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S1: DERIVATION OF COMBINATIONAL TERM W ({mi, qij}) (EQ. 2)

Here we use the mathematical induction method to derive Eq. 2. We start from a configuration in which bridges
are formed only between particle 1 and 2 consisting of m1 and m2 bonded linkers with free ends on each particle and
q12 bridging linkers between the two particles (Fig S1a), the number of possible combinations of hybridization, W2,
can be written as:
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)(
n1 −m1

q12

)(
n2
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)(
n2 −m2

q12

)
q12!
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∑
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If we consider particle 3 is also bonded into the cluster of particle 1 and 2 like in Fig. S1b, the number of possible
combinations, W3, is:
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FIG. S1. Illustration of the number of possible bonds combinations in (a) 2-particles cluster and (b) 3-particle cluster.

We assume the total number of combinations of hybridization for a cluster of N particles is:

WN =
N∏
i=1

ni!

mi!(ni −mi −
∑
j qij)!

∏
j>i qij !

. (S3)

Then for the (N + 1)-particle system, the number of combinations of hybridization WN+1 can be represented by
the product of WN and the combinations between the existing N particles with the (N + 1)th particle:

WN+1 =WN
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∑
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S2: PARTITION FUNCTIONS FOR LINKERS IN DIFFERENT STATES

As shown in Fig. S2, each linker can stay in three different states, i.e., free state, state a and state b. The partition
function for the linker in free state ξfree in the system of volume V can be written as

ξfree = ξtranξrot = V

(
2πmb

βh2

)3/2
8π2I

βh2
=

1

Λ5

I

m
4πV, (S5)

where Λ is de Broglie wavelength with I the moment of inertia for the stiff linker and h the Planck constant, and
ξtran/rot is the partition function for the translation/rotational entropy. β = 1/kBT with kB the Boltzmann constant

and T the temperature of the system, respectively. Assuming 1
Λ5

I
m4π = 1 and considering the ideal gas of hard rods

as the reference state, the canonical partition function Z and the free energy F of the ideal gas of N linkers can be
written as

Z =
ξNfree
N !

,

βF = − logZ = −N log ξfree +N logN −N,
(S6)

and the chemical potential of the linker is

µ =
∂F

∂N
= kBT log ρ, (S7)

with ρ = N/V the density of the linkers. Because of the existence of colloidal particles, the free volume that linkers
can explore decreases because of the excluded volume interaction between the linkers and the colloids. When two
particles are close to each other, their depletion zones may overlap, which increases the free volume for the free
linkers in the system and induces the depletion interaction between colloidal particles. When R� l, using Derjaguin
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approximation [32], the depletion potential between two particles separated by the surface-surface distance h can be
written with the first order approximation using the free linker concentration ρ0 as [27]:

βUdep(h) =

−ρ0πR
(l − h)3

6l
, 0 ≤ h ≤ l,

0, h > l.

(S8)

Besides the free linkers in the system, there are linkers bonded on the surface of colloidal particles, and the bonded
linkers can stay in two different states, i.e., the state a and b in Fig. S2. The linkers in a state are essentially these
linkers bonded on an mDNACC of complementary sequences with a free unbound end. The linkers in state b form
bridges between two mDNACCs, and the two ends of the linkers are bonded to two different mDNACCs.

FIG. S2. Schematic representation for possible states of linkers. Top left: linkers are unbound and free in the system. Top
right: linkers are bonded on a particle with a free end and not interacting with other particles. The red area is the volume that
the free end can explore. Bottom left: linkers are bonded on a particle with a free end and interacting with other particles.
Bottom right: linkers are bonded on two different particles and form a bridge. The blue area is the adsorption layer and purple
area (overlap with red area) is the volume that other end explore when forming bridges.

In the dilute limit of mDNACCs, the linkers in state a do not interact with other particles, and we refer this special
limit as state a′. Assume the particle that linker is bonded with is particle A, the partition function ξa′ for a single
bonded linker can be written as:

ξa′ =

∫
e−β∆Gbind

dω

h

=

∫ R+rc

R

drA

∫ π

−π
2πr2

A sinφdφδ(|rB − rA| − l)Θ [|χrA + (1− χ)rB | −R] exp(−β∆Gbind), ∀χ ∈ [0, 1]

=2π

∫ R+rc

R

r2
A(1 + cos θ)drA exp(−β∆Gbind)

(S9)

where rA/B is the position of A/B end of the linker. The Heaviside step function Θ ensures that the linker does
not overlap with the particle, and the Dirac delta function ensures that the length of linker is fixed at l. Here

Va′ = 2π
∫ R+rc
R

r2
A(1 + cos θ)drA can be seen as the configurational volume that the linker in state a′ can explore, and
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θ is the minimum angle (see Fig. S3):

cos θ =
r2
A + l′2 −R2

2rAl′
where l′ =


√
r2
A −R2, r2

A −R2 ≥ l2,

l, r2
A −R2 < l2.

(S10)

(a) (b)

FIG. S3. Illustration for the calculation of Eq. S9. rA/B is the position of A/B end of the linker with the length l, rB here
can move in grey district for given rA. l′ is the minimun distance between rA and the surface of the particle along the linker
direction (red line). When r2A−R2 < l2 (a), rB can touch the surface of the particle without overlapping, and l′ = l; otherwise

(b) rB can not reach the surface of the particle, and l′ =
√
r2A −R2.

At a finite colloidal concentration, the existence of neighbouring colloids can influence the free volume of the bonded
linkers with free ends, which induces a repulsive free energy βFrep, and the partition function ξa for a single absorbed
linker in state a is

ξa = ξa′ · e−βFrep . (S11)

The probability P (rB) for the free end of a linker at position rB can be written as:

P (rB) =

∫ R+rc

R

drA

∫ π

−π
dφ

2πr2
A sinφ

4πr2
A

δ(|rB − rA| − l)
2π(1 + cos θ)l2

Θ [|χrA + (1− χ)rB | −R] ∀χ ∈ [0, 1]. (S12)

When rc/l→ 0 and l/R→ 0, we can neglect the configuration space other than
√
R2 + l2 < rB < R+ l (consider the

bonded end is grafted on the particle):

P (rB) =


1

4πR2l
, R2 + l2 < r2 < (R+ l)2

0, otherwise
(S13)

Here we assume P (rB) to be uniform, and when l/R → 0, the number of available states for the absorbed linkers is
approximately proportional to the volume that the free end of linkers can explore [22]

βFrep = − log

(
Ωa

Ωtot

)
≈ − log

(
Vtot −

∑
Voverlap

Vtot

)
, (S14)

ξa = ξa′ ·
Vtot −

∑
Voverlap

Vtot
, (S15)

where Voverlap is the overlap volume between two spheres of radius R1 = R+ l and of R2 = R with the center-to-center
distance d, and Vtot is the volume that the free end of a bonded linker on an isolated colloid can explore:

Vtot =
4

3
π
[
(R+ l)3 −R3

]
≈ 4πR2l, (S16)
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Voverlap(R1, R2, d) =
π

12d
(R1 +R2 − d)2

[
d2 + 2d(R1 +R2)− 3(R2

1 +R2
2) + 6R1R2

]
. (S17)

For the bridging linkers, the conformational free energy can be calculated by confining the free end of bonded linkers
on the surface of the bridged particle. When the free end of a bonded linker bind with another colloid forming a
bridge, the free end can only explore the overlapped volume between the adsorption layer of the bridged particle and
the space that the free end may explore (the red area Fig.S2). Similar to βFrep, the conformational free energy for
bridging state βFcnf can be written as

βFcnf = − log

(
Ωb

Ωtot

)
≈ − log

[
Vb(R1, R2, rc, d)

2Vtot

]
, (S18)

where Vb(R1, R2, rc, d) is the overlap volume between a sphere with radius R1 and the adsorption layer of thickness
rc on the surface of another sphere with radius R2 and the centre-to-centre distance between the two spheres is d:

Vb(R1, R2, rc, d) = [Voverlap(R1 + l, R2 + rc, d)− Voverlap(R1 + l, R2, d)]

−
[
Voverlap

(√
R2

1 + l2, R2 + rc, d

)
− Voverlap

(√
R2

1 + l2, R2, d

)]
.

(S19)

Then the partition function of a single linker bridging between two colloids is:

ξb = ξa′ · exp [−(β∆Gbind + βFcnf )] = ξa′ · exp (−β∆Gbind) ·
Vb(R1, R2, rc, d)

2Vtot
(S20)

S3: DERIVATION OF SELF-CONSISTENT EQUATION AND PROOF OF POSITIVE DEFINITENESS

Here we consider the probability of states having free unbound ssDNAs on the surface of particle i. p̄i is the
probability that a ssDNA is unbound:

p̄i +
mi

ni
+
∑
j

qij
ni

= 1. (S21)

Combining Eq.3 and Eq.S21, we can have a set of self-consistent equations:

1

p̄i
= 1 + ξae

βµ +
∑
j

p̄jnjξbe
βµ. (S22)

We employ the method in Ref [24] to prove that Eq. S22 has only one solution satisfying 0 < p̄i ≤ 1 for each i. We
define f(p̄i) as:

f(p̄i) =
∑
i

(sip̄i − log p̄i) +
1

2

∑
ij

p̄ikij p̄j , (S23)

where si = 1 + ξae
βµ and kij = njξbe

βµ. The stationary points of f are the solutions of Eq. S22:

∂f

∂p̄i
= si −

1

p̄i
+
∑
ij

kij p̄j = 0, (S24)

which means the solutions are local optima of f . In the following, we prove that the Hessian matrix H = ∂2f/∂p̄i∂p̄j
is positively definite to prove the uniqueness of the solution of Eq. S22, by showing that

∑
ij vi(∂

2f/∂p̄i∂p̄j)vj is
positive for all non-zero vectors vi: ∑

ij

vi

(
∂2f

∂p̄i∂p̄j

)
vj =

∑
ij

vi

(
1

p̄2
i

δij + kij

)
vj

=
∑
ij

vi
p̄i

(δij + p̄ikij p̄j)
vj
p̄j
.

(S25)
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The ith diagonal element is:

|Hii| = 1, (S26)

and the sum of the off-diagonal terms in the ith row is∑
j 6=i

|Hij | =
∑
j

p̄ikij p̄j = 1− sip̄i < 1. (S27)

Then for the ith row in Hessian matrix H:

|Hii| −
∑
j 6=i

|Hij | > 0, (S28)

which implies that the Hessian matrix h is strictly diagonally dominant, and it is positively definite.

S4: MEAN FIELD THEORY FOR LINKER-MEDIATED MDNACCS AT THE STRONG BINDING
LIMIT β∆Gbind → −∞

For β∆Gbind → −∞, Eq.S22 leads to a diverging βF . We propose a new analytical form of effective interaction to
simulate mDNACCs at the limit, by focusing on the effect of entropy. Essentially, when β∆Gbind → −∞, there is no
available unbound site on colloids n̄i = 0, and

mi = ni −
∑
j

qij . (S29)

Combining Eq. 1 and Eq.S29, The partition function counting for all possible combinations of hybridization for
{qij} in the limit β∆Gbind → −∞, Zinf({qij}) can be written as:

Zinf({qij}) =
∑
{qij}

Winf({qij})ξ
∑

imi
a ξ

∑
i

∑
j>i qij

b eβµ(
∑

imi+
∑

i

∑
j>i qij), (S30)

where Winf({qij}) is the combinational term with Eq.S29:

Winf({qij}) =
∏
i

ni!

(ni −
∑
j qij)!

∑
j>i qij !

. (S31)

Here we extract the exp (−β∆Gbind) term from ξa/b, to focus on the effect of entropy:

ξ∗a = ξae
β∆Gbind , (S32)

and

ξ∗b = ξbe
2β∆Gbind . (S33)

With Stirling approximation and substituting Eq.S29 and Eq.S38, we can write the partition function Zinf({qij}) as:

Zinf =
∑
{qij}

exp (−βFinf({qij})), (S34)

βFinf =
∑
i

mi log
mi

ξ∗ae
βµ

+
∑
j>i

qij

(
log

qij
ξ∗b e

βµ
+ 1

)
+ ni (β∆Gbind − log ni)

 , (S35)

using the saddle point approximation, we obtain

∂Finf({qij})
∂{qij}

= 0, (S36)
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by introducing qij = qji into Eq.S36, we have

qij = mimjΞab, (S37)

when Ξab is the entropy penalty of a bridging linker (state b) transforms to two bonded linkers with free ends (state
a):

Ξab =
ξ∗b
ξ∗2a

e−βµ. (S38)

For each particle i,

pai +
∑
j

qij
ni

= 1, (S39)

with pai = mi/ni, and we can have a set of self-consistent equations:

pai =
1

1 +
∑
j njpjΞab

. (S40)

Combining Eq.S35 and Eq.S37, the free energy of mDNACCs system in the limit of β∆Gbind → −∞, βFinf , can be
written by:

βFinf =
∑
i

ni log
pai

ξ∗ae
βµ

+
1

2

∑
j

qij + ni (β∆Gbind)

+ βUdep. (S41)

According to the method in Ref [24] the Hessian matrix
[
∂2βFinf

∂qij∂qi′j′

]
is always positively definite, and βFinf is a convex

function, which implies that there is only one solution satisfying 0 < pai ≤ 1 for each i in Eq.S40.
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