Supplementary Material

Optimisation of Pyruvate Hyperpolarisation using SABRE by Tuning the Active Magnetisation Transfer Catalyst

Ben. J. Tickner, Olga Semenova, Wissam Iali, Peter J. Rayner, Adrian C. Whitwood and Simon B. Duckett*

Corresponding Author: simon.duckett@york.ac.uk

Table of Contents

S1. Variation of the $[Ir(H)_2(IMes)(\eta^2-pyruvate)(L)]$ co-ligand, L

- S1.1: NMR spectra where L is 4-chlorobenzenemethanethiol
- S1.2: NMR spectra where L is Formaldehyde
- S1.3: NMR spectra where L is Triphenylphosphine
- S1.4: NMR spectra where L is Ethylisothiocyanate
- S1.5: NMR spectra where L is Thiophene
- S1.6: NMR spectra where L is Imidazole
- S1.7: X-ray crystallography of $[Ir_2(H)_4(\kappa^2-SCH_2PhCI)_2(IMes)_2]$
- S1.8: X-ray crystallography of [Ir(H)₃(PPh₃)₃]

S2. Monitoring ¹³C₂ Pyruvate signal enhancement and 3b concentration over time

- S2.1: Effect of changing the sulfoxide
- S2.2: Effect of changing the chloride concentration
- S2.3: Effect of changing the carbene ligand
- **S3.** Hyperpolarised ¹³C and ¹H NMR spectra S3.1: Typical hyperpolarised ¹³C and ¹H NMR spectra S3.2: Hyperpolarised ¹³C and ¹H spectra using sulfoxide IX S3.3: Hyperpolarised ¹³C and ¹H spectra using sulfoxide X
- **S4.** Optimisation of ¹³C₂ Pyruvate signal enhancement S4.1: Effect of shaking time and *p*-H₂ pressure S4.2: Effect of pyruvate concentration
- S5. References

S1. Variation of the $[Ir(H)_2(IMes)(\eta^2-pyruvate)(L)]$ co-ligand, L

Samples were prepared containing [IrCl(COD)(IMes)] (5 mM) (where IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazol-2-ylidene and COD = *cis,cis*-1,5-cyclooctadiene) with 6 equivalents of sodium pyruvate-1,2-[$^{13}C_2$] and 4 equivalents of the specified co-ligand (L) in 0.6 mL of methanol-*d*₄ unless otherwise stated in a 5 mm NMR tube that was fitted with a J. Young's tap. The co-ligands used in this study are 4-chlorobenzenemethanethiol, formaldehyde, triphenylphosphine, ethylisothiocyanate, thiophene, imidazole, dimethylsulfoxide (DMSO) (I), phenylmethylsulfoxide (II), chlorophenylmethylsulfoxide (III), vinylsulfoxide (IV), diphenylsulfoxide (V), dibenzylsulfoxide (VI), dibutylsulfoxide (VII), tetramethylene sulfoxide (VIII), methionine sulfoxide (IX) and Fmoc-L-methionine sulfoxide (X) which were all purchased from Sigma Aldrich and used without further purification. Unless otherwise stated, the iridium catalyst used was [IrCl(COD)(IMes)]. The iridium precatalysts used in this work were synthesized in our laboratory according to literature procedures.¹ The solutions were subsequently degassed by two freeze-pump-thaw cycles before 3 bar H₂ was added. These samples were then analysed by SABRE-NMR methods. Typical NMR spectra are shown in Figures S1-S24. Some of the data (Figure S9-S20) uses sodium pyruvate-1-[^{13}C] as the reagent due to lower reagent cost.

S1.1: NMR spectra where L is 4-chlorobenzenemethanethiol

Figure S2: Hyperpolarised 1 scan ¹H NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[¹³C₂] and 4-chlorobenzenemethanethiol in methanol- d_4 with 3 bar p-H₂ for 10 seconds at 65 G.

Figure S3: Thermal 128 scan ¹³C NMR spectrum recorded at 298 K of a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[¹³C₂] and 4-chlorobenzenemethanethiol in methanol- d_4 after leaving the sample for 60 mins in a water bath at 45 °C following the addition of 3 bar H₂

	i bibibibi ang s Panganagangan Panganagangan	nde ukrad Manajari	ala an faord an f	las la la port	na an tha			der der ander die Franke ander gesch	kali dadal poda Ny fajin' Ny po			na sliti da lud V toga fijen	ia dina anta dia Mangkangkangkan	a a thu da ang Try Try		deleder dele Heregeren	disda (saal) Wijngson	un dahla Papapang	hi alimi la n Yeqenarye	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

Figure S4: Hyperpolarised 1 scan ¹³C NMR spectrum at 298 K recorded immediately after shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[¹³C₂] and 4-chlorobenzenemethanethiol in methanol- d_4 with 3 bar p-H₂ for 10 seconds in a mu metal shield.

S1.2: NMR spectra where L is Formaldehyde

Figure S5: Thermal 32 scan ¹H NMR spectrum recorded at 298 K of a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[$^{13}C_2$] and formaldehyde in methanol- d_4 after leaving the sample for 60 mins in a water bath at 45 °C following the addition of 3 bar H₂.

Figure S6: Hyperpolarised 1 scan ¹H NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[$^{13}C_2$] and formaldehyde in methanol- d_4 with 3 bar p-H₂ for 10 seconds at 65 G.

Figure S8: Hyperpolarised 1 scan ¹³C NMR spectrum at 298 K recorded immediately after shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[¹³C₂] and formaldehyde in methanol- d_4 with 3 bar p-H₂ for 10 seconds in a mu metal shield.

S1.3: NMR spectra where L is Triphenylphosphine

Figure S9: Thermal 32 scan ¹H NMR spectrum recorded at 298 K of a sample of [IrCl(COD)(IMes)], sodium pyruvate-1-[¹³C₁] and triphenylphosphine in methanol- d_4 recorded after leaving the sample for 60 mins in a water bath at 45 °C following the addition of 3 bar H₂.

Figure S10: Hyperpolarised 1 scan ¹H NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCI(COD)(IMes)], sodium pyruvate-1-[$^{13}C_1$] and triphenylphosphine in methanol- d_4 with 3 bar p-H₂ for 10 seconds at 65 G.

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure S12: Hyperpolarised 1 scan ¹³C NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1-[$^{13}C_1$] and triphenylphosphine in methanol- d_4 with 3 bar *p*-H₂ for 10 seconds in a mu metal shield.

S1.4: NMR spectra where L is Ethylisothiocyanate

Figure S14: Hyperpolarised 1 scan ¹H NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1-[$^{13}C_1$] and ethylisothiocyanate in methanol- d_4 with 3 bar p-H₂ for 10 seconds at 65 G.

Figure S15: Thermal 64 scan ¹³C NMR spectrum recorded at 298 K of a sample of [IrCl(COD)(IMes)], sodium pyruvate-1-[¹³C₁] and ethylisothiocyanate in methanol- d_4 after leaving the sample for 60 mins in a water bath at 45 °C following the addition of 3 bar H₂.

Figure S16: Hyperpolarised 1 scan ¹³C NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1-[$^{13}C_1$] and ethylisothiocyanate in methanol- d_4 with 3 bar p-H₂ for 10 seconds in a mu metal shield.

S1.5: NMR spectra where L is thiophene

Figure S18: Hyperpolarised 1 scan ¹H NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1-[$^{13}C_1$] and thiophene in methanol- d_4 with 3 bar p-H₂ for 10 seconds at 65 G.

Figure S19: Thermal 64 scan ¹³C NMR spectrum recorded at 298 K of a sample of [IrCl(COD)(IMes)], sodium pyruvate-1-[¹³C₁] and thiophene in methanol- d_4 after leaving the sample for 60 mins in a water bath at 45 °C following the addition of 3 bar H₂.

Figure S20: Hyperpolarised 1 scan ¹³C NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1-[¹³C₁] and thiophene in methanol- d_4 with 3 bar p-H₂ for 10 seconds in a mu metal shield.

S1.6: NMR spectra where L is imidazole

Figure S22: Hyperpolarised 1 scan ¹H NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[$^{13}C_2$] and imidazole in methanol- d_4 with 3 bar p-H₂ for 10 seconds at 65 G with corresponding thermal reference trace directly above.

190 180 160 150 140 130 120 110 100 ppm Figure S24: Hyperpolarised 1 scan ¹³C NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[$^{13}C_2$] and imidazole in methanol- d_4 with 3 bar p-H₂ for 10 seconds in a mu metal shield.

S1.7: X-ray crystallography of [Ir₂(H)₄(κ²-SCH₂PhCl)₂(IMes)₂]

Crystals were grown by leaving a sample containing 2 mg [IrCl(COD)(IMes)] (where IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene and COD = *cis,cis*-1,5-cyclooctadiene) with 6 equivalents of sodium pyruvate-1,2-[¹³C₂] and 4 equivalents of 4-chlorobenzenemethanethiol in 0.6 mL of methanol-*d*₄ with 3 bar H₂ at 278 K for a period of several months. A suitable crystal was selected and mounted on an Oxford Diffraction SuperNova X-ray diffractometer. The crystal was kept at 110 K during data collection. Diffractometer control, data collection, initial unit cell determination, frame integration and unit-cell refinement was carried out with "CrysAlisPro".² Face-indexed absorption corrections were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Using Olex2,³ the structure was solved with the ShelXT⁴ structure solution program using Intrinsic Phasing and refined with the ShelXL⁵ refinement package using Least Squares minimisation. X-ray crystal structures were deposited with the CCDC (deposition number 1957542-1957543)

The crystal of $[Ir_2(H)_4(\kappa^2-SCH_2PhCI)_2(IMes)_2]$ showed evidence of minor twinning with two residual density peaks close to the iridium atoms. This could not be resolved using either merohedral or non-merohedral twinning methods. One of the 4-chlorobenzyl groups was disordered and modelled in two positions with refined occupancies of 0.803:0.197(10). Pairs of disordered carbons were constrained to have the same ADP (e.g. C43, & C43a, C44 & C44a etc.). The S-CH₂ bond-lengths were restrained to be equal as were the CH₂-C(ipso) bond-lengths and the C-Cl bond-lengths. The phenyl ring of the minor form was constrained to be a regular hexagon with a C-C bond length of 1.39 angstroms. For the minor form the CH₂-C(ortho) distances were restrained to be equal as were the C(meta)-Cl distances. The hydrides were initially located by difference map, the Ir-H bond-length was then adjusted to be 1.65 angstroms and then the location fixed to ride on the iridium.

Figure S25: Structure of $[Ir_2(H)_4(\kappa^2-SCH_2PhCI)_2(IMes)_2]$ determined by X-ray diffraction studies. Note that all non hydride hydrogen atoms and solvent of crystallisation have been omitted for clarity

Table S1: Crystal data and structure refinement for $[Ir_2(H)_4(\kappa^2-SCH_2PhCI)_2(IMes)_2]$

Empirical formula	$C_{57}H_{68}Cl_{2}lr_{2}N_{4}OS_{2}$
Formula weight	1344.57
Temperature/K	110.00(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.9317(2)
b/Å	16.6000(3)
c/Å	25.5365(4)
α/°	90
β/°	90.2757(13)
٧/°	90
Volume/Å ³	5481.76(15)
Z	4

$\rho_{calc}g/cm^3$	1.629
µ/mm ⁻¹	11.192
F(000)	2664.0
Crystal size/mm ³	0.149 × 0.09 × 0.078
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	6.924 to 134.152
Index ranges	-15 ≤ h ≤ 14, -19 ≤ k ≤ 18, -29 ≤ l ≤ 30
Reflections collected	20688
Independent reflections	9782 [R _{int} = 0.0256, R _{sigma} = 0.0331]
Data/restraints/parameters	9782/4/650
Goodness-of-fit on F ²	1.036
Final R indexes [I>=2σ (I)]	R ₁ = 0.0299, wR ₂ = 0.0678
Final R indexes [all data]	R ₁ = 0.0357, wR ₂ = 0.0712
Largest diff. peak/hole / e Å ⁻³	1.92/-1.36

S1.8: X-ray crystallography of [Ir(H)₃(PPh₃)₃]

Crystals were grown by leaving a sample containing 2 mg [IrCl(COD)(IMes)] (where IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene and COD = cis, cis-1, 5-cyclooctadiene) with 6 equivalents of sodium pyruvate-1, 2-[¹³C₂] and 4 equivalents of triphenylphosphine in 0.6 mL of methanol-d₄ with 3 bar H₂ at 278 K for a period of several months. A suitable crystal was selected and X-ray diffraction data was collected and solved as described in Section S1.7. The asymmetric unit contained a partial methanol whose occupancy refined to 0.283(5).

Figure S26: Structure of [Ir(H)₃(PPh₃)₃] determined by X-ray diffraction studies. Note that all non hydride hydrogen atoms and solvent of crystallisation have been omitted for clarity

Table S2: Crystal data and structure refinement for [Ir(H)₃(PPh₃)₃]

Empirical formula	$C_{54.28}H_{49.13}IrO_{0.28}P_3$
Formula weight	991.09
Temperature/K	110.00(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	17.31801(12)
b/Å	12.99024(10)
c/Å	19.71788(16)
a/°	90
β/°	94.4442(7)

γ/°	90
Volume/Å ³	4422.50(6)
Z	4
ρ _{calc} g/cm ³	1.489
µ/mm ⁻¹	7.149
F(000)	1996.4
Crystal size/mm ³	0.197 × 0.099 × 0.037
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	8.158 to 134.152
Index ranges	-15 ≤ h ≤ 20, -15 ≤ k ≤ 15, -23 ≤ l ≤ 21
Reflections collected	17542
Independent reflections	7896 [R _{int} = 0.0226, R _{sigma} = 0.0296]
Data/restraints/parameters	7896/0/557
Goodness-of-fit on F ²	1.047
Final R indexes [I>=2σ (I)]	R ₁ = 0.0199, wR ₂ = 0.0458
Final R indexes [all data]	R ₁ = 0.0237, wR ₂ = 0.0480
Largest diff. peak/hole / e Å ⁻³	0.71/-0.53

S2. Monitoring ¹³C₂ Pyruvate signal enhancement over time

S2.1: Effect of changing the sulfoxide identity

Dimethylsulfoxide (DMSO) (I), phenylmethylsulfoxide (II), chlorophenylmethylsulfoxide (III), vinylsulfoxide (IV), diphenylsulfoxide (V), dibenzylsulfoxide (VI), dibutylsulfoxide (VII), tetramethylene sulfoxide (VIII), methionine sulfoxide (IX) and Fmoc-L-methionine sulfoxide (X) were used in this work. Their structures are given in Figure 2 of the main manuscript.

Figure S27: Results after shaking a sample of [IrCl(COD)(IMes)], 6 equivalents of sodium pyruvate-1,2-[$^{13}C_2$], and 4 equivalents of the specified sulfoxide I-X in 0.6 mL methanol- d_4 with 3 bar p-H₂ a) averaged $^{13}C_2$ pyruvate enhancement and b) hyperpolarised ^{1}H 3b hydride signal intensities monitored over the first 90 minutes of reaction following initial H₂ addition.

The concentration of methylphenylsulfoxide **II** was varied to determine its effect on pyruvate enhancement. The relative ¹³C NMR signal gains for bound and free pyruvate, in addition to the hydride ligand signal enhancements for its **3b** derivative across a range of concentrations, are presented in Figure 3

Figure S28: Averaged hyperpolarised ¹³C pyruvate (left axis, bars) and ¹H hydride signals of 3b derivative (right axis, line) detected as a function of sulfoxide concentration after a methanol- d_4 solution of 1a, 6 equivalents of sodium pyruvate-1,2- $[^{13}C_2]$ and the indicated equivalents of II are shaken with 3 bar p-H₂ for 10 seconds in a mu metal shield.

S2.2: Effect of changing the chloride concentration

Solutions of 2 mg **1a**, 10 equivalents of sulfoxide I and 5 equivalents of sodium pyruvate-1,2-[$^{13}C_2$] in 0.6 mL methanol- d_4 containing 0, 1, 3 or 5 equivalents of NaCl in 5 µL of D₂O were prepared. These four solutions were activated with 3 bar H₂ and their $^{13}C_2$ pyruvate enhancement monitored as a function of reaction time. Signal enhancements for this data were calculated by reference to a thermal 128 scan ^{13}C NMR spectrum of the same sample and were consistent with those calculated by reference to a more concentrated sodium pyruvate-1,2-[$^{13}C_2$] thermal sample as outlined in Shchepin *et* al.⁶

Figure S29: Upon shaking a sample of [IrCl(COD)(IMes)], 5 equivalents of sodium pyruvate-1,2-[$^{13}C_2$], and 10 equivalents of DMSO with varying amounts of NaCl in 0.6 mL methanol- d_4 with 3 bar p-H₂ the size of the a) average $^{13}C_2$ pyruvate enhancement and b) hyperpolarised ¹H 3b hydride signal intensities were monitored following initial H₂ addition.

Figure S30 a) Average hyperpolarised ${}^{13}C_2$ pyruvate responses and b) proportion of 3b relative to all other hydride containing species when a sample of the iridium precatalyst 1a-h, 6 equivalents of sodium pyruvate-1,2-[${}^{13}C_2$], and 4 equivalents of methylphenylsulfoxide is shaken in 0.6 mL methanol- d_4 with 3 bar p-H₂ for 10 seconds in a mu metal shield and then monitored periodically after this point.

S3. Hyperpolarised ¹³C and ¹H NMR spectra

S3.1: Typical hyperpolarised ¹³C and ¹H NMR spectra

Figure S31: Hyperpolarised 1 scan ¹H NMR spectrum recorded at 298 K (below) resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[¹³C₂] and phenylmethylsulfoxide in methanol-d₄ with 3 bar p-H₂ for 10 seconds at 65 G with the corresponding thermal measurement (32 scans) displayed above.

Figure S32: Hyperpolarised 1 scan ¹³C NMR spectrum recorded at 298 K resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[$^{13}C_2$] and phenylmethylsulfoxide in methanol- d_4 with 3 bar p-H₂ for 10 seconds in a mu metal shield 65 G with the corresponding thermal measurement (64 scans) displayed above.

S3.2: Hyperpolarised ¹³C and ¹H spectra using sulfoxide IX

[IrCl(COD)(IMes)], sodium pyruvate-1,2-[13 C₂] and sulfoxide IX in methanol- d_4 with 3 bar p-H₂ for 10 seconds at 65 G with the corresponding thermal measurement (64 scans) displayed above.

Figure S34: Hyperpolarised 1 scan ¹³C NMR spectrum recorded at 298 K (below) resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[¹³C₂] and sulfoxide IX in methanol- d_4 with 3 bar *p*-H₂ for 10 seconds in a mu metal shield with the corresponding thermal measurement (64 scans) displayed above.

Figure S35: Hyperpolarised 1 scan ¹H NMR spectrum recorded at 298 K (below) resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[$^{13}C_2$] and sulfoxide X in methanol- d_4 with 3 bar p-H₂ for 10 seconds at 65 G with the corresponding thermal measurement (64 scans) displayed above.

Figure S36: Hyperpolarised 1 scan ¹³C NMR spectrum recorded at 298 K (below) resulting from shaking a sample of [IrCl(COD)(IMes)], sodium pyruvate-1,2-[¹³C₂] and sulfoxide X in methanol- d_4 with 3 bar p-H₂ for 10 seconds in a mu metal shield with the corresponding thermal measurement (64 scans) displayed above.

S4. Optimisation of ¹³C₂ Pyruvate signal enhancement

S4.1: Effect of shaking time and *p*-H₂ pressure

Figure S37: a) Average hyperpolarised ¹³C pyruvate signal enhancement as a function of hydrogen pressure (1a with 2 eq phenylmethylsulfoxide, 3 bar p-H₂ and 10 second shaking). Hyperpolarised b) ¹³C pyruvate and ¹H hydride responses seen for 3b as a function of shaking time recorded on the same sample (3 bar).

Figure S38: a) Average hyperpolarised 13 C pyruvate signal enhancement as a function of hydrogen pressure (1a- d_{24} with 10 eq phenylmethylsulfoxide, 3 bar p-H₂ and 10 second shaking). Hyperpolarised b) 13 C pyruvate and 1 H hydride responses seen for 3b as a function of shaking time recorded on the same sample (3 bar).

S4.2: Effect of pyruvate concentration

Figure S39: Average hyperpolarised ¹³C pyruvate signal enhancement and hypeprolarised hydride signal intensity of 3b as a function of pyruvate concentration relative to iridium for a sample containing 1a with 10 eq phenylmethylsulfoxide and 3 bar $p-H_2$ after 10 seconds of shaking.

Figure S40: Partial ¹³C hyperpolarised NMR spectra resulting from shaking a sample of [IrCl(COD)(IMes)] with the indicated equivalents of sodium pyruvate-1,2-[¹³C₂] and 10 equivalents of methylphenylsulfoxide in methanol- d_4 with 3 bar p-H₂ for 10 seconds in a mu metal shield at similar time points after the initial H₂ addition step.

S5. References

- 1. L. D. Vazquez-Serrano, B. T. Owens and J. M. Buriak, *Inorg. Chim. Acta*, 2006, **359**, 2786-2797.
- 2. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.41.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- 4. G. Sheldrick, Acta Crys. Sec. A., 2015, 71, 3-8.
- 5. G. Sheldrick, Acta Crys. Sec. C., 2015, **71**, 3-8.
- 6. R. V. Shchepin, L. Jaigirdar, T. Theis, W. S. Warren, B. M. Goodson and E. Y. Chekmenev, *J. Phys. Chem. C*, 2017, **121**, 28425-28434.