F)

Colorless oil, 150 mg, 62% yield

¹H NMR (400 MHz, CDCl₃): δ 8.58 (s, 1H), 8.51 (s, 1H), 8.43 (d, *J* = 5.0 Hz, 1H), 7.84 (d, *J* = 5.0 Hz, 1H), 3.41–3.22 (m, 1H), 1.98–1.06 (m, 10H).

¹³C NMR (106 MHz, CDCl₃): δ 158.28 (d, *J* = 260.9 Hz), 150.07 (d, *J* = 3.8 Hz), 146.03 (d, *J* = 5.2 Hz),

139.19 (d, J = 23.4 Hz), 130.78 (d, J = 7.8 Hz), 120.95, 70.51, 34.19, 25.66, 24.65.

¹⁹F NMR (471 MHz, CDCl₃): δ –132.32 (d, *J* = 5.9 Hz, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₂H₁₅FN₂]H⁺ 207.1298; found: 207.1297

6.2 Preparation of additional directed substrates

2-(2-bromophenyl)-6-methylpyridine (2-Br)

The title compound was prepared from a literature procedure.²⁵ To a 100 mL round bottom flask were added 2-bromophenylboronic acid (14.9 mmol, 1.0 equiv), 2-bromo-6-methylpyridine (14.9 mmol, 1.0 equiv), PPh₃ (3.0 mmol, 0.2 equiv), and dimethoxyethane (22 mL). After stirring for 3 min, K₂CO₃ (44.8 mmol, 3.0 equiv), water (23 mL), and Pd(OAc)₂ (1.24 mmol, 0.05 equiv) were added, and the mixture was heated at reflux for 16 h. The reaction mixture was then cooled to room temperature and extracted with EtOAc (3 x 30 mL). The organics were combined, concentrated *in vacuo*, and purified by column chromatography (0–10% EtOAc/hexanes) to give the title compound as a pale yellow oil (1.56 g, 42%).

¹H NMR (400 MHz, CDCl₃): δ 7.69–7.60 (m, 2H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.43–7.34 (m, 2H), 7.27–7.20 (m, 1H), 7.15 (d, *J* = 7.7 Hz, 1H), 2.63 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 158.24, 157.89, 141.70, 136.13, 133.32, 131.50, 129.64, 127.65, 122.06, 122.01, 121.76, 24.77.

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₂H₁₀BrN]H⁺ 248.0075; found: 248.0072

2-(2-fluoro-5-methoxyphenyl)pyridine (6-¹⁹F)

The title compound was prepared using a modified version of the literature procedure described for **2**-**Br**.²⁵ To a 100 mL round bottom flask were added (2-fluoro-5-methoxyphenyl)boronic acid (prepared according to literature procedure;¹⁶ 5.9 mmol, 1.0 equiv), 2-bromo-6-methylpyridine (5.9 mmol, 1.0 equiv), PPh₃ (1.2 mmol, 0.2 equiv), and dimethoxyethane (10 mL). After stirring for 3 min, K₂CO₃ (17.6 mmol, 3.0 equiv), water (10 mL), and Pd(OAc)₂ (0.29 mmol, 0.05 equiv) were added, and the mixture was heated at reflux for 16 h. The reaction mixture was then cooled to room temperature and extracted with EtOAc (3 x 30 mL). The organics were combined, concentrated *in vacuo*, and purified by column chromatography (0–25% EtOAc/hexanes). The resulting mixture was purified via preparative silica gel TLC using a 500 μ M plate (20% Et₂O in DCM) to give the title compound as a pale colorless oil (480 mg, 40%).

¹H NMR (700 MHz, CDCl₃) δ 8.72 (d, J = 4.7 Hz, 1H), 7.82–7.78 (m, 1H), 7.77–7.73 (m, 1H), 7.54–7.50 (m, 1H), 7.28–7.24 (m, 1H), 7.07 (dd, J = 9.0, 1.7 Hz, 1H), 6.93–6.88 (m, 1H), 3.86 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 156.10 (d, J = 1.9 Hz), 155.10 (d, J = 242.4 Hz), 153.45 (d, J = 2.7 Hz), 149.84, 136.50, 127.84 (d, J = 13.1 Hz), 124.69 (d, J = 9.9 Hz), 122.62, 117.10 (d, J = 25.2 Hz), 116.77 (d, J = 8.4 Hz), 114.47 (d, J = 3.0 Hz), 56.03.

¹⁹F NMR (377 MHz, CDCl₃) δ –144.89 to –145.00 (m, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₂H₁₀FNO]H⁺ 204.0825; found: 204.0821

2-(2-bromo-6-fluorophenyl)pyridine (7-Br)

The title compound was prepared from an adapted literature procedure.²⁶ To a 12 mL screw cap vial under N₂ were added CuBr (0.5 mmol, 1.0 equiv), *N*-bromosuccinimide (1.0 mmol, 2.0 equiv), benzoic acid (0.25 mmol, 0.5 equiv), 2-(2-fluorophenyl)pyridine (0.5 mmol, 1.0 equiv), and degassed dichloroethane (3 mL). The sealed tube was stirred rapidly at 100 °C for 24 h. After cooling to room temperature, a 10 wt % solution of Na₂S in EtOAc (5 mL) was added, and the mixture was stirred for 10 min. The crude reaction mixture was washed with brine (10 mL), dried with Na₂SO₄, and concentrated *in vacuo*. Purification by column chromatography gave the title compound as a colorless oil (60 mg, 48%).

¹H NMR (700 MHz, CDCl₃): δ 8.76 (d, *J* = 4.9 Hz, 1H), 7.80 (ddd, *J* = 7.7, 1.8 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.40 (d, *J* = 7.8 Hz, 1H), 7.34 (ddd, *J* = 7.6, 4.9, 1.2 Hz, 1H), 7.28–7.23 (m, 1H), 7.14 (dd, *J* = 8.7 Hz, 1H).

¹³C NMR (176 MHz, CDCl₃): δ 160.51 (d, *J* = 250.7 Hz), 153.71, 149.77, 136.40, 130.65 (d, *J* = 9.2 Hz), 130.20 (d, *J* = 18.7 Hz), 128.75 (d, *J* = 3.6 Hz), 125.62 (d, *J* = 1.2 Hz), 123.76 (d, *J* = 3.4 Hz), 123.19, 115.13 (d, *J* = 22.7 Hz).

¹⁹F NMR (377 MHz, \dot{CDCl}_3): δ –111.32 (dd, J = 9.0, 5.8 Hz, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₁H₇BrFN]H⁺ 251.9824; found: 251.9823

1-(2-fluorophenyl)-1*H*-pyrazole (8-¹⁹F)

The title compound was prepared from a modified literature procedure.²⁷ To an 8 mL vial under N₂ were added pyrazole (1.44 mmol, 1 equiv), 2-fluoroiodobenzene (2.88 mmol, 2 equiv), Cu₂O (0.72 mmol, 0.5 equiv), Cs₂CO₃ (2.88 mmol, 2 equiv), and dry DMF (1 mL). The vial was capped and stirred at 80 °C for 18 h. The crude reaction mixture was filtered through a plug of silica. Then, 5 mL of water was added, and the mixture was extracted with Et₂O (5 x 10 mL). The organics were combined, dried over MgSO₄, concentrated *in vacuo*, and purified by silica gel column chromatography (8% EtOAc in hexane) to give the title compound as a colorless oil (40 mg, 17%).

¹H NMR (700 MHz, CD₂Cl₂): δ 8.09–7.98 (m, 1H), 7.94–7.86 (m, 1H), 7.72 (s, 1H), 7.36–7.21 (m, 3H), 6.56–6.43 (m, 1H). ¹³C NMR (176 MHz, CD₂Cl₂): δ 154.10 (d, J = 248.3 Hz), 141.24, 131.26 (d, J = 10.3 Hz), 129.00 (d, J = 8.7 Hz), 128.24 (d, J = 7.7 Hz), 125.46 (d, J = 3.8 Hz), 124.88, 117.30 (d, J = 20.8 Hz), 107.88. ¹⁹F NMR (377 MHz, CD₂Cl₂): δ –122.79 to –128.29 (m, 1F). HRMS (ESI⁺) [M+H]⁺ calc. for [C₉H₇FN₂]H⁺ 163.0672; found: 163.0669

6.3 Preparation of probenecid derivatives

2-Bromo-4-dipropylsulfamoylbenzaldehyde

The title compound was prepared from a modified literature procedure.²⁸ To a 20 mL vial in air were added *N*-bromosuccinimide (0.59 mmol, 1.5 equiv), $Pd(OAc)_2$ (0.197 mmol, 0.5 equiv), *p*-nitroanthranilic acid (0.197 mmol, 0.5 equiv), and AgTFA (0.039 mmol, 0.1 equiv). Subsequently, TfOH (0.197 mmol, 0.5 equiv) in 1 mL of DCE was added, followed by 4-dipropylsulfamoylbenzaldehyde (0.393 mmol, 1 equiv) in 2 mL of DCE. The reaction mixture was stirred rapidly at 90 °C for 24 h. The solvent was removed *in vacuo*, and the crude product was purified by silica gel column chromatography (0–60% EtOAc/hexane) to give the title compound as a tan crystalline solid (23 mg, 17%, mp = 66.9–67.4 °C).

¹H NMR (700 MHz, CDCl₃): δ 10.39 (s, 1H), 8.09 (d, *J* = 1.7 Hz, 1H), 8.01 (d, *J* = 8.1 Hz, 1H), 7.82 (dd, *J* = 8.1, 1.7 Hz, 1H), 3.16–3.10 (m, 4H), 1.62–1.52 (m, 4H), 0.88 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (176 MHz, CDCl₃): δ 190.69, 146.67, 135.80, 132.35, 130.63, 127.27, 126.23, 50.13, 22.12, 11.29.

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₈BrNO₃S] H⁺ 348.0269; found: 348.0269

2-Bromo-4-dipropylsulfamoylbenzaldehyde cyclohexylimine (16-Br)

The title compound was prepared from 2-bromo-4-dipropylsulfamoylbenzaldehyde using the imine condensation procedure described in Section 6.1 to give imine **16-Br** as a white solid (25 mg, 88%, mp = 65.6-66.2 °C).

¹H NMR (700 MHz, CDCl₃): δ 8.65 (s, 1H), 8.12 (d, *J* = 8.2 Hz, 1H), 7.99 (d, *J* = 1.8 Hz, 1H), 7.71 (d, 1H), 3.38–3.29 (m, 1H), 3.12–3.05 (m, 4H), 1.84 (dt, *J* = 13.3, 3.7 Hz, 2H), 1.75 (d, *J* = 3.9 Hz, 2H), 1.69 (dd, *J* = 12.8, 3.8 Hz, 1H), 1.64–1.52 (m, 6H), 1.38 (qt, *J* = 12.7, 3.5 Hz, 2H), 1.33–1.23 (m, 1H), 0.88 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (176 MHz, CDCl₃): δ 156.56, 142.88, 138.44, 131.50, 129.59, 125.93, 124.94, 70.13, 50.12, 34.35, 25.69, 24.71, 22.10, 11.30.

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₉H₂₉BrN₂O₂S]H⁺ 429.1211; found: 429.1215

4-dipropylsulfamoyl-2-fluorobenzaldehyde

The title compound was prepared using a modified version of the (NHC)Cu-mediated fluorination procedure described in Section 3.1. In a N₂-containing glovebox, the imine (21 mg, 0.048 mol), IPrCuF (23 mg, 0.048 mol), and DMF (5.2 mL) were added to a 20 mL screw-cap vial. The reaction mixture was removed from the glovebox and allowed to stir at 140 °C for 21 h. Subsequently, solvent was removed *in vacuo* and the resulting residue was purified via preparative silica gel TLC using a 500 μ M plate (20% EtOAc/hexane). The title compound was isolated as a colorless oil (3.3 mg, 22%).

¹H NMR (700 MHz, CDCl₃): δ 10.40 (d, J = 1.1 Hz, 1H), 8.03–7.98 (m, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 9.4 Hz, 1H), 3.18–3.07 (m, 4H), 1.62–1.50 (m, 4H), 0.88 (t, J = 7.4 Hz, 6H).

¹³C NMR (176 MHz, CDCl₃): δ 186.07 (d, J = 6.3 Hz), 164.23 (d, J = 263.2 Hz), 147.78 (d, J = 7.1 Hz), 129.82 (d, J = 1.9 Hz), 126.42 (d, J = 8.5 Hz), 123.07 (d, J = 4.0 Hz), 115.78 (d, J = 23.5 Hz), 50.12, 22.09, 11.27.

¹⁹F NMR (377 MHz, CDCl₃): δ –118.88 (dd, *J* = 9.6, 6.6 Hz, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₃H₁₈FNO₃S]H⁺ 288.1070; found: 288.1070

4-dipropylsulfamoyl-2-fluorobenzaldehyde cyclohexylimine (16-¹⁹F)

Imine **16**-¹⁹**F** was prepared from 4-dipropylsulfamoyl-2-fluorobenzaldehyde using the imine condensation procedure described in Section 6.1 to give a colorless oil (3.3 mg, 89%).

¹H NMR (700 MHz, CD₂Cl₂): δ 8.60 (s, 1H), 8.11 (dd, *J* = 8.2, 6.8 Hz, 1H), 7.57 (d, *J* = 8.2 Hz, 1H), 7.52 (d, *J* = 9.9 Hz, 1H), 3.29 (tt, *J* = 10.3, 4.1 Hz, 1H), 3.13–3.04 (m, 4H), 1.83 (dt, *J* = 13.4, 3.8 Hz, 2H), 1.77–1.65 (m, 3H), 1.61–1.50 (m, 6H), 1.39 (qt, *J* = 12.6, 3.5 Hz, 2H), 1.33–1.25 (m, 1H), 0.87 (t, *J* = 7.4 Hz, 6H).

¹³C NMR (176 MHz, CD₂Cl₂): δ 162.06 (d, J = 255.7 Hz), 150.85 (d, J = 4.1 Hz), 143.81 (d, J = 6.9 Hz), 129.14 (d, J = 3.1 Hz), 128.36 (d, J = 9.8 Hz), 123.25 (d, J = 3.6 Hz), 115.37 (d, J = 24.4 Hz), 70.79, 50.55, 34.80, 26.20, 25.12, 22.48, 11.47.

¹⁹F NMR (377 MHz, CD₂Cl₂): δ –120.24 (dd, *J* = 9.8, 6.9 Hz, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₉H₂₉FN₂O₂S]H⁺ 369.2012; found: 369.2021

6.4 Preparation of vismodegib derivatives

4-fluoro-3-(pyridin-2-yl)aniline

The title compound was prepared using a modified literature procedure.²⁹ 5-amino-2-fluorophenylboronic acid (1.93 mmol, 1.0 equiv), K₂CO₃ (3.86 mmol, 2.0 equiv), and Pd(PPh₃)₄ (0.097 mmol, 5 mol%) were added to a 100 mL round bottom flask coupled to a condenser. The flask was placed under a N₂ atmosphere and a degassed solution of 2-bromopyridine (2.05 mmol, 1.06 equiv) in DME (8 mL), H₂O (5 mL), and EtOH (2.5 mL) was added. The reaction mixture was heated to reflux for 24 h, cooled to room temperature, and filtered. EtOAc (25 mL) was added, and the crude mixture was extracted with EtOAc (3 x 25 mL). The organic extracts were combined, dried over Na₂SO₄, and concentrated *in vacuo*. The title compound was purified by silica gel column chromatography (0–50% EtOAc/hexane) and isolated as a tan solid (220 mg, 61%, mp = 65.2–66.9 °C).

¹H NMR (700 MHz, CDCl₃): δ 8.69 (d, J = 4.9 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.75–7.71 (m, 1H), 7.31–7.27 (m, 1H), 7.25–7.21 (m, 1H), 6.96 (ddd, J = 10.9, 8.7, 1.0 Hz, 1H), 6.70–6.64 (m, 1H), 3.64 (s, 2H). ¹³C NMR (176 MHz, CDCl₃): δ 154.26 (d, J = 230.1 Hz), 153.57 (d, J = 7.9 Hz), 149.72, 142.95 (d, J = 2.3 Hz), 136.45, 127.66 (d, J = 12.8 Hz), 124.70 (d, J = 9.8 Hz), 122.47, 116.91 (d, J = 7.9 Hz), 116.87 (d, J = 24.6 Hz), 116.59 (d, J = 2.5 Hz).

¹⁹F NMR (377 MHz, CDCl₃): δ –130.72 (dd, *J* = 6.6, 4.5 Hz, 1F).

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₁H₉FN₂]H⁺ 189.0828; found: 189.0831

2-chloro-N-(4-fluoro-3-(pyridin-2-yl)phenyl)-4-(methylsulfonyl)benzamide (19-19F)

The title compound was prepared using a modified literature procedure.³⁰ To a 20 mL screw-cap vial in air were added 4-fluoro-3-(pyridin-2-yl)aniline (0.4 mmol, 1.0 equiv), the carboxylic acid (0.6 mmol, 1.5 equiv), HATU (0.8 mmol, 2.0 equiv), HOAt (0.6 mmol, 1.5 equiv), diisopropylethylamine (2.4 mmol, 0.6 equiv), and anhydrous DCM (12 mL). The reaction mixture was stirred for 16 h at room temperature. Water (20 mL) was added, and the organics were extracted with DCM (3 x 20 mL). The combined extracts were washed with brine (20 mL) and concentrated *in vacuo* to give a red oil. Purification by silica gel column chromatography (0–65% EtOAc/hexanes) gave a tan solid, which was taken up in minimal DCM and crashed out with excess hexanes, affording the title compound as a colorless crystalline solid (110 mg, 68%, mp = 176.2–177.8 °C).

¹H NMR (700 MHz, CDCl₃): δ 8.92 (s, 1H), 8.56 (d, J = 4.8 Hz, 1H), 8.14–8.08 (m, 1H), 8.00 (dd, J = 6.6, 2.8 Hz, 1H), 7.87 (d, J = 1.7 Hz, 1H), 7.79–7.72 (m, 3H), 7.62 (d, J = 7.9 Hz, 1H), 7.25–7.19 (m, 2H), 3.05 (s, 3H).

¹³C NMR (176 MHz, CDCl₃): δ 163.49, 157.25 (d, *J* = 248.8 Hz), 152.60 (d, *J* = 2.3 Hz), 149.67, 142.99, 140.52, 137.02, 134.38 (d, *J* = 2.8 Hz), 132.21, 130.47, 129.13, 127.63 (d, *J* = 13.4 Hz), 126.02, 124.93 (d, *J* = 9.1 Hz), 123.03, 122.74 (d, *J* = 8.3 Hz), 122.35 (d, *J* = 2.8 Hz), 117.21 (d, *J* = 24.2 Hz), 44.51. ¹⁹F NMR (377 MHz, CDCl₃): δ –121.21 (s, 1F).

HRMS (ESI⁺) $[M+H]^+$ calc. for $[C_{19}H_{14}FCIN_2O_3S]$ H⁺ 405.0476; found: 405.0475

4-bromo-3-(pyridin-2-yl)aniline

The title compound was prepared through a modified literature procedure.³¹ To a solution of 2-(3aminophenyl)pyridine (0.441 mmol, 1.0 equiv) and NH₄OAc (0.0441 mmol, 0.1 equiv) in acetonitrile (2 mL) open to air was added *N*-bromosuccinimide (0.463 mmol, 1.05 equiv). After stirring for 10 min at room temperature, the solvent was removed *in vacuo*. The resulting oil was dissolved in 5 mL of water and extracted with EtOAc (3 x 5 mL). The organics were combined, dried over Na₂SO₄, concentrated *in vacuo*, and purified by silica gel column chromatography (0–50% EtOAc/hexane) to give a purple solid. This solid was then dissolved in minimal Et₂O and recrystallized with excess hexane. The resulting solid was dissolved in DCM and washed with water (3 x 5 mL) to give the title compound as a grey solid (15 mg, 14%).

¹H NMR (401 MHz, CD₂Cl₂): δ 8.65 (ddd, *J* = 4.9, 1.9, 1.0 Hz, 1H), 7.75 (ddd, *J* = 7.7, 1.8 Hz, 1H), 7.57 (ddd, *J* = 7.9, 1.1 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 1H), 7.28 (ddd, *J* = 7.5, 4.9, 1.2 Hz, 1H), 6.84 (d, *J* = 2.9 Hz, 1H), 6.60 (dd, *J* = 8.5, 2.9 Hz, 1H), 3.85 (s, 2H).

¹³C NMR (176 MHz, CD₂Cl₂): δ 159.05, 149.80, 146.87, 142.38, 136.21, 134.19, 125.15, 122.88, 118.23, 116.90, 109.42.

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₁H₉BrN₂]H⁺ 249.0027; found: 249.0027

N-(4-bromo-3-(pyridin-2-yl)phenyl)-2-chloro-4-(methylsulfonyl)benzamide (19-Br)

Compound **19-Br** was prepared from 4-bromo-3-(pyridin-2-yl)aniline using the same procedure described for compound **19-**¹⁹**F** to give a colorless crystalline solid (15 mg, 58%, mp = 172–174 °C).

¹H NMR (700 MHz, CD₃CN): δ 9.05 (s, 1H), 8.71–8.63 (m, 1H), 8.04 (d, *J* = 1.7 Hz, 1H), 7.94 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.88–7.82 (m, 2H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.7 Hz, 1H), 7.67–7.61 (m, 2H), 7.42–7.36 (m, 1H), 3.12 (s, 3H).

¹³C NMR (176 MHz, CD₃CN): δ 164.99, 158.68, 150.36, 144.33, 142.87, 141.68, 138.78, 137.15, 134.66, 132.72, 130.86, 129.65, 127.04, 125.57, 123.87, 123.49, 122.13, 116.91, 44.27. HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₉H₁₄BrClN₂O₃S]H⁺ 464.9675; found: 464.9677

6.5 Preparation of MK-2 inhibitor derivatives

2-(2-chloropyridin-4-yl)-1,5,6,7-tetrahydro-4H-pyrrolo[3,2-c]pyridin-4-one

The title compound was prepared according to a previously reported procedure.³² In a flame-dried flask, 2-bromo-1-(2-chloropyridin-4-yl)ethan-1-one (600 mg, 2.56 mmol) and 2,4-piperidinedione (0.3767 g, 3.33 mmol) were dissolved in dry EtOH (25.6 mL). NH₄OAc (789 mg, 10.24 mmol) was then added, and the solution was stirred for 18 h at room temperature. Upon completion, the reaction was diluted with water (25 mL), filtered, and the resulting solid was further washed with water (5 mL) and Et₂O (5 mL) to give the title compound as a grey powder (398 mg, 63%).

¹H-NMR (401 MHz, DMSO-*d*₆): δ 12.04 (broad s, 1H), 8.29 (d, *J* = 5.4 Hz, 1H), 7.75 (s, 1H), 7.64 (dd, *J* = 5.4, 1.5 Hz, 1H), 7.14 (s, 1H), 7.12 (broad s, 1H), 3.41 (dt, *J* = 6.8, 2.4 Hz, 2H), 2.84 (t, *J* = 6.8 Hz, 2H). ¹³C-NMR (100 MHz, DMSO-*d*₆): δ 165.00, 151.66, 150.51, 142.79, 140.23, 127.62, 117.35, 116.38, 108.46, 40.46, 22.25.

HRMS (ESI⁺) [M+H]⁺ calc. for [C₁₂H₁₀ClN₃O]H⁺: 248.0585; found: 248.0593.

2-(2-(2-chlorophenyl)pyridin-4-yl)-1,5,6,7-tetrahydro-4H-pyrrolo[3,2-c]pyridin-4-one (20-Cl).

The title compound was prepared according to a previously reported procedure.³² 2-(2-chloropyridin-4-yl)-1,5,6,7-tetrahydro-4H-pyrrolo[3,2-c]pyridin-4-one (200 mg g, 0.807 mmol) and 2-chlorophenylboronic acid (189 mg, 1.21 mmol) were suspended in DMF (4 mL). To this suspension, an aqueous solution of Cs₂CO₃ (1.2 mL, 2M) was added, and the vessel was purged with argon. Tetrakis(triphenylphosphine)palladium (46.7 mg, 0.0404 mmol) was added, and the reaction was stirred at 80 °C for 18 h. The reaction was then cooled to room temperature, quenched with brine (50 mL), extracted with EtOAc (3 x 50 mL) and the organic layers were combined and dried over Na₂SO₄. The mixture was then purified by flash chromatography (10 g silica, 1:4 MeOH: DCM) to give **20-Cl** as a yellow oil (168 mg, 64%).

¹H-NMR (400 MHz, DMSO-*d*₆): δ 11.95 (broad s, 1H), 8.55 (d, J = 5.3 Hz, 1H), 7.83 (d, J = 1.1 Hz, 1H), 7.63 (dd, J = 5.4, 1.8 Hz, 1H), 7.57 (m, 2H), 7.46 (m, 2H), 7.07 (broad s, 1H), 7.04 (d, J = 2.3 Hz, 1H), 3.39 (td, J = 6.9, 2.4 Hz, 2H), 2.82 (t, J = 6.9 Hz, 2H).

¹³C-NMR (100 MHz, DMSO-*d*₆): δ 165.19, 162.73, 157.36, 150.14, 139.62, 131.96, 131.68, 130.44, 130.28, 128.75, 127.72, 118.42, 116.98, 116.15, 107.15, 36.22, 22.27.

HRMS (ESI+) [M+H]⁺ calc. for [C₁₈H₁₄ClN₃O]H⁺: 324.0898; found: 324.0910.

2-(2-(2-fluorophenyl)pyridin-4-yl)-1,5,6,7-tetrahydro-4H-pyrrolo[3,2-c]pyridin-4-one (20-¹⁹F).

The title compound was prepared according to a previously reported procedure.³² 2-(2-chloropyridin-4-yl)-1,5,6,7-tetrahydro-4H-pyrrolo[3,2-c]pyridin-4-one (200 mg, 0.807 mmol) (100 mg, 0.404 mmol) and 2chlorophenylboronic acid (85 mg, 0.61 mmol) were suspended in dimethylformamide (2 mL). To this suspension, an aqueous solution of Cs₂CO₃ (0.6 mL, 2M) was added, and the vessel was purged with argon. Tetrakis(triphenylphosphine)palladium (23 mg, 0.02 mmol) was added, and the reaction was stirred at 80 °C for 18 h. The reaction was then cooled to room temperature, quenched with brine (50 mL), extracted with ethyl acetate (3 x 50 mL), and the organic layers were combined and dried over Na₂SO₄. The mixture was then purified by flash chromatography (10 g silica, 1:4 MeOH: DCM) to give **20**-¹⁹F as a yellow powder (73 mg, 59%).

¹H-NMR (401 MHz, DMSO-*d*₆): δ 12.06 (broad s, 1H), 8.58 (d, J = 5.3 Hz, 1H), 7.96 (s, 1H), 7.86 (td, J = 7.8, 1.9 Hz, 1H), 7.62 (dd, J = 5.3, 1.7 Hz, 1H), 7.48 (m, 1H), 7.33 (m, 2H), 7.09 (broad s, 1H), 7.04 (d, J = 1.9 Hz, 1H), 3.40 (td, J = 6.9, 2.4 Hz, 2H), 2.84 (t, J = 6.9 Hz, 2H).

¹³C-NMR (100 MHz, DMSO-*d*₆): δ 165.29, 161.35, 158.88, 153.81, 150.51, 139.96, 139.71, 131.44, 128.79, 127.96, 127.84, 125.13, 118.04, 117.09, 116.75, 116.53, 116.08, 109.99, 107.05, 49.03, 22.26. ¹⁹F-NMR (377 MHz, DMSO-*d*₆): δ -77.80 (m, 1F).

HRMS (ESI+) [M+H]⁺ calc. for [C₁₈H₁₄FN₃O]H⁺: 308.1194; found: 308.1204.

6.6 Preparation of (NHC)CuF complexes

General procedure for the preparation of (NHC)CuF complexes with TMAF:

In a N₂ glovebox, the corresponding (NHC)CuCl (0.2 mmol, 1.0 equiv) and anhydrous TMAF (0.4 mmol, 2.0 equiv) were added to a 20 mL vial. Anhydrous THF (4 mL) was then added, and the resulting suspension was stirred vigorously for 20 h at room temperature. The suspension was then transferred to a 15 mL centrifuge tube, taken out of the glovebox, and centrifuged for 5 min. The tube was returned to the glovebox, and the colorless supernatant was decanted and concentrated to <0.5 mL. Excess pentane was added, leading to precipitation of (NHC)CuF as a white or tan powder (89–94%). Spectral data for complexes IPrCuF,²² sIPrCuF,⁵ and sICyCuF⁴ match those in the literature.

IPrCuF

IPrCuF was synthesized according to the general procedure. White powder, 84 mg, 89% yield Spectral data matched those previously reported for this complex.²²

sIPrCuF

sIPrCuF was synthesized according to the general procedure with a slight modification: 8 mL of THF was used to ensure that all of the sIPrCuF product remained in solution for the filtration step (using less THF led to lower yields).

White powder, 86 mg, 91% yield

Spectral data matched those previously reported for this complex.⁵

sICyCuF

sICyCuF was synthesized according to a modified version of the general procedure. After completion of the reaction, the slurry was filtered through a pipette filter in the glovebox instead of centrifuging. sICyCuF appears to be more air and/or moisture sensitive than the other NHCCuF complexes, and some decomposition occurred if the solution was transferred into a centrifuge tube and removed from the box. Off-white powder, 57 mg, 90% yield

Spectral data matched those previously reported for this complex.⁴

IAdCuF

IAdCuF was synthesized according to the general procedure.

White powder, 78 mg, 93% yield

¹H NMR (700 MHz, CD₂Cl₂): δ 7.08 (s, 2H), 2.42 (s, 12H), 2.26 (s, 6H), 1.78 (s, 12H).

¹³C NMR (176 MHz, CD₂Cl₂): δ 171.17 (weak), 116.11, 58.36, 45.37, 36.41, 30.59.

¹⁹F NMR (377 MHz, CD₂Cl₂): δ –248.39 (s, 1F).

HRMS (ESI⁺) [M]⁺ calc. for $[C_{25}H_{35}CuN_3]^+$ ([IAdCu]⁺ complexed with acetonitrile, the HRMS elution solvent) 440.2127; found: 440.2130.

Diffraction quality crystals were grown by layering a DCM solution of IAdCuF with pentane and allowing for slow diffusion at –30 °C over several days.

slCyCuOTf

The title complex was synthesized from a modified literature procedure.³³ In a N₂-containing glovebox, sICyCuCl (0.2 mmol, 1.0 equiv), AgOTf (0.2 mmol, 1.0 equiv), and anhydrous THF (2 mL) were added to a 20 mL vial. Immediate precipitation of AgCl was observed. The suspension was stirred for 1.5 h at room temperature, filtered, and concentrated *in vacuo* until <0.5 mL of the solution remained. Excess pentane was then added to give sICyCuOTf as a colorless precipitate. Diffraction quality crystals were grown by layering a DCM solution of sICyCuOTf with pentane and allowing for slow diffusion at -30 °C over several days.

¹H NMR (700 MHz, CD₂Cl₂): δ 3.76–3.67 (m, 2H), 3.52 (d, *J* = 2.6 Hz, 4H), 1.88–1.78 (m, 8H), 1.71–1.63 (m, 2H), 1.55–1.44 (m, 4H), 1.43–1.32 (m, 4H), 1.18–1.06 (m, 2H).

¹³C NMR (176 MHz, CD₂Cl₂): δ 195.59 (weak), 60.61, 45.14, 32.69, 25.93, 25.75.

¹⁹F NMR (377 MHz, CD₂Cl₂): δ –248.39 (s, 3F).

HRMS (ESI⁺) [M]⁺ calc. for $[C_{17}H_{29}CuN_3]^+$ ([sICyCu]⁺ complexed with acetonitrile, the HRMS elution solvent) 338.1657; found: 338.1659.

7. X-Ray Crystallography

IAdCuF

Figure S3. Crystal structure of IAdCuF with thermal ellipsoids at 40% probability. Hydrogen atoms and co-crystallized dichloromethane molecule have been omitted for clarity.

Figure S4. Numbering scheme for IAdCuF, including co-crystallized molecule of DCM solvent. Hydrogen atoms have been removed for clarity.

Structure Determination of IAdCuF

Colorless needles of IAdCuF were grown from a layered DCM/pentane solution of the compound at -30 °C. A crystal of dimensions 0.08 x 0.07 x 0.04 mm was mounted on a Rigaku AFC10K Saturn 944+ CCDbased X-ray diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-focus rotating anode ($\lambda = 1.54187$ A) operated at 1.2 kW power (40 kV, 30 mA). The X-ray intensities were measured at 85(2) K with the detector placed at a distance 42.00 mm from the crystal. A total of 2028 images were collected with an oscillation width of 1.0° in ω . The exposure times were 1 s for the low angle images, 6 s for high angle. Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for absorption. The integration of the data yielded a total of 17545 reflections to a maximum 20 value of 138.710° of which 4140 were independent and 3872 were greater than $2\sigma(I)$. The final cell constants (Table S13) were based on the xyz centroids 10843 reflections above $10\sigma(I)$. Analysis of the data showed negligible decay during data collection. The structure was solved and refined with the Bruker SHELXTL (version 2014/7) software package, using the space group P-1 with Z = 2 for the formula $C_{24}H_{34}Cl_2CuFN_2$ (2 molecules in asymmetric unit). All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. There is one molecule of dichloromethane solvent in the asymmetric unit. Full matrix least-squares refinement based on F2 converged at R1 = 0.0396 and wR2 = 0.1011 [based on I > 2sigma(I)], R1 = 0.0421 and wR2 = 0.1057 for all data. Two reflections with Error/esd > 10 were omitted during refinement. These reflections may have been due to the beam stop or secondary extinction. Additional details are presented in Table S14 and are given as Supporting Information in a CIF file. The CIF file has been deposited in the Cambridge Crystallographic Data Centre (CCDC) under deposition number 1985172.

Table S14. Crystal data and structure refinement for IAdCuF.

Identification code	ls2ad		
Empirical formula	C24 H34 Cl2 Cu F N2		
Formula weight	503.97		
Temperature	85(2) K		
Wavelength	1.54184 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 8.4835(6) Å	a= 87.075(5)°	
	b = 11.9653(8) Å	b= 80.401(5)°	
	c = 12.0408(7) Å	g = 71.730(6)°	
Volume	1144.37(13) Å ³		
Z	2		
Density (calculated)	1.463 Mg/m ³		
Absorption coefficient	3.666 mm ⁻¹		
F(000)	528		
Crystal size	0.080 x 0.070 x 0.040 mm ³		
Crystal color and habit	colorless needle		
Diffractometer	Rigaku Saturn 944+ CCD		
Theta range for data collection	3.723 to 69.355°		
Index ranges	_10<=h<=9, _14<=k<=14, _14<=l<=14		
Reflections collected	17545		
Independent reflections	4140 [R(int) = 0.0515]		
Observed reflections (I > 2sigma(I))	3872		
Completeness to theta = 67.684°	97.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.75217		
Solution method	SHELXT (Sheldrick, 2014)		
Refinement method	SHELXL-2014/6 (Sheldrick, 2014)		
Data / restraints / parameters	4140 / 0 / 271		
Goodness-of-fit on F ²	1.054		
Final R indices [I>2sigma(I)]	R1 = 0.0396, wR2 = 0.1011		
R indices (all data)	R1 = 0.0421, wR2 = 0.1057		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.891 and –0.592 e.Å ⁻³		

slCyCuOTf

Figure S6. Numbering scheme for sICyCuOTf (2 molecules in asymmetric unit). Hydrogen atoms have been removed for clarity.

Structure Determination of sICyCuOTf

Colorless plates of sICyCuOTf were grown from a layered DCM/pentane solution of the compound at -30 °C. A crystal of dimensions 0.24 x 0.24 x 0.05 mm was mounted on a Rigaku AFC10K Saturn 944+ CCDbased X-ray diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-focus rotating anode (λ = 1.54187 A) operated at 1.2 kW power (40 kV, 30 mA). The X-ray intensities were measured at 225(1) K with the detector placed at a distance 42.00 mm from the crystal. A total of 2028 images were collected with an oscillation width of 1.0° in ω . The exposure times were 1 s for the low angle images, 6 s for high angle. Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for absorption. The integration of the data yielded a total of 60156 reflections to a maximum 20 value of 138.808° of which 7460 were independent and 7203 were greater than $2\sigma(I)$. The final cell constants (Table S14) were based on the xyz centroids 38342 reflections above $10\sigma(I)$. Analysis of the data showed negligible decay during data collection. The structure was solved and refined with the Bruker SHELXTL (version 2014/7) software package, using the space group C2/c with Z =8 for the formula C₃₂H₅₂Cu₂F₆N₄O₆S₂ (2 molecules in asymmetric unit). All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. There are two crystallographically independent complexes in the asymmetric unit. For one of the complexes, the CF₃ group of the triflate ligand is disordered. Full matrix least-squares refinement based on F² converged at R1 = 0.0407 and wR2 = 0.1070 [based on I > 2sigma(I)], R1 = 0.0415 and wR2 = 0.1078 for all data.

The disordered CF₃ group of one triflate ligand was modeled as two orientations, and site occupancy for each contribution was freely refined. The C-F bond distances in this group were made to be similar using SADI restraints. Additionally, a rigid bond restraint was used to normalize the thermal ellipsoids for this CF3 group. One reflection with high Error/esd was omitted during refinement. This reflection may have been due to the beam stop or secondary extinction. Additional details are presented in Table S15 and are given as Supporting Information in a CIF file. The CIF file has been deposited in the Cambridge Crystallographic Data Centre (CCDC) under deposition number 1985171. Acknowledgement is made for funding from NSF grant CHE-0840456 for X-ray instrumentation.

Identification code	ls110c		
Empirical formula	$C_{32}H_{52}Cu_2F_6N_4O_6S_2$		
Formula weight	893.97		
Temperature	225(2) K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 23.2214(3) Å	a= 90°	
	b = 20.51134(17) Å	b= 109.0793(14)°	
	c = 17.8080(2) Å	g = 90°	
Volume	8016.04(17) Å ³		
Z	8		
Density (calculated)	1.482 Mg/m ³		
Absorption coefficient	2.924 mm ⁻¹		
F(000)	3712		
Crystal size	0.240 x 0.240 x 0.050 mm ³		
Crystal color and habit	colorless plate		
Diffractometer	Rigaku Saturn 944+ CCD		
Theta range for data collection	2.949 to 69.404°.		
Index ranges	_28<=h<=27, _24<=k<=24,20<=l<=21		
Reflections collected	60156		
Independent reflections	7461 [R(int) = 0.0490]		
Observed reflections (I > 2sigma(I))	7203		
Completeness to theta = 67.684°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.45978		
Solution method	SHELXT (Sheldrick, 2014)		
Refinement method	SHELXL-2014/6 (Sheldrick, 2014)		
Data / restraints / parameters	7461 / 51 / 498		
Goodness-of-fit on F ²	1.056		
Final R indices [I>2sigma(I)]	R1 = 0.0407, wR2 = 0.1070		
R indices (all data)	R1 = 0.0415, wR2 = 0.1078		
Extinction coefficient	0.000304(19)		
Largest diff. peak and hole	0.514 and –0.495 e.Å ⁻³		

Table S15. Crystal data and structure refinement for sICyCuOTf.

8. NMR Spectra of Novel Compounds

LS-2-5b-19F STANDARD FLUORINE PARAMETERS

N

30	20	10	Ó	-10	-20	-30	-40	-50	-60	-70	-80 f1 (j	-90 opm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

LS-2-5e-crude-19F Fluorine-19

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 11 (ppm)

LS-2-18C-19F-TFT STANDARD FLUORINE PARAMETERS

70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 f1 (ppm)

-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -18 11 (ppm)

LS-2-129B-CylmoOMeF-19F STANDARD FLUORINE PARAMETERS

Ó -70 -90 -100 f1 (ppm) -10 -20 -30 -40 -50 -60 -80 -110 -120 -130 -140 -150 -160 -170 -180 -190

80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -14; f1 (ppm)

STAUGARD FLOOPME PARAMETERS		 -20	-30	-40	-50	-60	 **************************************	• -90	-100	-110	-120	-130	-140	-150	-160	 -180
STANDARD FLUORINE PARAMETERS																
STANDARD FLUORINE PARAMETERS $f_{1,0}$																
STANDARD FLUORINE PARAMETERS $F_{H_{0}CO}$																
STANDARD FLUORINE PARAMETERS H_3CO																
STANDARD FLUORINE PARAMETERS																
	H₃CO															
5-2-140-195	STANDARD I	AMETERS										1				

LS-2-55-19F STANDARD FLUORINE PARAMETERS

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 11 (ppm)

LS-2-53e-19F-CD2Cl2 STANDARD FLUORINE PARAMETERS

∠, N

ing home of the second second

IN MAANAMA WANNA MAANA MAANAMA

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

NAMAGINA (AN

WAN AND

NA MARKANA ANA DANA MARKANA

MARMANNAN

arî ku dilî narî ku Aliya Aliya

IN THE REPORT OF THE REPORT

LS-2-35-columned-13C-teachingNMR Carbon-13

120 110 100 f1 (ppm) 230 220 210 200 -10

LS-2-106-Probenecid-F-19F Fluorine-19

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

LS-2-108-Proben-Imine-19F STANDARD FLUORINE PARAMETERS

O, N^S, O N J , F

-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-18
								f1 (ppn	n)								

LS-2-98-PhPyImF-19F STANDARD FLUORINE PARAMETERS

_																							
30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80 f1 (-90 ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

LS-2-100-19F STANDARD FLUORINE PARAMETERS

ſ N N H O CI

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 11 (ppm)

WWIV-1B_FLUORINE_01 WWIV-1B

HN-ΝH 0

S114

LS-2-IAdCuF-19F STANDARD FLUORINE PARAMETERS

Ϋ́ Cu F

30 -150 -170 f1 (ppm) 10 -10 -30 -50 -70 -230 -250 -270 -90 -110 -130 -190 -210 -290 -310 -330 -35

LS-2-IAdCuF-19F STANDARD FLUORINE PARAMETERS

9. HPLC Traces of Radiofluorination Reactions

The identity of the radiofluorinated products was determined using HPLC analysis. For each substrate, the crude reaction mixture was spiked with a small amount of the authentic ¹⁹F-containing product and injected into the HPLC unit. Both UV and RAD traces were collected, and these are shown below. The presence of the ¹⁸F product was confirmed by the presence of a RAD peak with a retention time corresponding to that of the UV peak due to the co-injected authentic ¹⁹F-containing product. The UV and RAD detectors are in a series, (the sample passes through the UV detector first), resulting in a ~0.2 min. delay between the corresponding UV and RAD peaks.

Mes

N.

*Partial cleavage of imine observed during HPLC analysis

10. References

- ³ Diez-Gonzalez, S.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Stevens, E. D.; Slawin, A. M. Z.; Nolan,
- S. P. Dalton Trans., **2010**, 39, 7595–7606. Note: the following modification was made to the reported procedure: after following the reported work-up, the product was taken up in DCM and passed through a 1-inch silica plug to remove impurities.
- ⁴ Laitar, D. S. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2006.
- ⁵ Dang, H.; Mailig, M.; Lalic, G. Angew. Chem. Int. Ed. **2014**, 53, 6473–6476.
- ⁶ Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. **2012**, 134, 10795–10798.
- ⁷ Szadkowska, A. Gstrein, X.; Burtscher, D.; Jarzembska, K.; Wozniak, K.; Slugovc, K.; Grela, K. *Organometallics* **2010**, 29, 117–124.

⁸ The chlorination procedure from the following reference was used to synthesize **1-CI**: Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. *Org. Lett.* **2006**, *8*, 2523–2526.

Spectra of **1-CI** matched those reported in the following reference: Botla, V.; Akudari, A.; Malapaka, C. *Tetrahedron Lett.* **2019**, *60*, 115–119.

- ⁹ Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. *J. Am. Chem. Soc.* **2006**, *128*, 6790–6791.
- ¹⁰ Mizuno, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. **2011**, *1*33, 1251–1253.
- ¹¹ Araneda, J. F.; Piers, W. E.; Heyne, B.; Parvez, M.; McDonald, R. *Angew. Chem. Int. Ed.* **2011**, *50*, 12214–12217.

¹² Batista, J. H. C.; dos Santos, F. M.; Bozzini, L. A.; Vessecchi, R.; Oliveira, A. R. M.; Clososki, G. C. *Eur. J. Org. Chem.* **2015**, 967–977.

- ¹³ Serra, J.; Whiteoak, C. J.; Acuña-Parés, F.; Font, M.; Luis, J. M.; Lloret-Fillol, J.; Ribas, X.
- J. Am. Chem. Soc. 2015, 137, 13389–13397.
- ¹⁴ Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. **2006**, *128*, 7134–7135.
- ¹⁵ Das, A.; Ghosh, I.; Konig, B. *Chem. Commun.* **2016**, *52*, 8695–8698.
- ¹⁶ Dubost, E.; Magnelli, R.; Cailly, T.; Legay, R.; Fabis, F.; Rault, S. *Tetrahedron* **2010**, 66, 5008–5016.
- ¹⁷ Azizi, K.; Akrami, S.; Madsen, R. *Chem. Eur. J.* **2019**, 25, 6439–6446.
- ¹⁸ Orr, S. A.; Border, E. C.; Andrews, P. C.; Blair, V. L. *Chem. Eur. J.* **2019**, *25*, 11876–11882.
- ¹⁹ Gies, A.-E.; Pfeffer, M. J. Org. Chem. **1999**, 64, 3650–3654.
- ²⁰ Azizi, K.; Akrami, S.; Madsen, R. Chem. Eur. J. **2019**, 25, 6439.
- ²¹ Elliott, D. C.; Marti, A.; Mauleón, P.; Pfaltz, A. Chem. Eur. J. **2019**, 25, 1918.
- ²² Herron, J. R.; Ball, Z. T. J. Am. Chem. Soc. **2008**, 130, 16486–16487.
- ²³ Lee, S. J.; Brooks, A. F.; Ichiishi, N.; Makaravage, K. J.; Mossine, A. V.; Sanford, M. S.; Scott, P. J. H. *Chem. Commun.* **2019**, *55*, 2976-2979
- ²⁴ Bogonda, G.; Kim, H. Y.; Oh, K. Org. Lett. 2018, 20, 2711–2715.
- ²⁵ Mu, X.; Zhang, H.; Chen, P.; Liu, G. Chem. Sci. **2014**, 5, 275–280.
- ²⁶ Du, Z.-J.; Gao, L.-X.; Lin, Y.-J.; Han, F.-S. ChemCatChem **2014**, 6, 123–126.
- ²⁷ Correa, A.; Bolm, C. Adv. Synth. Catal. **2007**, 349, 2673–2676.

²⁸ Liu, X.-H.; Park, H.; Hu, J.-H.; Hu, Y.; Zhang, Q.-L.; Wang, B.-L.; Sun, B.; Yeung, K.-S.; Zhang, F.-L.; Yu, J.-Q. *J. Am. Chem. Soc.* **2017**, *139*, 888–896.

- ³⁰ Fan, Z.; Ni, J.; Zhang, A. *J. Am. Chem. Soc.* **2016**, *138*, 8470–8475.
- ³¹ Das, B.; Venkateswarlu, K.; Majhi, A.; Siddaiah, V.; Reddy, K. R. J. Mol. Cat. A. **2007**, 267, 30–33.
- ³² Anderson, D. R.; Meyers, M. J.; Vernier, W. F.; Mahoney, M. W.; Kurumbail, R. G.; Caspers, N.; Poda,
- G. I.; Schindler, J. F.; Reitz, D. B.; Mourey, R. J. J. Med. Chem. 2007, 50, 2647–2654.
- ³³ Cheng, L.-J.; Cordier, C. Angew. Chem. Int. Ed. **2015**, 54, 13734–13738.

¹ Xie, W.; Chang, S. Angew. Chem. Int. Ed. **2016**, 55, 1876–1880.

² Uehling, M. R.; Suess, A. M.; Lalic, G. J. Am. Chem. Soc. 2015, 137, 1424–1427.

²⁹ Zhou, X.-Q.; Busemann, A.; Meijer, M. S.; Siegler, M. A.; Bonnet, S. *Chem Comm* **2019**, *55*, 4695–4698.