
The genome of the red palm weevil pest (Rhynchophorus ferrugineus) 

reveals key gene families functioning at the plant-beetle interface 

Supplementary Figures 
 

 
 
Supplementary Fig.1 Different approaches using CLC and SSPACE softwares to improve assembly 
statistics 
 
 

 
 
 
 
 
 
 
 
 
 

Supplementary Fig.2 Distribution of reads from the oxford Nanopore data 
	



	
	
Supplementary Fig. 3 The mapping of 54 scaffolds of the red palm weevil to red flour beetle is 
highlighted in different colors. The top is the X chromosome of the red flour beetle (T. castaneum). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Fig. 4 Flow cytometry results for male and female red palm weevil 



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Supplementary Fig. 5 Kmer plot for genome size estimation using jellyfish software in GenomeScope 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Supplementary Fig. 6 The complete mitochondrial genome assembly of the red palm weevil (R. 
ferrugineus) 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Supplementary Fig. 7 Correlation of transposable elements with intron, exon length and genome size 
in five insects studied. 
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Supplementary Fig. 8 Repeat landscape in red palm weevil (R. ferrugineus) male and female (B) and 
with other insects in this study (A). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Supplementary Fig. 9 Comparative analysis of transcription factors (TFs) in the five species studied. 
The x-axis depicts the different families predicted and the y-axis the different species. The legend is 
the counts representing the numbers in terms of the size of the bubble. 
 
 
 
 
 



 
 
 
 
Supplementary Fig. 10 Circos plot showing diversity Pi (π) in the outer track, followed by duplication 
and location of tandem duplication of P450 gene family on pseudochromosomes. 
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Supplementary Fig. 11 Bootstrapped Phylogeny of the Glycosyl hydrolase 16 with other insects and 
microorganisms. Red value are the branch and node support. 
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Supplementary Fig. 12 The top part is a gel electrophoresis of a fragment of one GH16 (primers 
included) to validate the presence in the genome and rule out gut microbial contamination. The lower 
part is the structure of the GH16 and the location of the primers. 
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Supplementary Tables 

 
 
 
 
Supplementary Table 1 GO enrichment of orphan genes in red palm weevil (R. ferrugineus) 
 
 
 

 
 
Supplementary Table 2 Frequency of changes identified in 50 individuals red palm weevil obtained by 
RNA sequencing (RNAseq) Rdl from adult heads. 
 
 
 
 

 
 
Supplementary Table 3 Summary of some gene families under positive selection. 
 
 



 
 
 
 

CAZy family Pfam Pfam description Known activities Number 
GH1 PF00232 Glycosyl hydrolase 

family 1 
β-glucosidase, β-
galactosidase, 6-
phospho-β- 
glucosidase, β-
glucuronidase, others 

44 

GH20 PF00728 Glycosyl hydrolase 
family 20 

β-hexosaminidase, 
lacto-N-biosidase, β-1,6 
Nacetylglucosaminidase 

8 

GH3 PF01915 Glycosyl hydrolase 
family 3 

β-glucosidase 2 

GH30 PF02055 Glycosyl hydrolase 
family 30 

glucosylceramidase, β-
1,6-glucanase, β-
xylosidase 

6 

GH45 PF02015 Glycosyl hydrolase 
family 45 

Endoglucanase 4 

GH47 PF01532 Glycosyl hydrolase 
family 47 

Α-mannosidase 16 

GH48 PF02011 Glycosyl hydrolase 
family 48 

Endoglucanase, 
chitinase, 
cellobiohydrolases, 
endoprocessive 
cellulases 

10 

GH63 PF16923 Glycosyl hydrolase 
family 63 

Processing α-
glucosidase, α-1,3-
glucosidase, α- 
glucosidase 

6 

GH79 PF03662 Glycosyl hydrolase 
family 79 

β-glucuronidase, β-4-O-
methyl-glucuronidase, 
heparanase 

1 

GH85 PF03644 Glycosyl hydrolase 
family 85 

Endo-β-N-
acetylglucosaminidase 

6 

GH15 PF00723 Glycosyl hydrolase 
family 15 

glucoamylase, 
glucodextranase, α,α-
trehalase 

4 

GH16 PF00722 Glycosyl hydrolase 
family 16 

endo-1,4-β-
galactosidase, endo-1,3-
β-glucanase, endo- 
1,3(4)-β-glucanase, 
licheninase, β-agarase, 
others 

10 

GH18 PF00704 Glycosyl hydrolase 
family 18 

Chitinase, endo-β-N-
acetylglucosaminidase, 
others 

35 

GH2 PF02836 Glycosyl hydrolase 
family 2 

β-galactosidase, β-
glucuronidase, β-
mannosidase, 
others 

9 

GH28 PF00295 Glycosyl hydrolase 
family 28 

Polygalacturonase, 
rhamnogalacturonase, 
others 

6 

GH31 PF01055 Glycosyl hydrolase 
family 31 

α-glucosidase, α-1,3-
glucosidase, α-
xylosidase 

12 

GH32 PF00251 Glycosyl hydrolase 
family 1 

Levanase, invertase, 
others 

4 

GH35 PF01301 Glycosyl hydrolase 
family 35 

β-galactosidase, exo-β-
glucosaminidase 

20 

GH38 PF01074 Glycosyl hydrolase 
family 38 

α-mannosidase, N-
mannosyl-
oligosaccharide α-1,3- 
1,6-mannosidase 

21 

 
Supplementary Table 4 Summary of Glycosyl Hydrolase (GH) in red palm weevil 



 
 
 
 
Number of 
introns 

GH16 (Female) Female 
(log2fold) 

Male 
(log2fold) 

Egg (log2fold) Larvae 
(log2fold) 

Pupae 
(log2fold) 

4 FM_020572-T1 6.541753075 5.943302219 2 4.774280302 3.341238925 
3 FM_019802-T1 6.158783316 6.15126173 2 2 2 
2 FM_019803-T1 8.31941106 8.861576217 4.875888275 6.111339845 8.249698663 
7 FM_007011-T1 8.158273273 8.13915537 3.589783061 2 3.887134951 
       
0 FM_000628-T1 4.191468923 2.767752768 2 2 2 
0 FM_020068-T1 4.989497925 2.900925091 2 2 2 
0 FM_021131-T1 4.785029822 2.593975215 2 2 2 
       
Introns Average_Log2fold 7.294555181 7.273823884 3.116417834 3.721405037 4.369518135 
       
       
No introns Average_Log2fold 4.655332223 2.754217691 2 2 2 
 
Supplementary Table 5 Log2fold change in Expression difference of different GH16 with 0 intron to 7 
introns across different developmental stages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary methods 
 
Genome assembly and annotation 
 

	We adopted a de novo assembly strategy that combined Illumina short insert libraries, linked 

reads (10X Genomics), and Oxford nanopore sequence. We started by de novo assembling 10X 

paired-end Illumina (150bp) sequences using ABYSS 1 and independently generated a second 

‘megabubbles’ assembly with Supernova using linked reads (10X Genomics). The first run of linked 

reads produced 166 million reads with a N50 length of 37.9 Kbp, giving coverage of 32.38 X for the 

de novo assembly. After sequencing more libraries for higher coverage and a better assembly, the 

assembly size was only 292.84 Mbp, which is less than the expected size of the genome. The second 

run produced 387.78 million reads with a N50 length of 146.32 Kbp, giving coverage of 76.75 X on 

the de novo assembly. We used Supernova 2 for 10x Genomics linked reads. The resultant 

‘megabubbles’ assembly from this run was used to scaffold the male and female ABYSS 1 assemblies 

from 2x150bp Illumina paired end data. Oxford Nanopore long reads were generated for the R. 

ferrugineus male. We constructed an assembly from Nanopore reads using wtdbg v1.2.8 3 

(https://github.com/fantasticair/wtdbg-1.2.8) and this was followed by two round of polishing with 

Pilon 4 version 1.21 (bwa Illumina reads) and Racon version 1.2.0 5 (minimap2 aligning Nanopore 

long reads). A hybrid assembly was generated using DBG2OLC assembler combining ABYSS 

Illumina contigs and long reads Nanopore 6. Finally we used QuickMerge version 0.2 7 to merge the 

different assemblies and generate a final merged assembly setting “-hco 5.0 -c 1.5 -l 300,000 -ml 

5,000”. We evaluated the different assemblies using Quast 8. Using the long read Oxford Nanopore 

assembly; we completely assembled and annotated the mitochondrial genome. 

 Scaffolds shorter than 5 kbp were removed from the genome, and the genome was syntenically 

aligned against the red flour beetle (Tribolium castaneum) reference genome (version 5.2, GeneBank 

Assembly accession GCA_000002335.3) using Chromosemble in Satsuma v3.1.0 9 to generate 

pseudochromosome-level assemblies for male and female. 

Funannotate Gene prediction was carried out by both de novo (GeneMark 10 and Augustus 11 and 

evidence-based methods (EVM 12). For Augustus de novo gene prediction, we used “rhodnius” which 



is the closest model to our beetle that is available in their database. Non-coding tRNA genes were 

predicted using tRNAscan-SE 13. Gene prediction accuracy was confirmed by searching against the 

insect BUSCO 14 database. Predicted proteins were similarity searched against NCBI and UniProt 

Insecta‘ protein database by BlastP 15 with the e-value e-10. Protein domain analysis was carried out 

by InterProscan 16. Protein family classification was carried out using Pfam 17 by hmmer 18 tool. Gene 

Ontology information associated with the proteins was extracted from the InterPro and UniProt 

database. Pathway enzyme mapping was carried out using KEGG-KAAS tool 19, and all available 

insect KEGG models were used for pathway prediction. Enrichment analysis 

(http://supfam.org/SUPERFAMILY/cgi-bin/dcenrichment.cgi) was done using PFAM domains. 

 

Structural variation 

The generated Illumina reads Hiseq 2500 (2x 150bp) were trimmed using Trimmomatic 20. Trimmed 

reads were aligned separately to the male and female genome assembly using BWA 21 version 1.0 

samtools 22 version 1.2. Duplicates were marked and removed using Picard tools version 1.52 

(http://sourceforge.net/projects/picard/files/picard-tools/). Coverage depth for alignment files bams 

was computed using samtools. Normalized Read-depth variation analysis was performed using 

CNVnator 23 (version 0.2.7). Aligned bams were used as input for CNVnator to extract read alignment 

information. A bin size of 1 Kb was used in the intermediate processing of the bams as well as when 

calling variants. A table of duplication and deletion is generated. We discarded any 

duplication/deletion more than > 100 Kb as well as hits that span gaps and beginning of a scaffold. 

Tandem duplication was screened using the software SoftV 24. 

 

Horizontally gene transfer 

Briefly, the approach uses a combination of homology and phylogenetic sequence 

comparison. We applied that for R. ferrugineus. We used Diamond ‘BlastP’  (e value ≤ 10-5) to 

compare our proteomes to the UniRef90 databases 25. To eliminate any hits to our species of interest, 

we omitted their Taxonomic ID(s) from further analysis (e.g. 354439 of R. ferrugineus). We applied 



two metrics the HGT index 26 hU and the Consensus Hit Support (CHS) 27 to select putative 

candidates. For putative HGTC candidate, a hU ≥ 30 and CHSOUT ≥90% was applied. We discarded 

any candidates that have occupied ≥ 90% of scaffolds, as those considered as contaminants. For 

HGTC, we tested for physical linkage and looked for presence of intron in the HGTC. Finally, 

phylogenetic tree was generated using IQ-TREE v.1.5.3 28 for all candidates with automatic model 

selection using 1000 bootstrap replicates. 
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