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S1: Contact resistance, carrier mobility and transit frequency 

 

The contact resistance (RC) in organic TFTs is typically evaluated in the linear regime of 

transistor operation using the transmission line method (TLM; see Figs. 2 and S4) (41).  In TLM 

analyses, as well as for most other methods for determining RC (42), a requirement (and indeed a 

drawback) is that it is only valid for the linear regime of operation using vanishingly-small VDS, 

since a key assumption of TLM is that RC is Ohmic and that the channel resistance is uniform 

over the entire channel region. This latter point by itself precludes any analysis of RC in the 

saturation regime using TLM because of the pinch-off of the channel that occurs when VDS is 

approximately equivalent to the overdrive voltage (VGS-Vth). Experimental investigations have 

shown that RC in organic TFTs can vary significantly with VDS (32, 43). Especially for TFTs with 

small channel lengths (L), RC may be reduced by VDS due to effects such as image-force lowering 

(IFL) (33) or by drain-induced barrier lowering (DIBL) (35) of the injection barrier at the 

interface between the source contact and the semiconductor. Enhancements of the carrier 

mobility in the vicinity of the contacts through a Poole-Frenkel-like dependence of the mobility 

on the applied electric field may also lead to lower RC, in part due to the nonlinear effects on 

both charge transport (44) and charge injection (45). For these reasons it is beneficial to be able 

to quantify the dependence of RC on VDS. 

Here, we estimate RC and the intrinsic channel mobility (µ0) in the saturation regime (VDS ≤ 

VGS - Vth for p-channel TFTs) by fitting the transit frequency (fT) extracted from S-parameter 

measurements as a function of channel length (L). Similar to TLM, we use µ0 and the width-

normalized contact resistance (RCW) as fitting parameters. This approach has to our knowledge 

never been explicitly implemented, though comparisons of calculated fT to experimental results 

using RC determined from TLM have been reported (16, 36). In both approaches, the error in the 

extracted values is assessed simply as the calculated standard error from the fits. In the TLM, the 

width-normalized total source-to-drain resistance of the TFT (RW) is fit with a linear function 

with respect to L. In our method, the fT data as a function of L is fit using the equation derived in 

the following. 

The dependence of the effective mobility (µeff) and the transit frequency (fT) on RC can be 

illustrated with the following two equations for TFTs operated in the saturation regime (2, 46): 

𝜇𝑒𝑓𝑓 =  𝜇0 [1 − (
𝜇0𝐶𝑑𝑖𝑒𝑙𝑅𝐶𝑊(𝑉𝐺𝑆−𝑉𝑡ℎ)

𝐿+ 𝜇0𝐶𝑑𝑖𝑒𝑙𝑅𝐶𝑊(𝑉𝐺𝑆−𝑉𝑡ℎ)
)

2

]          (1) 

𝑓𝑇 =  
𝜇𝑒𝑓𝑓(𝑉𝐺𝑆−𝑉𝑡ℎ)

2𝜋𝐿(𝐿𝑜𝑣,𝑡𝑜𝑡𝑎𝑙+
2

3
𝐿)

     (2) 

where Cdiel is the gate-dielectric capacitance per unit area and Lov,total is the total gate-to-contact 

overlap length, which is simply the sum of the gate-to-source (Lov,GS) and gate-to-drain (Lov, GD) 

overlap lengths. In principle, the term RC encompasses contributions from both the source and 

drain contacts. Equation 1 can be simplified to (36) 

𝜇𝑒𝑓𝑓 =
𝜇0

1+
1

2𝐿
𝜇0𝐶𝑑𝑖𝑒𝑙𝑅𝐶𝑊(𝑉𝐺𝑆−𝑉𝑡ℎ)

     (3) 

Combining Equations 2 and 3, we then obtain an expression for fT that includes the influence of 

the contact resistance: 

𝑓𝑇 =  
𝜇0(𝑉𝐺𝑆−𝑉𝑡ℎ)

2𝜋(𝐿+
1

2
𝜇0𝐶𝑑𝑖𝑒𝑙𝑅𝐶𝑊(𝑉𝐺𝑆−𝑉𝑡ℎ))(𝐿𝑜𝑣,𝑡𝑜𝑡𝑎𝑙+

2

3
𝐿)

            (4) 

 

For illustrative purposes, several curves of the transit frequency as a function of the channel 

length calculated using Equation 4 and assuming different values for RCW are shown in Fig. S7.   



 

 

Supplementary Figures 

 

 

Fig. S1| Device fabrication process and materials characterization. (A) Schematic process 

flow for the fabrication of bottom-gate bottom-contact (inverted coplanar) organic TFTs. All 

metal and semiconductor layers are deposited by thermal evaporation or sublimation in vacuum 

and patterned using high-resolution silicon stencil masks. (B) Infrared reflection absorption 

spectroscopy (IRRAS) analysis of bulk pentafluorobenzenethiol (PFBT, black) and of a 

chemisorbed monolayer of PFBT on a gold surface (red). (C) AFM height scan of a thin film of 

the organic semiconductor DPh-DNTT deposited onto a hybrid AlOx/SAM gate dielectric on a 
flexible PEN substrate.  



 

 

 

Fig. S2| Static transistor characteristics and uniformity. (A) SEM micrograph of an 

individual DPh-DNTT TFT. (B) Measured transfer characteristics of 10 nominally identical 

TFTs having a channel length (L) of 1.5 µm, a total gate-to-contact overlap (Lov,total) of 60 µm 

and a channel width (W) of 7.5 µm, with statistics for the effective carrier mobility (µeff), 

threshold voltage (Vth) and subthreshold swing (SS). (C) Transfer characteristics of an individual 

TFT measured at a drain-source voltage (VDS) of -3 V. The dotted blue line is a guide to the eye, 

indicating the ideal quadratic dependence of the drain current on the gate-overdrive voltage (VGS 

– Vth) in the saturation regime. (D) Output characteristics for gate-source voltages (VGS) from 0 to 

-3 V in steps of 0.5 V. 



 

 

 

Fig. S3| Static characteristics of TFTs based on DPh-DNTT (top row) and C10-DNTT 

(bottom row). Both TFTs have a channel length (L) of 8 µm, a total gate-to-contact overlap 

(Lov,total) of 4 µm and a channel width (W) of 200 µm. From left to right: Transfer characteristics, 

effective carrier mobility (µeff) plotted as a function of the gate-source voltage, and output 

characteristics for gate-source voltages (VGS) from 0 to -3 V in steps of 0.5 V. (Note that these 

TFTs were fabricated separately from the TFTs shown in Fig. S2.) 



 

 

 

Fig. S4| Transistors for TLM analysis. (A) Transfer characteristics of DPh-DNTT TFTs with 

channel lengths (L) ranging from 1 to 10.5 µm and a channel width (W) of 50 µm, measured with 

a drain-source voltage (VDS) of -0.1 V. (B) Effective carrier mobility (µeff) in the linear regime 

determined for each TFT as a function of the channel length (L). The line is a fit to the data using 

the equation µeff = µ0 (1 + L1/2/L)
-1

 where µ0 is the intrinsic channel mobility and L1/2 is the 

channel length at which µeff = ½ µ0. (C) SEM micrographs of the channel region of the TFTs. 

(Note that these TFTs were fabricated separately from the TFTs shown in Fig. S2.) 

 

  



 

 

 



 

 

Fig. S5| Transistors for S-parameter measurements. (A) Transfer characteristics of DPh-

DNTT TFTs with channel lengths (L) ranging from 0.7 to 10.5 µm, a total gate-to-contact 

overlap (Lov,total) of 10 µm and a channel width (W) of 100 µm, measured with a drain-source 

voltage (VDS) of -3 V. (B) Output characteristics of each TFT for a gate-source voltage (VGS) 

of -3 V. (C) Channel-width-normalized peak transconductance (gm) at a gate-source voltage 

(VGS) of -3 V as a function of the inverse of the channel length. (D) SEM micrographs of the 

channel region of the TFTs. (Note that these TFTs were fabricated separately from the TFTs 
shown in Fig. S2.) 

  



 

 

 

Fig. S6| DPh-DNTT TFT showing a transit frequency of 21 MHz. The TFT has a channel 

length (L) of 0.6 µm, a total gate-to-contact overlap (Lov,total) of 10 µm and a channel width (W) 

of 100 µm. (A) Output characteristics for gate-source voltages (VGS) from 0 to -3 V in steps of 
0.5 V. (B) SEM micrographs of the channel region of the TFT. 

 

 

Fig. S7| Relation between channel length, contact resistance and transit frequency. The 

curves were calculated using Equation (4) for width-normalized contact resistances (RCW) of 10, 

50 and 100 Ωcm, gate-to-source and gate-to-drain overlaps (Lov,GS, Lov,GD) of 5 µm, an intrinsic 
channel mobility (µ0) of 5 cm

2
/Vs and a gate-overdrive voltage (|VGS-VDS|) of 2 V. 
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Table S1| Literature review of voltage-normalized transit frequencies reported for organic TFTs. 

Reference Substrate Device 
Voltage 

(V) 
fT/V 

(MHz V-1) 
Brown, Science, vol. 270, p. 972, 1995 Rigid RO* 20 1.25·10-4 
Crone, J. Appl. Phys., vol. 89, p. 5125, 2001 Rigid RO* 100 5·10-4 
Baude, Appl. Phys. Lett., vol. 82, p. 3964, 2003 Rigid RO* 50 6.67·10-4 

Sheraw, Int’l Electr. Dev. Meeting 2000 Flexible RO* 20 0.00125 
Fix, Appl. Phys. Lett., vol. 81, p. 1735, 2002 Flexible RO* 80 0.0092 

Wagner, Appl. Phys. Lett., vol. 89, p. 243515, 2006 Rigid RO* 10 0.2 
Heremans, Int’l Electr. Dev. Meeting 2009 Flexible RO* 20 0.2 

Zschieschang, Org. Electronics, vol. 14, p. 1516, 2013 Flexible RO* 4 0.42 
Kitamura, Appl. Phys. Lett., vol. 95, p. 023503, 2009 Rigid TFTa 25 0.8 
Kitamura, Jpn. J. Appl. Phys., vol. 50, p. 01BC01, 2011 Rigid TFTa 25 1.11 
Zaki, Org. Electronics, vol. 14, p. 1318, 2013 Rigid TFTb 3 1.37 

Nakayama, Adv. Mater. Interfaces, vol. 1, p. 1300124, 2014 Rigid TFTa 10 1.9 
Yamamura, Sci. Adv., vol. 4, p. eaao5758, 2018 Rigid TFTa 10 2 
Perinot, Adv. Sci., vol. 6, p. 1801566, 2019 Flexible TFTa 14 2.06 

Borchert, Int’l Electr. Dev. Meeting 2018 Flexible TFTb 3 2.23 

Kheradmand-Boroujeni, Sci. Rep., vol. 8, p. 7643, 2018 Rigid TFTc 8.6 4.65 

This work Flexible TFTb 3 7 
a 

Small-signal currents directly measured to evaluate f
T
.     

b

 S-parameter measurement to evaluate f
T
.     

c

 Pulsed-bias measurement circuit to evaluate f
T
. 

*In cases where the data were obtained from measurements on ring oscillators (RO), the equivalent 

frequency feq = 1/(2τ) is normalized to the supply voltage. 
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