Supplementary Materials

New Targeted Approaches for Epigenetic Age Predictions

Yang Han, Julia Franzen, Thomas Stiehl, Michael Gobs, Chao-Chung Kuo, Miloš Nikolić, Jan Hapala, Barbara Elisabeth Koop, Klaus Strathmann, Stefanie Ritz-Timme, Wolfgang Wagner

Table of contents

Supplementary Figures	2
Figure S1. Demarcation of age-associated CpGs in Illumina BeadChip datasets	2
Figure S2. Comparison with epigenetic ageing clocks of Horvath and Hannum.	
Figure S3. Intersection of probes among different epigenetic ageing clocks	
Figure S4. Selection of 6 CpG markers for pyrosequencing.	5
Figure S5. Comparison of DNAm levels in pyrosequencing and BBA-seq.	6
Figure S6. Comparison of age-associated DNAm in ddPCR versus BBA-seq	6
Figure S7. Correlation of DNAm with age in buccal swabs.	7
Figure S8. Targeted sequences of pyrosequencing assays	8
Figure S9. Targeted sequences for BBA-seq.	10
Supplementary Tables	11
Table S1. DNAm profiles for candidate CpG selection	11
Table S2. Multivariable 65 CpG model for Illumina BeadChip data	12
Table S3. Primer list for Pyrosequencing assays	14
Table S4. Epigenetic aging signature based on pyrosequencing (6 CpG model)	15
Table S5. Epigenetic aging signature based on pyrosequencing (9 CpG model)	15
Table S6. Primer list for ddPCR assay	16
Table S7. Multivariable model for ddPCR (7 CpG)	17
Table S8. Primer list for BBA-seq assay	18
Table S9. Multivariable model for BBA-seq of blood (9 CpG model)	19
Table S10. Multivariable model for BBA-seq of buccal swabs (9 CpG model)	19
Table S11. Machine learning model by Lasso (blood)	20
Table S12. Machine learning model by ElasticNet (blood)	20
Table S13. Machine learning model by Lasso (swab)	21
Table S14. Machine learning model by ElasticNet (swab)	21

(A) Age distribution of 450k Illumina BeadChip datasets in the 7 studies of the training and 5 studies of the validation cohorts (see also Supplemental Table S1; color code corresponds to Figures 1B,C, as well as to panels S1D-G, respectively). (B) To identify CpGs that are affected by the composition of leucocyte subsets we used the GEO datasets GSE35069 [42]. The variation of DNAm across the six leukocyte subsets was ranked and only CpGs below the threshold (R = 0.02; red dotted line) were considered for further analysis. (C) Schematic presentation how relevant age-associated CpGs were narrowed down. Smoking related , and SNP-associated and cross-reactive CpGs were excluded based on previous studies [39, 40, 43, 44]. (D,E) Principal component analysis (PCA) of all CpGs that are available for all samples of the training (385,587 CpGs) and validation (462,889 CpGs, dataset GSE55763 was reduced to 1000 samples) datasets demonstrated clear separation according to the different studies. This might be attributed to batch effects of Illumina BeadChip data. It is also conceivable that some differences are due to sampling, DNA isolation, bisulfite conversion, or hybridization in the different study groups. Therefore, correlation coefficients were determined separately for each study of the training set. (F,G) In the PCA of the 65 age-associated CpGs the separation of studies was less evident and particularly PC1 seemed to be influenced by donor age.

To better estimate the performance of our 65 CpG model (Figure 1B,C), we compared age-predictions using the previous described models by Horvath of 2013 [19], by Hannum et al. [17], and the Skin and Blood predictor of Horvath and colleagues of 2018 [46]. None of these alternative models outperformed our 65 CpG model in terms of median error (**A**). However, we noticed that in several datasets for one or few of the relevant CpGs of these alternative signatures DNAm values were not available. These missing values might

impact on the precision of age-predictions. We have therefore compared the age-predictions of our 65 CpG signature with the three alternative models only for those datasets of the validation set that contained beta-values for all relevant CpGs (GSE125105 was excluded and several samples with missing probes). The corresponding predictions with our 65 CpG model are always provided on top for each comparison **(B)**. Our 65 CpG model still provided better precision than the models of Horvarth 2013 and Hannum et al., 2013. However, the Skin and Blood predictor provided slightly better correlation and precision in this set of samples.

Figure S3. Intersection of probes among different epigenetic ageing clocks.

Venn diagram for the overlap of CpGs in our 65 CpG signature with the Horvath and Hannum clocks. The overlap with the Hannum clock [17] and Horvath et al. (2018) clock [46] was more pronounced.

Figure S4. Selection of 6 CpG markers for pyrosequencing.

(A) DNAm levels of the Illumina BeadChip training sets were plotted for each of the 6 relevant CpGs in the genes *IGSF11*, *CCDC102B*, *FHL2*, *COL1A1*, *MEIS1-AS3* and *ELOVL2* against chronological age (color code as in Figure S1A). R² values are depicted for Illumina BeadChip training (blue) and validation sets (red). Please note that this correlation was significantly lower in the independent validation Illumina BeadChip datasets. (B) Pyrosequencing results for 40 blood samples of the training (blue) and 40 samples of the validation set (red).

Figure S5. Comparison of DNAm levels in pyrosequencing and BBA-seq.

The DNA methylation levels at the nine age-associated genomic regions were compared in 15 blood samples with bisulfite barcoded amplicon sequencing (BBA-seq) and pyrosequencing. All CpGs that were covered by both types of measurements were included into the comparison.

DNAm measurements of the same CpGs by droplet digital PCR (ddPCR) (n = 40) and bisulfite barcoded amplicon sequencing (BBA-seq) (n = 38) were compared for blood samples of the training set at the same CpGs. The correlation with chronological age was consistently higher in ddPCR.

Figure S7. Correlation of DNAm with age in buccal swabs.

Pearson correlation of chronological age with the DNAm levels at the CpGs within amplicons of *ELOVL2*, *PDE4C* and *FHL2* in BBA-seq data of buccal swab samples.

CCDC120B GGAGGGGAATGTTTGTATTTATTTCGTATTTTTTTGGTTGTTATTTTTGCGGGGATTT 1 2 Sequencing primer ELOVL2 987 654 3 2 1 Sequencing primer FHL2 GGTTTTGGGAGTATAGTAGTTATCGGGAGCGTCGTTTTCGGCGTGGGTTTTCGGGCGCGAGGTTTCGGACGAGGTT 1 2 3 4 5 78 9 10 6 Sequencing primer IGSF11 AGAAGTTAAGAAGGTATAGATAGACGAATATTAATTTAGATTTTTAATA 1 Sequencing primer COL1A1 AATTTGTATAGAGAGTGTTTATTGAAGTTTTAGGTTCGTTAGGTTTATTAGGGGGGATTTTGG 1 Sequencing primer MEIS1-AS3 1 Sequencing primer PDE4C GTTATAGTATGATTAGAGTTTCGAAGTATTTGTGGCGGTAATTTCGGCGTTTTATTCGTATTTAATAGCGTTTTTATTCGG 3 4 - 1 2 5 6 7 Sequencing primer ASPA TTAATCGGAGTATTTTTGGTTAAGTATTGGTTAGAGAATGGCGTTGAGATTTAGAGAATAGGG 2 1 Sequencing primer ITGA2B TTGGTCGCGTGGGTTAATATACGTAGGTATAGTATTGAGTATATTG 32 1 Sequencing primer

Figure S8. Targeted sequences of pyrosequencing assays.

Sequences for the nine genomic regions (Bisulfite treated sequences) for blood aging signature are depicted and CpG sites (red) are numbered by the dispensation order of pyrosequencing. The relevant CpGs with highest age-correlation are highlighted in bold.

1. CCDC102B (chr18:66,389,223-66,389,599)

2. MEIS1-AS3 (chr2:66,654,583-66,654,826)

TTTGAATAATCAGTAAGATTTTTGCCTGAAGGTTTTCACAAAATATGCCCCCTTTATCCAGTCGAACATGGATGCTAAGCATGGCCAGTGTGAC TCATCCTGTTGCTTCAAAGGTAAATGTTTGCTATTAGTGACTAGAGCACGTTCGCCAGACCTCTTCCAGCACTCAGTACTTCAACTATTAGTT TAGAATATATCAAACGTGTATGCACTTGTGATTAGTTCCTGGAAGAATTTTCTACATT

3.COL1A1 (chr17:48,275,263-48,275,502)

TCTGTGTGTTTGTAGAAGGAGTATGAATCTGTATAGAGAGTGCTTACTGAAGCTCCAGGCTCGCCAGGCTCACCAGGGGGGACCTTGGAAG 62 CCTTGGGGACCCTTGAGAAGAAGGAAAAAGATGGGTTAGAAGACAAGTCCCTGTCAACCTTCTCCAATCTTACCAAGAGATCTCTGAGCAT CTCTCCTGCCCTCATCCCAGTCTTCCCTCCAAAAGACCAAAGCCCCGAGGAGGCATATGA

4.Elovi2 (chr6:11,044,729-11,045,049)

5. FHL2 (chr2:106,015,702-106,015,913)

6.IGSF11 (chr3:118,706,493-118,706,721)

Figure is continued on next page

7.ASPA (chr17:3,379,441-3,379,591)

ACTACTTGGTGAAATGACTTCTTGTCACATTGCTGAAGAACATATACAAAAGGTTGCTATCTTTGGAGGAACCCATGGGAATGAGCTAACCCG 91 GAGTATTTCTGGTTAAGCATTGGCTAGAGAATGGCCGCTGAGATTCAGAGAACAGGGCTG 127

8.ITGA2B (chr17:42,467,630-42,467,778)

CAATCCTTTTTGGGTGATGGAGCTCTTTAACCATTAAGACTTGATTCTGGTTGGGGGGGCTTTGCCTAGGGGAGCCTTCCCTGACTCCTCAGG CTGGC<mark>CGCG</mark>TGGGCTAACACACGTAGGCACAGCATTGAGCACACTGTTTACTCTTGGT 97 99

9.PDE4C (chr19:18,343,730-18,344,002) (reverse sequence)

CATGGAGAACCTGGGGGTCGGCGAAGGGGCAGAGGCTTGCAGCAGGTTGAGTCGCTCTCCGCGCCGCCACAGCATGACCAGAGCCCC 53 59 61 65 87 GAAGCACCTGTGGCGGCAACCCCGGCGCCCCATCCGCATCCAACAGCGCTTCTATTCGGATCCGGACAAGTCCGCGGGGCTGCCGCGAG 101 113 122 144 172 AGGGACCTGAGCCCGCGGCGGCGGAGCTCAGGAAGTCGCGGGCTCTCCTGGCCCGTTTCCTCCTGCAGGCGGTAGGTGGCCGGGGCAGG 253 GGCCTCCTGCAG

Figure S9. Targeted sequences for BBA-seq.

Sequences for nine genomic regions that were analyzed by BBA-seq are depicted and all CpG sites are highlighted in red. The age-related CpGs selected by machine learning approach are highlighted in bold and by their ordering number in the sequences (underlined CpG was used in the multivariable linear model).

GEO accession ID	Set used as	Tissue	Reference	Samples	Age (years)	Gender (f/m)
GSE 40279	Training	Peripheral blood	[17]	656	19-101	338/318
GSE 67705	Training	Peripheral blood	[63]	44*	27-66	2/44
GSE 52588	Training	Peripheral blood	[64]	58	9-83	51/7
GSE 77445	Training	Peripheral blood	[65]	85	18-69	42/43
GSE 41169	Training	Peripheral blood	[66]	33	18-65	12/21
GSE 32148	Training	Peripheral blood	[67]	19 ^{\$}	3.5-76	12/8
GSE 36064	Training	Peripheral blood	[45]	78	1-15.3	0/78
GSE 64495	Validation	Peripheral blood	[68]	106	2.3-73.7	76/37
GSE 61496	Validation	Peripheral blood	[69]	310#	30-74	148/164
GSE 55763	Validation	Peripheral blood	[70]	2711	23.7-75	859/1805
GSE 42861	Validation	Peripheral blood	[71]	335	20-70	239/96
GSE125105	Validation	Peripheral blood	-	210	19-79	126/84

Table S1. DNAm profiles for candidate CpG selection

All datasets were generated on the 450k Illumina BeadChip. Data are accessible under http://www.ncbi.nlm.nih.gov/geo/. * two, ^{\$} one and [#] two DNAm profiles of healthy donors were removed due to missing values for some CpGs.

Target site	Gene Name	CHR	Map Info	Coeffients	P value
(Intercept)				0.71	0.0284
cg19283806	CCDC102B	18	66389420	-0.59	0.0019
cg11807280	MEIS1-AS3	2	66654644	-0.21	0.0488
cg00329615	IGSF11	3	118706648	0.01	0.9405
cg22454769	FHL2	2	106015767	0.05	0.8418
cg16867657	ELOVL2	6	11044877	2.15	0.0000
cg22796704	ARHGAP22	10	49673534	-0.69	0.0089
cg09809672	EDARADD	1	236557682	-0.64	0.0018
cg18618815	COL1A1	17	48275324	-0.77	0.0107
cg25533247	AKAP8L	19	15530630	0.12	0.7874
cg02286081	HLA-DPB1	6	33043841	-0.23	0.3118
cg20222376	AKAP8L	19	15530606	0.003	0.9949
cg19344626	NWD1	19	16830749	-0.06	0.8783
cg07082267		16	85429035	-0.22	0.6192
cg15845821	NWD1	19	16830613	1.54	0.0001
cg11741201	FJX1	11	35638398	0.34	0.2894
cg16054275	F5	1	169556022	0.19	0.6404
cg18933331		1	110186418	-0.41	0.2116
cg20249566	NWD1	19	16830739	-0.78	0.0897
cg16604658	TBK1	12	64847188	0.50	0.0576
cg07583137	CHMP4C	8	82644012	0.06	0.7619
cg16008966		1	114761794	-0.39	0.1889
cg14556683	EPHX3	19	15342982	0.10	0.7028
cg03746976	C16orf57	16	58035805	0.02	0.9569
cg14314729		5	179815975	0.27	0.4216
cg03431918		17	77716367	-0.26	0.5443
cg22156456	EIF1	17	39844239	0.25	0.5051
cg23078123	GPR177	1	68577796	-0.73	0.0174
cg09748749	ASL	7	65540429	-1.14	0.0001
cg17457912	C17orf91	17	1617102	-0.06	0.8868
cg06492796		12	96883057	-0.20	0.4626
cg17593342		6	14037614	0.86	0.0011
cg05308819		1	155959156	-0.89	0.0632
cg22512670	RPS6KA1	1	26855765	-0.33	0.3007
cg01820962	NT5DC1	6	116511817	-0.85	0.0000
cg06639320	FHL2	2	106015739	1.92	0.0000
cg03224418	SAMD10;PRPF6	20	62611858	0.92	0.0030
cg17436656	RARG	12	53627106	-0.07	0.7846
cg19500607	HTR4	5	148034319	0.52	0.0392
cg03735592	NHSL1	6	138821354	0.32	0.3261
cg20669012		3	11102341	0.38	0.3835

Table S2. Multivariable 65 CpG model for Illumina BeadChip data

cg19761273	CSNK1D	17	80232096	0.03	0.9316
cg07080372	SLC25A22	11	796607	-1.46	0.0001
cg03638795	SIGIRR	11	416499	-0.27	0.3464
cg19722847	IP08	12	30849114	-0.59	0.1894
cg24711336		10	80063791	0.64	0.0533
cg26935102	POLR3GL;ANKRD34A	1	145470946	0.47	0.2069
cg10221746		1	156629412	0.27	0.4315
cg02085953	ARID5A	2	97202260	-0.64	0.1876
cg04604946	LRRC23	12	7023352	-1.11	0.0066
cg08558886		2	151469837	-0.17	0.4577
cg22361181	NKIRAS2	17	40171740	0.66	0.2161
cg04208403	ZNF423	16	49525807	-0.09	0.8077
cg12623930	ABHD14B	3	52008802	0.09	0.8599
cg21572722	ELOVL2	6	11044894	-0.43	0.3779
cg17885226		6	105388731	0.33	0.3176
cg00748589		12	11653486	2.54	0.0000
cg13033938	IP6K1	3	49824475	-3.63	0.0000
cg19784428	NWD1	19	16830746	0.10	0.8084
cg22016779	DNER	2	230452311	-0.43	0.1755
cg01974375	PI4KB	1	151298954	-0.41	0.3780
cg25256723	F5	1	169555944	-0.27	0.4739
cg24724428	ELOVL2	6	11044888	0.70	0.0009
cg07547549	SLC12A5	20	44658225	-0.11	0.7152
cg25410668	RPA2	1	28241577	0.28	0.2035
cg21296230	GREM1	15	33010536	0.93	0.0015

This model was trained for transformed age instead of chronological age, as described before [19].

Primer	Sequence
CCDC102B	
Forward	5'- TGTTGAGGGAGGGGAATGTTTGTATTTAT-3'
Reverse	5'-Biotin- CCAATAATATCTATATCATCAACATTTCTACAACTT-3'
Sequencing	5'- GGAGGGGAATGTTTG -3'
IGSF11	
Forward	5'- GTTGGATAGTTTGTGGGTAGAAAATTTA -3'
Reverse	5'-Biotin- ATTATTCATTCATTATTCTCCTTAAAAAAATCTTATT -3'
Sequencing	5'- AGAAGTTAAGAAGGTATAGATA -3'
ELOVL2	
Forward	5'-Biotin- GGGAGGGGAGTAGGGTAAGTGA -3'
Reverse	5'- CCATCTAAACAACCAATAAATATTCCTAAAAC -3'
Sequencing	5'- AATAAATATTCCTAAAACTC -3'
COL1A1	
Forward	5'- TTGAAGGGAAGAGGTAAGGAAGATTTTA -3'
Reverse	5'- Biotin- TAACCCATCTTTTCCTTCTCA -3'
Sequencing	5'- AATTTGTATAGAGAGTGTTTATTG -3'
MEIS1-AS3	
Forward	5'- TTGAATAATTAGTAAGATTTTTGTTTGAAGGTTT -3'
Reverse	5'-Biotin- TTACCTTTAAAACAACAAAATAAATCACACTAACC -3'
Sequencing	5'- TTAGTAAGATTTTTGTTTG -3'
FHL2	
Forward	5'- GTGTTTTTAGGGTTTTGGGAGTATAGTAGT -3'
Reverse	5'-Biotin- CACCTCCTAAAACTTCTCCAATCTCC -3'
Sequencing	5'-TATTTTTTAAGGTAGTAAGAGT-3'
ASPA	
Forward	5'-Biotin- ATTATTTGGTGAAATGATT -3'
Reverse	5'- CAACCCTATTCTCTAAATCTC -3'
Sequencing	5'- CCCTATTCTCTAAATCTCA -3'
ITGA2B	
Forward	5'-Biotin- TAATTTTTTTGGGTGATG -3'
Reverse	5'- ACCAAAAATAAACAATATACTCAAT -3'
Sequencing	5'- CAATATACTCAATACTATACCT -3'
PDE4C	
Forward	5'- AGGTTTGTAGTAGGTTGAG -3'
Reverse	5'-Biotin- AACTCAAATCCCTCTC -3'
Sequencing	5'- GTTATAGTATGATTAGAGTTT -3'

Table S3. Primer list for Pyrosequencing assays

Target site	Gene Name	CHR	Map Info	Coeffients	P value
(Intercept)				32.07	0.0161
cg22454769	FHL2	2	106015767	0.99	0.0001
cg00329615	IGSF11	3	118706648	-0.12	0.3512
cg19283806	CCDC102B	18	66389420	-0.99	0.0002
cg11807280	MEIS1-AS3	2	66654644	-0.09	0.5081
cg16867657	ELOVL2	6	11044877	0.05	0.4630
cg18618815	COL1A1	17	48275324	0.11	0.5411

Table S4. Epigenetic aging signature based on pyrosequencing (6 CpG model)

Table S5. Epigenetic aging signature based on pyrosequencing (9 CpG model)

Target site	Gene Name	CHR	Map Info	Coeffients	P value
(Intercept)				37.83	0.0107
cg22454769	FHL2	2	106015767	0.53	0.0236
cg00329615	IGSF11	3	118706648	-0.17	0.1289
cg19283806	CCDC102B	18	66389420	-0.29	0.2604
cg11807280	MEIS1-AS3	2	66654644	0.02	0.8275
cg16867657	ELOVL2	6	11044877	0.12	0.0718
cg18618815	COL1A1	17	48275324	-0.1	0.6015
cg02228185	ASPA	17	3379567	-0.19	0.1153
cg25809905	ITGAB	17	42467728	-0.22	0.0610
NA ¹	PDE4C	19	18343915	0.93	0.0030

¹ A neighboring CpG was used, which is not included on the Illumina BeadChip.

Primer	Sequence
CCDC102B	
Forward	5'- AGTATTGTTTTGGTTTTGAA-3'
Reverse	5'- CCCTTCTCTAAAAATAACTATCC-3'
Probe	6-Fam - AGGGAGGGGAATGTTTGTATTTATTTCGTA -BHQ-1 ^a
	Hex-AGGGAGGGGAATGTTTGTATTTATTTTGTA -BHQ-1 ^b
COL1A1	
Forward	5'-AGGAGAGTTTGTGTGTTTGT-3'
Reverse	5'-TCTAACCCATCTTTTCCTTCT-3'
Probe	6-Fam -TGAAGTTTTAGGTTCGTTAGGTTTATTAGG - BHQ-1 ^a
	Hex -TGAAGTTTTAGGTTTGTTAGGTTTATTAGG - BHQ-1 ^b
MEIS1-AS3	
Forward	5'-AGAGTAYGTTYGTTAGATTT-3'
Reverse	5'- AAATCCTCATAACAATAACTTAAAA-3'
Probe	6-Fam - AGAATATATTAAACGTGTATGTATTTGTGA - BHQ-1 ^a
	Hex - AGAATATATTAAATGTGTATGTATTTGTGA - BHQ-1 ^b
FHL 2	
Forward	5'-TATTTTTGTTTGTTTAGGGTTTTT-3'
Reverse	5'-TCCTAAAACCAAACAAAATCC-3'
Probe	6-Fam -TTTTGGGAGTATAGTAGTTATCGGGAG - BHQ-1 ^a
	Hex -TTTTGGGAGTATAGTAGTTATTGGGAG - BHQ-1 ^b
ASPA	
Forward	5'-AGGTTGTTATTTTTGGAGGA-3'
Reverse	5'-CCTCCAACCCTATTCTCTAA-3'
Probe	6-Fam -TGGGAATGAGTTAATCGGAGTAT- BHQ-1 ^a
	Hex -TGGGAATGAGTTAATTGGAGTAT- BHQ-1 ^b
IGSF11	
Forward	5'-TGGTAGGGTTGGATAGTT-3'
Reverse	5'-AATTATTCATTCATTATTCTCCTTAA-3'
Probe	6-Fam -AAGGTATAGATAGACGAATATTAATTTAGA- BHQ-1ª
	Hex -AAGGTATAGATAGATGAATATTAATTTAGA- BHQ-1 ^b
PDE4C	
Forward	5'-GAGGTTTGTAGTAGGTTGAGT-3'
Reverse	5'-CRAACTCAAATCCCTCTCR-3'
Probe	6-Fam -TAGTATGATTAGAGTTTCGAAGTATTTGTG- BHQ-1 ^a
	Hex -TAGTATGATTAGAGTTTTGAAGTATTTGTG- BHQ-1 ^b

Table S6. Primer list for ddPCR assay

^a Probe targeting the methylated sequence. ^b Probe targeting the non-methylated sequence.

Target site	Gene Name	CHR	Map Info	Coeffients	P value
(Intercept)				28.52	0.1253
cg06639320	FHL2	2	106015739	0.4	0.0396
cg00329615	IGSF11	3	118706648	-0.14	0.0995
cg19283806	CCDC102B	18	66389420	-0.41	0.0246
NA ¹	MEIS1-AS3	2	66654782	-0.02	0.8712
cg18618815	COL1A1	17	48275324	0.01	0.9676
NA ¹	ASPA	17	3379531	-0.12	0.3723
NA ¹	PDE4C	19	18343915	1.22	0.0002

Table S7. Multivariable model for ddPCR (7 CpG)

¹ A neighboring CpG was used, which is not included on the Illumina BeadChip.

Primer	Sequence
CCDC102B	
Forward	5'-CTCTTTCCCTACACGACGCTCTTCCGATCTAGTGGGGTAAGTATATGATATAAGGGAGGAAATA -3'
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTCAAACCAATAATATCTATATCATCAACATTTCT -3'
IGSF11	
Forward	5'- CTCTTTCCCTACACGACGCTCTTCCGATCTGTTTTGAAAAAGATAAGGAAGAAAAAATGTAGTA-3'
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTATTATTCATTC
ELOVL2	
Forward	5'- CTCTTTCCCTACACGACGCTCTTCCGATCTGGGGAGGGGGGGG
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTACCTACAAAAACAAAACCATTTCCCCCTAATAT-3'
COL1A1	
Forward	5'- CTCTTTCCCTACACGACGCTCTTCCGATCTTTTGTGTGTTTGTAGAAGGAGTATGAATTTGTATAG -3'
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTTCATATACCTCCTCCAACTTTAATCTTTTAAA-3'
MEIS1-AS3	
Forward	5'- CTCTTTCCCTACACGACGCTCTTCCGATCTTTTGAATAATTAGTAAGATTTTTGTTTG
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTAATATAAAAAATTCTTCCAAAAAACTAATCACAAATACA -3'
FHL2	
Forward	5'- CTCTTTCCCTACACGACGCTCTTCCGATCTTTTAGTGTTTTTAGGGTTTTGGGAGTATAGTAGTT-3'
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTCCTAAAAAATAACCCCCCTCCTCCCT-3'
ASPA	
Forward	5'-CTCTTTCCCTACACGACGCTCTTCCGATCTATTATTTGGTGAAATGATT-3'
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTCAACCCTATTCTCTAAATCTC -3'
ITGA2B	
Forward	5'-CTCTTTCCCTACACGACGCTCTTCCGATCTTAATTTTTTTGGGTGATG -3'
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTACCAAAAATAAACAATATACTCAAT-3'
PDE4C	
Forward	5'- CTCTTTCCCTACACGACGCTCTTCCGATCTTATGGAGAATTTGGGG -3'
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTCTACAAAAAACCCCCTACC -3'
CD6	
Forward	5'- CTCTTTCCCTACACGACGCTCTTCCGATCTAGTATAGGTAGTTGGGGGTTTTTTTATTAGTTTTTGTA-3'
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTCCAAATCTACTCTACCCTTTACTATTCTTATTCCTAT-3'
SERPINB5	
Forward	5'- CTCTTTCCCTACACGACGCTCTTCCGATCTATTGTGGATAAGTTGTTAAGAGGTTTGAGTAGG-3'
Reverse	5'- CTGGAGTTCAGACGTGTGCTCTTCCGATCTAAACAAACAA

Table S8. Primer list for BBA-seq assay

Target site	Gene Name	CHR	Map Info	Coeffients	P value
(Intercept)				42.61	0.0082
NA ¹	FHL2	2	106015747	0.19	0.4315
cg00329615	IGSF11	3	118706648	-0.12	0.1238
cg19283806	CCDC102B	18	66389420	-0.15	0.2637
NA ¹	MEIS1-AS3	2	66654782	-0.07	0.5082
cg16867657	ELOVL2	6	11044877	0.41	0.0153
cg18618815	COL1A1	17	48275324	-0.17	0.2692
NA ¹	ASPA	17	3379531	-0.11	0.3643
NA ¹	ITGAB	17	42467726	-0.21	0.0662
NA ¹	PDE4C	19	18343886	0.82	0.0060

Table S9. Multivariable model for BBA-seq of blood (9 CpG model)

¹ A neighboring CpG was used, which is not included on the Illumina BeadChip.

|--|

Target site	Gene Name	CHR	Map Info	Coeffients	P value
(Intercept)				24.10	0.4794
NA ¹	FHL2	2	106015747	0.68	0.0248
cg00329615	IGSF11	3	118706648	-0.07	0.6255
cg19283806	CCDC102B	18	66389420	0.07	0.5596
NA ¹	MEIS1-AS3	2	66654782	0.26	0.2405
cg16867657	ELOVL2	6	11044877	0.53	0.0004
cg18618815	COL1A1	17	48275324	-0.02	0.9299
NA ¹	ASPA	17	3379531	-0.40	0.0155
NA ¹	ITGAB	17	42467726	-0.42	0.2493
NA ¹	PDE4C	19	18343886	0.69	0.0001

¹ A neighboring CpG was used, which is not included on the Illumina BeadChip.

Table S11.	Machine	learning	model	by	Lasso
(blood)					

Table	S12.	Machine	learning	model	by
Elastic	Net (b	lood)			

	Target sites*	Coefficients
	(Intercept)	14.02
1	ASPA.093	-0.15
2	CCDC102B.142	-0.38
3	CCDC102B.200	-0.04
4	MEIS1-AS3.203	-0.09
5	COL1A1.063	-0.04
6	<i>Elovl</i> 2.074	0.10
7	<i>Elovl</i> 2.092	0.08
8	<i>Elovl</i> 2.115	0.28
9	<i>Elovl</i> 2.151	0.44
10	FHL2.146	0.39
11	ITGA2B.099	-0.11
12	PDE4C.059	0.16
13	PDE4C.067	0.24
14	PDE4C.071	0.18
15	PDE4C.093	0.30
16	PDE4C.119	0.33
17	PDE4C.128	0.13

* Target sites correspond to the CpG# in Supplementary Figure S9.

	Target sites*	Coefficients
	(Intercept)	17.46
1	ASPA.093	-0.16
2	CCDC102B.142	-0.35
3	CCDC102B.200	-0.01
4	MEIS1-AS3.064	-0.02
5	MEIS1-AS3.203	-0.07
6	COL1A1.063	-0.07
7	Elovl2.070	0.39
8	Elovl2.092	0.03
9	<i>Elovl</i> 2.115	0.26
10	<i>Elovl</i> 2.135	0.08
11	<i>Elovl</i> 2.138	0.03
12	<i>Elovl</i> 2.147	0.02
13	<i>Elovl</i> 2.149	0.04
14	<i>Elovl</i> 2.151	0.25
15	<i>Elovl</i> 2.154	0.06
16	FHL2.040	0.02
17	FHL2.058	0.02
18	FHL2.146	0.34
19	ITGA2B.099	-0.15
20	PDE4C.059	0.14
21	PDE4C.065	0.10
22	PDE4C.067	0.20
23	PDE4C.071	0.17
24	PDE4C.093	0.25
25	PDE4C.119	0.32
26	PDE4C.128	0.14

* Target sites correspond to the CpG# in Supplementary Figure S9.

	Target sites*	Coefficients
	(Intercept)	-15.27
1	ASPA.129	-0.16
2	CCDC102B.323	-0.06
3	MEIS1-AS3.144	0.17
4	MEIS1-AS3.203	0.08
5	<i>Elovl</i> 2.046	0.06
6	<i>Elovl</i> 2.052	0.64
7	<i>Elovl</i> 2.094	-0.06
8	<i>Elovl</i> 2.097	-0.07
9	<i>Elovl</i> 2.111	0.03
10	<i>Elovl</i> 2.135	0.32
11	<i>Elovl</i> 2.149	0.29
12	<i>Elovl</i> 2.151	0.12
13	<i>Elovl</i> 2.154	0.10
14	Elovl2.202	0.02
15	Elovl2.233	0.05
16	<i>Elovl</i> 2.248	-0.01
17	FHL2.058	0.11
18	FHL2.072	0.42
19	ITGA2B.099	-0.12
20	ITGA2B.101	-0.03
21	PDE4C.059	0.12
22	PDE4C.065	0.30
23	PDE4C.107	0.22
24	PDE4C.119	0.64
25	PDE4C.150	0.21
26	PDE4C.178	0.39
27	PDE4C.259	0.29

Table S13. Machine learning model by Lasso (swab)

TableS14.MachinelearningmodelbyElasticNet (swab)

Target sites*		Coefficients		
	(Intercept)	-10.35		
1	ASPA.129	-0.15		
2	CCDC102B.323	-0.06		
3	MEIS1-AS3.144	0.16		
4	MEIS1-AS3.203	0.01		
5	Elovl2.052	0.63		
6	<i>Elovl</i> 2.111	0.04		
7	<i>Elovl</i> 2.135	0.27		
8	<i>Elovl</i> 2.149	0.26		
9	<i>Elovl</i> 2.151	0.16		
10	<i>Elovl</i> 2.154	0.10		
11	Elovl2.202	0.0001		
12	Elovl2.233	0.03		
13	FHL2.058	0.17		
14	FHL2.072	0.28		
15	ITGA2B.099	-0.13		
16	ITGA2B.101	-0.03		
17	PDE4C.059	0.15		
18	PDE4C.065	0.27		
19	PDE4C.067	0.02		
20	PDE4C.071	0.004		
21	PDE4C.093	0.02		
22	PDE4C.107	0.25		
23	PDE4C.119	0.57		
24	PDE4C.150	0.19		
25	PDE4C.178	0.34		
26	PDE4C.259	0.19		

* Target sites correspond to the CpG# in Supplementary Figure S9.

* Target sites correspond to the CpG# in Supplementary Figure S9.