Supporting Information

Polysubstituted imidazoles as Lysotracker Molecules: Their Syntheses via Iodine/H₂O and Cell-Imaging Studies

Saswati Adhikary,^a Leena Majumder,^a Sourav Pakrashy,^a Ravuri Srinath,^c Kaustuv Mukherjee,^d Chitra Mandal^d and Biswadip Banerji^{*,a,b}

^aOrganic and Medicinal Chemistry Division, Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S. C. Mullick Road, Kolkata, 700032, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S. C. Mullick Road, Kolkata, 700032, India. Email: biswadip.banerji@gmail.com, biswadip@iicb.res.in; Fax: +91 33 24735197, +91 33 24723967; Tel : + 91 33 24995709.

^cNational Institute of Pharmaceutical Education and Research (NIPER-Kolkata), Chunilal Bhawan, Maniktala, Kolkata-700054, India.

^dCancer Biology & Inflammatory Disorder Division, Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S. C. Mullick Road, Kolkata, 700032, India.

Contents:

Table of contents:	Page No.
1. ¹ H and ¹³ C NMR spectral data	S3-S60
2. ORTEP diagram of product 3l	S61
3. X-ray crystallographic information of product 31	S61-S62
4. ORTEP diagram of product 5a	S63
5. X-ray crystallographic information of product 5a	S63-S64
6. References	S64

Figure S1: ¹H NMR spectrum of 1-Benzyl-2,4,5-triphenyl-1H-imidazole (3a) in CDCl₃.

Figure S2: ¹³C NMR spectrum of1-Benzyl-2,4,5-triphenyl-1H-imidazole (3a) in CDCl₃.

Figure S3: ¹H NMR spectrum of 1-(4-Methyl-benzyl)-4,5-diphenyl-2-p-tolyl-1Himidazole (3b) in CDCl₃.

Figure	S4 :	¹³ C	NMR	spectrum	of	1-(4-Methyl-benzyl)-4,5-diphenyl-2-p-tolyl-1H-
imidazo	ole (31	b) in (CDCl ₃ .			

Figure S5: ¹H NMR spectrum of 1-(4-tert-Butyl-benzyl)-2-(4-tert-butyl-phenyl)-4,5diphenyl-1H-imidazole (3c) in DMSO-d₆.

Figure S6: ¹³C NMR spectrum of 1-(4-tert-Butyl-benzyl)-2-(4-tert-butyl-phenyl)-4,5diphenyl-1H-imidazole (3c) in CDCl₃.

Figure S7: ¹H NMR spectrum of 1-(4-Fluoro-benzyl)-2-(4-fluoro-phenyl)-4,5-diphenyl-1H-imidazole (3d) in DMSO-d₆.

Figure S8: ¹³C NMR spectrum of 1-(4-Fluoro-benzyl)-2-(4-fluoro-phenyl)-4,5-diphenyl-1H-imidazole (3d) in DMSO-d₆.

Figure S9: ¹H NMR spectrum of 1-(4-Bromo-benzyl)-2-(4-bromo-phenyl)-4,5-diphenyl-1H-imidazole (3e) in CDCl₃.

Figure S10: ¹³C NMR spectrum of 1-(4-Bromo-benzyl)-2-(4-bromo-phenyl)-4,5diphenyl-1H-imidazole (3e) in CDCl₃.

Figure S11: ¹H NMR spectrum of 1-(4-Chloro-benzyl)-2-(4-chloro-phenyl)-4,5-diphenyl-1H-imidazole (3f) in CDCl₃.

Figure S12: ¹³CNMR spectra of 1-(4-Chloro-benzyl)-2-(4-chloro-phenyl)-4,5-diphenyl-1H-imidazole (3f) in CDCl₃.

Figure S13: ¹H NMR spectrum of 4,5-Diphenyl-1-(4-trifluoromethyl-benzyl)-2-(4-trifluoromethyl-phenyl)-1H-imidazole (3g) in CDCl₃.

Figure S14: ¹³C NMR spectrum of 4,5-Diphenyl-1-(4-trifluoromethyl-benzyl)-2-(4-trifluoromethyl-phenyl)-1H-imidazole (3g) in CDCl₃.

Figure S15: ¹H NMR spectrum of 4,5-Diphenyl-1-(4-trifluoromethoxy-benzyl)-2-(4-trifluoromethoxy-phenyl)-1H-imidazole (3h) in CDCl₃.

Figure S16: ¹³CNMR spectrum of 4,5-Diphenyl-1-(4-trifluoromethoxy-benzyl)-2-(4-trifluoromethoxy-phenyl)-1H-imidazole (3h) in CDCl₃.

Figure S17: ¹H NMR spectrum of 2-(4,5-diphenyl-1-(pyridin-2-ylmethyl)-1H-imidazol-2-yl)pyridine (3i) in CDCl₃.

Figure S18: ¹³C NMR spectrum of 2-(4,5-diphenyl-1-(pyridin-2-ylmethyl)-1H-imidazol-2-yl)pyridine (3i) in CDCl₃.

2.20E+08	2.10E+08	2.00E+08	1.90E+08	1.80E+08	1.70E+08	1.60E+08	1.50E+08	1.40E+08	1.30E+08	1.20E+08	1.10E+08	1.00E+08	9.00E+07	8.00E+07	7.00E+07	6.00E+07	5.00E+07	4.00E+07	3.00E+07	2.00E+07	1.00E+07	0.00E+00	-1.00E+07	-2,00E+0/
																								- 0
																								- - <mark>-</mark>
																								- 2
64.2—																					-	_		- 6
SE'E													-											- 4
20'S							_																- 00° Z	
26°5 1°9 1°9 1°9 2°9							-															IN	2,000.2	- 9
12'9 22'9 86'9 00'2 11'2 E1'2																							20' I 20' I 21' Z 21' Z 20' S	f1 (ppm)
\$1'2- 81'2- 61'2- 02'2- 82'2-																								- ∞
82.7- 14.7- 82.7-																								- 6
																								10
			c	Â	þ	0																		- =
			Z]_	J	7																	12
	Í		× (5)																			- <mark>1</mark> 3
				-																				14

Figure S19: ¹H NMR spectrum of 2-Benzo[1,3]dioxol-5-yl-1-benzo[1,3]dioxol-5-ylmethyl-4,5-diphenyl-1H-imidazole (3j) in DMSO-d₆.

Figure S21: ¹H NMR spectrum of 4,5-Diphenyl-2-thiophen-2-yl-1-thiophen-2-ylmethyl-1H-imidazole (3k) in CDCl₃.

Figure S22: ¹³C NMR spectrum of 4,5-Diphenyl-2-thiophen-2-yl-1-thiophen-2-ylmethyl-1H-imidazole (3k) in CDCl₃.

Figure S23: ¹H NMR spectrum of 2-Naphthalen-1-yl-1-naphthalen-1-ylmethyl-4,5diphenyl-1H-imidazole (3l) in CDCl₃.

Figure S24: ¹³C NMR spectrum of 2-Naphthalen-1-yl-1-naphthalen-1-ylmethyl-4,5diphenyl-1H-imidazole (3l) in CDCl₃.

Figure S25: ¹H NMR spectrum of 1-Benzyl-4,5-bis-(4-methoxy-phenyl)-2-phenyl-1Himidazole (30) in DMSO-d₆.

Figure S26: ¹³C NMR spectrum of 1-Benzyl-4,5-bis-(4-methoxy-phenyl)-2-phenyl-1Himidazole (30) in DMSO-d₆.

Figure S27: ¹H NMR spectrum of 2-(4,5-bis(4-methoxyphenyl)-1-(pyridin-2-ylmethyl)-1H-imidazol-2-yl)pyridine (3p) in DMSO-d₆.

Figure S28: ¹³C NMR spectrum of 2-(4,5-bis(4-methoxyphenyl)-1-(pyridin-2-ylmethyl)-1H-imidazol-2-yl)pyridine (3p) in DMSO-d₆.

Figure S29: ¹H NMR spectrum of 1-Benzyl-5-methyl-2,4-diphenyl-1H-imidazole (5a) in CDCl₃.

Figure S30: ¹³C NMR spectrum of 1-Benzyl-5-methyl-2,4-diphenyl-1H-imidazole (5a) in CDCl₃.

Figure S31: ¹H NMR spectrum of 1-(4-Methoxy-benzyl)-2-(4-methoxy-phenyl)-5methyl-4-phenyl-1H-imidazole (5b) in CDCl₃.

Figure S32: ¹³C NMR spectrum of 1-(4-Methoxy-benzyl)-2-(4-methoxy-phenyl)-5-methyl-4-phenyl-1H-imidazole (5b) in CDCl₃.

Figure S33: ¹H NMR spectrum of 1-Benzyl-4-(2-chloro-phenyl)-5-(3,4-dimethoxy-phenyl)-2-phenyl-1H-imidazole (5c) in DMSO-d₆.

Figure S34: ¹³C NMR spectrum of 1-Benzyl-4-(2-chloro-phenyl)-5-(3,4-dimethoxy-phenyl)-2-phenyl-1H-imidazole (5c) in DMSO-d₆.

Figure S35: ¹H NMR spectrum of 2-(4-(2-chlorophenyl)-5-(3,4-dimethoxyphenyl)-1-(pyridin-2-ylmethyl)-1H-imidazol-2-yl)pyridine (5d) in DMSO-d₆.

Figure S37: ¹H NMR spectrum of 2,4,5-Triphenyl-1H-imidazole (8a) in DMSO-d₆.

Figure S38: ¹³C NMR spectrum of 2,4,5-Triphenyl-1H-imidazole(8a) in DMSO-d₆.

Figure S39: ¹H NMR spectrum of 2-(4-Chloro-phenyl)-4,5-diphenyl-1H-imidazole (8b) in DMSO-d₆.

Figure S40: ¹³C NMR spectrum of 2-(4-Chloro-phenyl)-4,5-diphenyl-1H-imidazole (8b) in DMSO-d₆.

Figure S41: ¹H NMR spectrum of 2-(4,5-Diphenyl-1H-imidazol-2-yl)-phenol (8c) in DMSO-d₆.

Figure	S42:	¹³ C	NMR	spectrum	of	2-(4,5-Diphenyl-1H-imidazol-2-yl)-phenol	(8c)	in
DMSO	-d ₆ :							

Figure S43: ¹H NMR spectrum of 4,5-Diphenyl-2-thiophen-2-yl-1H-imidazole (8d) in DMSO-d₆.

Figure S44: ¹³C NMR spectrum of 4,5-Diphenyl-2-thiophen-2-yl-1H-imidazole (8d) in DMSO-d₆.

Figure S45: ¹H NMR spectrum of 2-(4,5-Diphenyl-1H-imidazol-2-yl)-pyridine (8e) in DMSO-d₆.

Figure S46: ¹³C NMR spectrum of 2-(4,5-Diphenyl-1H-imidazol-2-yl)-pyridine (8e) in DMSO-d₆.

Figure S47: ¹H NMR spectrum of [4-(4,5-Diphenyl-1H-imidazol-2-yl)-phenyl]-dimethylamine (8f) in DMSO-d₆.

Figure S48: ¹³C NMR spectrum of [4-(4,5-Diphenyl-1H-imidazol-2-yl)-phenyl]dimethyl-amine (8f) in DMSO-d₆.

Figure S49: ¹H NMR spectrum of 2-[4,5-Bis-(4-methoxy-phenyl)-1H-imidazol-2-yl]pyridine (8g) in DMSO-d₆.

Figure S50: ¹³C NMR spectrum of 2-[4,5-Bis-(4-methoxy-phenyl)-1H-imidazol-2-yl]-pyridine (8g) in DMSO-d₆.

Figure S51: ¹H NMR spectrum of 2-[4,5-Bis-(4-methoxy-phenyl)-1H-imidazol-2-yl]pyridine (8h) in DMSO-d₆.

Figure S52: ¹³C NMR spectrum of 2-[4,5-Bis-(4-methoxy-phenyl)-1H-imidazol-2-yl]pyridine (8h) in DMSO-d₆.

Figure S53: ¹H NMR spectrum of 1-(4-Bromo-phenyl)-2-(4-chloro-phenyl)-4,5diphenyl-1H-imidazole (10a) in DMSO-d₆.

Figure S54: ¹³C NMR spectrum of 1-(4-Bromo-phenyl)-2-(4-chloro-phenyl)-4,5diphenyl-1H-imidazole (10a) in DMSO-d₆.

Figure S55: ¹H NMR spectrum of 1,2-bis(4-methoxyphenyl)ethane-1,2-dione (1c) in CDCl₃.

-1.30E+10	-1.20E+10	-1.10E+10	-1.00E+10	9.00E+09	8.00E+09	-7.00E+09	6.00E+09	5.00E+09	4.00E+09	3.00E+09	-2,00E+09	-1.00E+09	0.00E+00	-1.00E+09	
															- 0
	0														- 9
	$\langle $	\geq													50
	0=	~~~													- 9
		$\langle \rangle$													-
		è	>												4
09' SS															- 20
															- 09
28.92															- 2
SZ'12															- 8
															- 6
															pm)
071 11											-				110 f1 (p
96 011															120
82:921 —												-			- 130
															140
															- 20
															50
£8. 4 .83 —												0.77	_		0
															1
															181
64 [.] 861 —												_	_		190
															200
															210

Figure S56: ¹³C NMR spectrum of 1,2-bis(4-methoxyphenyl)ethane-1,2-dione (1c) in CDCl₃.

Figure S57: ¹H NMR spectrum of Benzyl-[2-benzylimino-1,2-bis-(4-methoxy-phenyl)-ethylidene]-amine (A) in CDCl₃.

Figure S58: ¹³C NMR spectrum of Benzyl-[2-benzylimino-1,2-bis-(4-methoxy-phenyl)-ethylidene]-amine (A) in CDCl₃.

X-ray Diffraction Analysis of Compound 31 :

Figure S59. ORTEP diagram (ball and stick plot) of product **31** (drawn at 50% probability level) and hydrogens are omitted for clarity. Colour code: nitrogen in blue and carbon in grey.

X-Ray Crystallographic Information of Product 31:

The Single crystal of imidazole derivative **31** was acquired by slow evaporation of petroleum ether at room temperature. The entire diffraction data of compound **31** was measured with MoK α radiation ($\lambda = 1.54178$ Å) at 100 K. The structure of the single crystal of imidazole derivative **31** was solved by using the SHELXS-97 program.¹ Refinements were carried out by full matrix least-squares process against F using SHELXL-97.2 and the non-hydrogen atoms were refined with anisotropic thermal parameters.² All the hydrogen atoms in the crystal structure (**31**) were included in geometric positions and given thermal parameters equivalent to 1.2 times those of the atom to which they were attached. All the essential crystal data of the imidazole derivative **31** is given below:

Table S1: Important crystal data of product 3l.									
Empirical Formula	$C_{36}H_{26}N_2$								
Formula weight	486.59								
Temperature	100 K								
Wave length	1.54178								
Crystal system	Monoclinic								
Space group	P 1 21/c 1								
Unit cell dimensions	$a = 9.9474(3) \text{ Å} \alpha = 90$								
	$b = 14.0292(4) \text{ Å} \beta = 91.9680(10)$								
	$c = 18.0762(6) \text{ Å} \gamma = 90$								
Volume	2521.12(13) Å ³								
Ζ	4								
Density (calculated)	1.282 g/cm ³								
Absorption coefficient (Mu)	0.571mm ⁻¹								
F(000)	1024								
Theta range for data collection	5.826° to 66.630°								
Index ranges	$-11 \le h \le 10, -16 \le k \le 16, -21 \le l \le 21$								
Reflection collected	35722								
Independent reflection	4337 [$R_{int} = 0.0379$, $R_{sigma} = 0.0261$]								
Absorption correction	multi-scan								
Data/restraints/parameters	4337/0/343								
Good of fit on (F^2)	1.054								
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0355, wR_2 = 0.0888$								
R indices (all data)	$R_1 = 0.0364, wR_2 = 0.0896$								

The crystal data of product 3l was deposited at the Cambridge Crystallographic Data Centre. The CCDC reference number is 1948135.

X-ray Diffraction Analysis of Product 5a:

Figure S60. ORTEP diagram (ball and stick plot) of product **5a** (drawn at 50% probability level) and hydrogens are omitted for clarity. Colour code: nitrogen in blue and carbon in grey.

X-Ray Crystallographic Information of Product 5a:

The Single crystal of imidazole derivative **5a** was acquired by slow evaporation of petroleum ether at room temperature. The diffraction data of compound **5a** was measured by MoK α radiation ($\lambda = 1.54178$ Å) at 101 K. The structure of the single crystal of imidazole derivative **5a** was solved by using the SHELXS-97 program.¹ Refinements were carried out by full matrix least-squares process against F using SHELXL-97.2 and the non-hydrogen atoms were refined with anisotropic thermal parameters.² All the hydrogen atoms in the crystal structure (**5a**) were included in geometric positions and given thermal parameters equivalent to 1.2 times those of the atom to which they were attached. All the necessary crystal data of the imidazole derivative **5a** is given below:

Empirical Formula $C_{23} H_{20} N_2$	
Formula weight 324.41	
Temperature 101 K	
Wave length 1.54178	
Crystal system monoclinic	
Space group C 1 c 1	
Unit cell dimensions $a = 6.9727(11)$ Å $\alpha = 90$	
$b = 19.869(3) \text{ Å} \beta = 91.013(4)$	
$c = 12.956(2) \text{ Å} \gamma = 90$	
Volume 1794.7(5) Å ³	
Z 4	
Density (calculated) 1.201g/cm ³	
Absorption coefficient (Mu) 0.541 mm ⁻¹	
F(000) 688.0	
Theta range for data collection4.450° to 72.584°	
Index ranges $-8 \le h \le 8, -24 \le k \le 24, -16 \le l \le 15$	
Reflection collected 12501	
Independent reflection $3254 [R_{int} = 0.0431, R_{sigma} = 0.0385]$	
Absorption correction multi-scan	
Data/restraints/parameters 3254/2/227	
Good of fit on (F^2) 1.104	
Final R indices [I>= 2σ (I)] R ₁ = 0.0353, wR ₂ = 0.0871	
R indices (all data) $R_1 = 0.0354, wR_2 = 0.0871$	

The crystal data of product 5a was deposited at the Cambridge Crystallographic Data Centre. The CCDC reference number is 1948126.

4. References:

1. Sheldrick, G. M.; Phase Annealing in SHELX-90: Direct Methods for Larger Structures. *Acta Cryst.* **1990**, *A46*, 467-473.

2. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; Universität Göttingen: Göttingen, Germany, 1997.