
Reviewer	#1:	The	authors	address	the	important	question	of	how	to	ascertain	steady	state	
calcium	conditions	in	a	ventricular	myocoyte.	To	this	aim,	they	derive	two	coupled	equations	
that	characterise	calcium	equilibria.	In	turn,	they	employ	this	new	framework	to	explain	
counter-intuitive	results	from	SERCA	therapy	that	is	used	to	treat	heart	failure.	Overall,	this	is	
an	interesting	study	worth	publishing	that	fits	well	with	PLoS	Computational	Biology.	Before	
making	a	decision	regarding	its	publication,	I	would	like	the	authors	to	consider	the	following	
points.	
	
-	My	main	comment	regards	the	computations	involved	in	the	derivation	of	equations	(25)	and	
(26).	As	far	as	I	understand	the	approach,	the	authors	need	to	numerically	solve	the	underlying	
large	system	of	coupled	ordinary	differential	equations	(ODEs)	to	evaluate	the	integrals	in	
equations	such	as	(20).	In	the	computation,	some	variables	are	set	to	their	steady	state	values	
due	to	time	scale	separation,	hence	reducing	the	dimensions	of	the	ODE	system.	To	then	
determine	the	nullclines,	the	authors	need	to	run	their	simulations	a	large	number	of	times	to	
determine	the	surfaces	in	Figures	3	and	4.	In	turn,	this	is	used	to	find	the	fixed	point	as	an	
intersection	of	the	nullclines.	If	this	is	indeed	the	case,	I	am	unclear	of	the	advantage	of	the	
approach.	If	essentially,	I	need	to	run	a	large	number	of	simulations	(although	only	over	one	
beat)	to	determine	the	fixed	point,	why	can	I	not	run	a	single	simulation	for	longer	and	then	
determine	the	steady	state	value?	In	fact,	Figure	4	shows	that	these	approaches	are	
equivalent.	It	would	be	worth	explaining	in	more	detail	why	computing	the	nullclines	(which	
has	to	be	redone	every	time	parameter	values	are	changed)	is	superior	to	running	a	single	long	
simulation.	For	this,	I	also	do	not	see	how	the	time	scale	separation	gives	any	advantage	for	
the	proposed	framework	as	it	could	equally	well	be	applied	to	the	single	long	simulation.	
	

In	fact,	in	order	to	obtain	the	nullclines	we	need	to	run	multiple	one	beat	simulations,	starting	
with	different	initial	conditions.	This	certainly	needs	more	computational	time	than	running	a	
single	long	simulation	to	compute	the	final	steady	state	value.	The	main	advantage	of	our	
formulation	is	not	computational,	but	rather	conceptual.	Reducing	the	system	to	a	state	with	
just	two	variables	allows	the	study	of	the	structural	properties	of	calcium	homeostasis.	This	
opens	the	door,	for	the	first	time,	to	predict	all	the	possible	outcomes	from	a	change	in	
parameters.	Furthermore,	although	this	case	is	not	studied	in	this	paper,	the	cross	of	the	
nullclines	could	give	steady-state	points	that	are	not	stable,	which	would	not	be	accessible	
from	simulations.	Another	possible	scenario	would	be	the	presence	of	several	steady	states,	
that	could	result	in	bistability,	for	instance.	So,	we	do	not	claim	that	our	method	is	a	substitute	
for	time	simulations,	but	rather	a	complement	of	those,	that	can	provide	a	deeper	
understanding	of	the	dynamics,	possible	steady-states	and	their	stability,	and	robustness	of	
the	dynamics	under	changes	in	parameters.	

As	for	the	dimensionality	reduction,	we	do	not	use	it	in	the	simulations	to	compute	the	
nullclines.	During	one	beat	all	variables	change	with	time	and	we	compute	them	dynamically.	
What	we	mean	by	dimensionality	reduction	is	that	the	final	state	after	one	period	changes	if	
we	change	the	initial	values	of	SR	and	cytosolic	Ca,	but	not	if	we	change	the	initial	values	of	
other	variables,	that	adapt	fast	(in	a	time	scale	faster	than	a	period)	to	the	state	given	by	the	
chosen	calcium	concentrations.	This	is,	the	surfaces	given	by	Eqs.	(25)-(26)	can	be	



parameterized	by	just	two	variables,	cytosolic	and	SR	calcium,	simplifying	enormously	the	
analysis	of	the	dynamics	of	the	system.		

	
-	The	authors	balance	the	fluxes	during	one	beat,	which	is	then	used	to	determine	the	steady	
state	calcium	concentrations.	Another	way	of	looking	at	this	is	to	write	down	a	map	that	maps	
the	calcium	concentration	at	the	beginning	of	a	beat	to	that	at	the	end	of	the	beat	and	then	
look	for	fixed	points	of	this	map.	If	this	is	indeed	a	sensible	interpretation	of	the	authors'	work,	
I	strongly	recommend	to	put	their	results	into	context.	Maps	have	a	long	tradition	in	cardiac	
modelling	as	a	means	to	reduce	the	high	dimensionality	of	cardiac	models.	The	authors	should	
expand	on	this	history	and	also	highlight	how	their	map	is	different	from	established	
approaches	(or	how	it	relates	to	them).	It	is	also	worth	mentioning	that	a	similar	idea	was	used	
in	Huertas,	M.	A.,	Smith,	G.	D.,	&	Gyorke,	S.	(2010).	Ca2+	alternans	in	a	cardiac	myocyte	model	
that	uses	moment	equations	to	represent	heterogeneous	junctional	SR	Ca2+.	Biophysical	
Journal,	99(2),	377–387.	To	reduce	the	dimensionality	of	calcium	dynamics,	a	recent	study	
proposes	the	use	of	the	Master	stability	function	on	a	piecewise	linear	version	of	a	well-
established	model	of	calcium	cycling	in	ventricular	mycoytes:	Veasy,	J.,	Lai,	Y.	M.,	Coombes,	S.,	
&	Thul,	R.	(2019).	Complex	patterns	of	subcellular	cardiac	alternans.	Journal	of	Theoretical	
Biology,	478,	102–114.	

The	method	we	use	is	actually	to	compute	two	coupled	maps,	for	the	global	SR	and	total	
calcium	concentrations:	
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and	then	analyze	them	to	find	the	equilibrium	conditions.	The	interesting	(and	nontrivial)	part	
is	that	these	maps	actually	describe	well	the	dynamics,	despite	the	model	being	composed	of	
tens	of	thousands	of	stochastic	elements.	In	similar	atrial	models,	for	instance,	where	spatial	
heterogeneity	appears	naturally	due	to	centripetal	propagation,	we	have	found	that	these	
types	of	maps	for	global	variables	are	not	sufficient	to	describe	properly	the	dynamics.	In	the	
case	of	ventricular	cells,	where	these	maps	give	a	good	description	of	the	dynamics,	we	can	
just	take	arbitrary	initial	conditions	in	QT	and	QSR,	independently	of	the	state	of	other	variables,	
and	calculate	their	values	after	one	beat.	With	this,	we	can	uniquely	compute	the	maps.	Thus,	
what	we	do	is	basically	the	same	as	in	Huertas	et	al,	although	they	calculate	the	maps	using	a	
moment	equation	model	of	calcium	dynamics	and	we	use	a	Monte	Carlo	model.	They	calculate	
the	SR	release-load	relations,	once	the	cell	has	reached	homeostatic	equilibrium	and	use	it	to	
study	the	onset	of	alternans.	We,	by	the	contrary,	are	interested	in	this	homeostatic	
equilibrium	and,	thus,	we	have	to	supplement	the	map	for	SR	calcium	concentration	with	
another	one	for	total	cell	calcium	concentration.	Now	we	explicitly	write	down	the	map	
equations	in	the	Methods	section	and	cite	the	works	by	Shiferaw	et	al,	2003;	Huertas	et	al,	
2010	and	Qu	et	al,	2019,	for	reference	on	SR	calcium	maps.	

In	the	paper	by	Veasy	et	al	(which,	in	turn,	is	a	generalization	of	the	method	developed	by	Li	&	
Otani,	2003),	they	compute	the	stability	of	the	basic	periodic	state	by	doing	a	linear	stability	
analysis.	The	reduction	of	the	dimensionality	of	the	system	(if	we	understand	it	properly)	



comes	from	the	fact	that	the	CaRUs	have	nearest-neighbor	coupling,	so	one	can	map	it	to	a	
problem	of	independent	units,	and	because	they	use	a	piecewise	linear	model.	How	this	can	
be	extended	to	continuous	models	with	stochastic	dynamics	is	not	clear	to	us,	although	it	is	
certainly	a	fascinating	challenge	for	future	work.	We	now	make	reference	to	these	works	in	
the	discussion.	
	
-	The	authors	note	that	a	particular	advantage	of	their	model	is	the	explicit	representation	of	
buffer	dynamics	and	not	the	use	of	the	fast	buffer	approximation.	As	they	point	out,	"The	
reason	is	that	fast	buffering	approximation	leads	to	a	loss	of	mass	in	any	type	of	propagation	
algorithm	we	have	considered."	In	the	limit	of	perfect	time	scale	separation,	i.e.	infinitely	rapid	
buffering,	fast	buffering	is	exact.	While	it	is	true	that	there	is	no	ODE	for	the	buffers,	the	
algebraic	relation	following	from	the	fast	buffer	approximation	allows	us	to	recover	the	
buffered	concentrations.	There	does	not	seem	to	be	a	"loss	of	mass"	here.	The	question	is	then	
more	if	the	assumptions	of	the	fast	buffering	approximation	are	satisfied.	Of	course,	if	that	is	
not	true,	then	using	it	is	misleading	and	might	contribute	to	what	the	authors	call	"loss	of	
mass".	It	is	also	unclear	to	me	if	their	arguments	are	based	entirely	on	a	numerical	
implementation	(as	the	authors	make	reference	to	the	Euler	scheme)	or	whether	they	believe	
it	is	a	structural	problem	for	all	numerical	algorithms.	If	it	is	the	former,	I	suggest	to	change	the	
integrator.	Also,	I	think	it	is	a	misuse	of	terminology	to	call	the	authors'	model	mass	
conserving.	The	model	clearly	does	not	conserve	overall	mass	since	it	neglects	dynamics	of	the	
extracellular	calcium	concentration,	which	is	indeed	clamped.	At	the	end	of	the	results	section,	
the	authors	state	"The	reason	is	that	free	calcium	concentrations	and	total	calcium	
concentrations	can	be	related	one-to-one,	in	a	general	equilibrium	framework,	using	the	fast-
buffering	approximation."	Does	this	imply	that	the	authors	used	the	fast	buffer	approximation	
after	all?	

We,	in	fact,	use	the	fast	buffering	approximation	in	the	case	of	the	buffer	calsequestrin.	But	we	
do	not	use	the	reduction	to	an	equation	for	free	calcium,	as	developed	in	Wagner	&	Keitzer	&	
1994.	We	have	tried	to	explain	it	more	clearly	in	the	text	but	we	think	we	must	explain	
ourselves	further	here.	Assuming	that	we	have	only	cytosolic	and	SR	calcium,	we	would	have	
the	following	equations:	
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Clearly,	the	quantity	vcytccyt+vsr(csr+cbuf)	is	a	conserved	quantity.	What	we	do	to	solve	these	
equations	in	the	rapid	buffer	approximation	is	to	consider	the	system	for	ccyt	and	csr

tot=csr+cbuf	
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and	then	obtain	the	free	SR	calcium	using	the	rapid	buffer	approximation	Jbuf ≈ 0,	so	

csr
tot = csr + cbuf = csr + BT

csr
csr + KB

	

This	formulation	will	conserve	mass	exactly	in	any	forward	integration	scheme,	independently	
on	whether	the	fast	buffer	approximation	is	correct	or	not.	That	will	only	determine	the	
relative	distribution	of	buffered	and	free	SR	Ca.		

Now,	usually,	the	fast	buffer	approximation	is	used	to	obtain	a	dynamical	equation	for	free	SR,	
such	that		
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with	
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We	found	that	mass	balance	is	not	satisfied	using	this	formulation.	The	surprising	fact	that	we	
have	found	is	that	this	unbalance	is	not	necessarily	small.	We	are	currently	in	the	process	of	
writing	a	report	about	this	problem,	once	we	understand	how	this	effect	depends	on	the	
numerical	scheme	used	to	solve	the	equations.	Given	that	we	do	not	have	yet	a	clear	picture	of	
it,		we	prefer	not	to	discuss	this	topic	in	the	present	manuscript.	In	the	revised	version	we	just	
state	how	calcium	buffering	is	implemented	pointing	out	the	differences	with	other	
approaches	and	indicating	how	to	implement	calsequestrin	so	that	the	algorithm	applies	the	
rapid-buffering	approximation	and	satisfies	mass	balance.	

	
-	One	way	of	reducing	the	dimensionality	of	the	model	is	by	splitting	variables	into	fast	and	
slow	dynamics	and	then	express	the	fast	variables	as	a	function	of	the	slow	variables.	Could	
the	authors	show	explicitly	from	numerical	simulations	that	this	time	scale	separation	holds	
and	that	they	obtain	the	same	results	as	with	the	full	model,	i.e.	without	using	algebraic	
equations	for	the	fast	variables?	

We	do	not	actually	use	algebraic	equations	for	the	fast	variables	in	the	simulations.	It	is	just	
that,	after	one	period,	the	final	state	does	not	depend	on	the	initial	state	of	these	fast	
variables,	and	therefore	they	can	be	neglected	in	our	analysis.	We	show	this	now	explicitly	in	a	



figure	in	SI	(and	shown	below),	where	we	compute	the	end-diastolic	value	of	SR	calcium	
concentration	after	a	period,	starting	from	different	initial	values	of	the	buffers	TnC	and	CAM,	
and	in	the	fraction	of	initial	open	RyRs.	From	the	figure,	it	is	clear	that	the	final	state	is	
completely	independent	of	the	initial	state	of	the	buffers,	and	depends	very	slightly	on	the	
initial	state	of	the	RyRs,	as	long	as	it	is	close	to	its	value	at	the	equilibrium	point.	We	have	used	
this	result	to	explain	further	in	the	SM	that	“The	reason	for	this	slight	dependence	on	the	state	
of	the	RyR,	contrary	to	what	happens	with	the	buffers,	is	that	the	release	depends	very	
sensitively	on	the	number	of	ready	to	open	states	of	the	RyR.	The	dynamics	of	both	the	RyR	
and	LCC	channels	is	fast	(~100ms)	compared	with	the	pacing	period,	but	they	do	not	have	time	
to	equilibrate	in	the	time	between	the	external	excitation	and	the	initiation	of	release	(~20ms).	
Thus,	starting	with	values	very	far	from	the	equilibrium	value	would	affect	the	equilibrium	
surfaces.”		In	any	case,	the	fact	that	the	predictions	of	the	maps	(or	general	equilibrium	model)	
agree	very	well	with	the	numerical	results	obtained	integrating	the	dynamical	equations	is	an	
indication	that	the	dimensionality	reduction	works.		

Regarding	this	last	point	we	have	clarified	the	sentence	"The	reason	is	that	free	calcium	
concentrations...."	in	the	manuscript.	We	now	clearly	state	that	"The	reason	is	that	end-
diastolic	free	calcium	concentrations	can	be	related	to	total	calcium	concentrations	assuming	
the	equilibrium	concentration	of	calcium	bound	to	buffers.	So,	despite	the	fact	that	in	the	
mathematical	model	we	only	use	the	fast	buffering	approximation	for	calsequestrin,	the	other	
buffers	equilibrate	so	fast	that	they	attain	the	equilibrium	values	by	the	end	of	each	period."			
	

	

	

Figure:	Value	of	SR	calcium	concentration	after	one	
stimulation,	starting	from	the	same	initial	value	of	
csr

n=44µmol/Lcyt,	and	different	initial	values	of	
buffer	concentration	and	fraction	of	open	RyRs.	
The	final	state	is	independent	on	the	specific	
value	at	the	beginning	of	the	stimulation.	

	

	

	

	
Minor	comments:	
	
-	In	the	author	summary,	"2+"	needs	to	be	superscript	in	"Ca2+"	
-	l.	79:	"is	not	a	cube	with".	Do	the	authors	mean	that	a	CRU	is	a	rectangular	cuboid?	
-	l.157:	Formally,	the	buffer	contributions	are	subtracted,	not	added	to	the	calcium	equations.	
-	Equation	(12)	misses	a	bracket	in	the	denominator.	



All	corrected	
	
-	l.267:	Why	is	the	unit	of	J_LCC	mol/s	and	not	M/s?	

We	have	corrected	the	typo	and	now	reads	µmol/Lcyt/s.	We	thank	the	referee	for	pointing	
this	out.	
	
-	Could	the	authors	provide	a	source	for	the	large	diffusion	coefficient	within	a	z-plane?	A	
cytosolic	diffusion	coefficient	of	1.2	µm^2/ms	(i.e.	1200	µm^2/s)	appears	really	large	(with	a	
similar	argument	for	the	SR).	

We	are	sorry	for	the	mistake	in	the	table	where	we	mixed	up	a	previous	version	with	a	new	
version.	The	diffusion	coefficient	is	indeed	0.3	µm^2/ms	in	our	simulations	in	the	cytosol	and	
10	times	lower	in	the	SR.	In	the	table	we	indicated	1.2	but	this	is	diffusion	rate	between	
neighboring	in-planes.	This	is,	D/(dx^2)=1.2		ms{-1}	.	Diffusion	rates	across	the	z-planes	are	
different	than	in	plane.	We	have	now	included	all	the	correct	information	in	the	new	table.	

	

	

	

	

	 	



	

Reviewer	#2:	This	study	from	Conesa	et	al	uses	an	exciting	and	original	approach	to	predict	and	
explain	the	homeostatic	equilibrium	in	cardiac	calcium	handling.	This	approach	is	potentially	
very	powerful,	with	the	ability	to	provide	both	substantial	predictive	ability	as	well	as	
mechanistic	explanations	for	complex	and	often	counter-intuitive	observations	
	
I	have	no	major	concerns	with	the	study	itself,	which	is	in	general	well	and	clearly	described,	
and	certainly	uses	suitable	approaches	for	the	objectives.	However,	I	do	have	some	comments	
regarding	the	presentation	and	structuring	of	the	paper.	
	
Structure:	I	feel	that	different	parts	of	this	paper	are	placed	in	the	wrong	locations.	The	
description	of	the	general	equilibrium	approach	I	feel	would	be	better	suited	to	the	methods,	
as	this	explains	the	framework	underlying	the	paper	–	the	validation	of	this	method	can	then	
be	the	first	part	of	the	results.	Moreover,	the	majority	of	the	discussion	reads	more	like	results	
–	presenting	the	applications	of	the	validated	model	to	explain	the	example	of	both	intuitive	
and	counter-intuitive	responses	to	SERCA	upregulation	–	including	2	results	figures	both	
presented	within	this	discussion.	I	would	suggest	moving	all	of	this	to	the	results	section	(the	
final,	summary	figure	should	remain	in	the	discussion).	
	
We	have	restructured	the	paper	in	order	to	address	the	different	points	raised	by	the	referees.	
We	have	shortened	the	description	of	the	currents	and	buffering	moving	equations	to	the	SM	
and	placed	it	just	below	the	method	description	of	the	general	structure	of	the	model.	We	
have	also	included	the	general	equilibrium	approach	in	the	method	section	as	suggested	by	
the	referees	and	we	start	now	the	results	with	the	validation	process.		

	
Furthermore,	this	does	mean	the	discussion	lacks	some	of	the	content	which	should	be	
present.	The	implications	for	future	research,	in	particular	in	context	of	the	explanation	of	the	
SERCA	gene	therapy	study	failure,	should	be	expanded	on.	Similarly,	the	limitations	should	be	
clearly	described.	There	is	one	limitation	which,	while	certainly	not	reducing	the	value	of	this	
study,	does	need	to	be	discussed:	The	clamped	AP;	I	completely	understand	why	this	was	
performed	and	that	the	approach	would	be	significantly	more	challenging	if	this	were	not	the	
case,	but	it	does	need	to	be	clearly	described	as	a	limitation.	In	particular,	changes	to	LCC	and	
NCX	will	directly	impact	the	AP,	and	changes	to	the	CaT	and	its	impact	on	LCC	and	NCX	will	also	
affect	the	AP;	these	AP	affects	may	then	result	in	further	changes	to	the	dynamics	and	affect	
the	homeostatic	equilibrium,	as	it	is	under	different	conditions.	This	non-linear	interaction	is	a	
key	component	of	long-term	cardiac	dynamics,	and	should	therefore	be	explicitly	discussed.	

We	completely	agree	with	the	referee	on	this	point	and	we	put	the	proper	emphasis	in	the	
discussion.	Since	we	have	been	doing	preliminary	tests	on	these	effects	we	can	address	how	
we	expect	the	interaction	of	APD	and	calcium	homeostasis	to	work.		We	now	state	in	the	
discussion:	

“In	this	paper,	we	have	considered	a	clamped	AP	because	the	APD	generally	adapts	to	changes	
in	currents	and	clamping	does	not	affect	this	main	insight.	If	we	were	to	take	the	proper	shape	
of	the	APD	for	a	given	frequency	as	our	clamped	AP	in	the	model,	the	nullclines	depicted	here	
would	not	be	affected.	However,	for	future	work,	it	would	be	interesting	to	study	the	interplay	
of	calcium	homeostasis	with	changes	in	the	AP	at	different	frequencies	in	order	to	address	



other	cardiac	properties	such	as	the	structure	of	force-frequency	relations	in	different	animal	
models.	Since	most	of	the	adaptation	of	the	AP	is	fast,	we	expect	it	to	be	generally	slaved	to	
the	dynamics	of	calcium,	at	least,	at	the	time	scale	of	seconds.	In	this	respect,	a	fulllinear	
stability	analysis	of	the	periodic	transient,	with	an	explicit	calculation	of	the	most	unstable	(or	
less	stable)	eigenvalues	and	eigenmodes	\cite{li2003ion,	veasy2019complex}	would	help	to	
validate	this	point.	However,	there	are	slower	times	scales,	associated	with	the	long	term	
accumulation	of	ions,	that	will	become	another	dynamical	variable,	increasing	the	complexity	
of	the	general	equilibrium	problem.	More	specifically,	one	should	expect	the	slow	change	of	
potassium	and	sodium	concentrations	to	affect	the	LCC	and	NCX	which	in	turn	will	affect	the	
nullclines	which	will	feedback	into	the	APD	and	back	again	into	the	ionic	balance.	The	general	
structure	of	our	approach	will	hold,	but	a	full	analysis	of	the	relevant	slow	variables	in	the	full	
model	will	be	needed.”	
	
Regarding	the	summary	figure.	I	am	happy	with	this	as	it	is,	but	do	feel	it	could	be	further	
improved	by	also	having	the	pathway	to	increased	transients	on	there.	I	do	understand	that	
this	is	more	trivial,	but	it	could	really	help	understand	the	differences	between	these	two	
opposing	outcomes	for	the	same	input	changes.	

We	take	to	heart	this	criticism.	We	have	reworked	figure	7	and	divided	it	in	two	parts,	showing	
better	how	a	change	in	SERCA	function	can	both	increase	or	decrease	the	calcium	transient	
depending	on	the	homeostatic	properties	and	nullclines	structure.	We	have	also	changed	the	
figure	caption	accordingly	to	clarify	further	the	figure.	

	
As	a	smaller	comment,	I	think	the	mechanism	of	CICR	should	be	introduced	much	earlier	than	
its	current	introduction	~	ln	124.	Some	arguments	in	the	intro	(such	as	the	explanation	of	
effect	on	SR	release)	would	be	better	supported	by	this	basic	mechanism	having	already	been	
described	

Point	taken.	We	have	now	expanded	the	brief	introduction	of	CICR	in	the	introduction	
	
Minor	text	suggestions:	
	

We	thank	the	referee	for	the	revision.	We	have	corrected	all	the	mistakes	and	typos	and	scaled	
back	the	“perfect	fit”	for	a	“very	good	fit”.			

	
1.	Please	rephrase	all	“anti-intuitive”	with	“counterintuitive”	(which	is	used	in	some	cases).	
2.	Ln	12:	maybe	increasing	the	heart	rate,	rather	than	rhythm,	would	be	clearer?	A	rhythm	is	
regarding	regularity	rather	than	rate.	
3.	Ln	22:	“Species	dependence	is	not	limited	to	the	release	of	calcium:	its	reuptake	into	the	SR	
…”	may	be	a	better	way	of	phrasing	this	sentence.	
4.	Ln	33:	dysregulations	->	dysregulation.	
5.	Ln	37:	“strategies	as	gene	therapy”	->	“strategies	such	as	gene	therapy”.	This	minor	error	is	
repeated	a	few	times:	I	have	noted	the	ones	I	have	noticed	but	please	keep	a	look	out	for	
further	examples.	
6.	Ln	64	“seem	clear”	->	“seems	clear”	



7.	Ln	79.	The	“is	not	a	cube”	statement	is	a	little	confusing,	especially	given	that	what	follows	
does	not	describe	what	it	actually	is	if	not	a	cube?	
8.	Ln	91:	“is	sensible	to	the	calcium	gradient”	should	be	“sensitive”.	This	error	is	also	made	a	
few	times	within	the	MS,	and	please	do	not	assume	I	have	noticed	every	instance.	
9.	Ln	258:	typo	in	equilibrium	(no	“b”!)	
10.	Ln	263:	CaRU	has	already	been	defined?	
11.	Ln	276:	“Being	this	the	case”	->	“This	being	the	case”	
12.	Ln	334:	Please	scale	back	a	little	on	the	description	of	the	fit	as	being	“perfect”	
13.	ln	337:	Sensible	->	sensitive	error	
14.	Ln	362:	“such	as	macroeconomics”	
15.	Ln	472	“behaviour	such	as	discordant”	
16.	Ln	499:	“clearly	and	in-silico	failure”	needs	revising.	
	

	

	

	

	

	

	

	

	

	 	



Reviewer	#3:	Conesa	et	al	have	investigated	calcium	homeostasis	in	ventricular	myocytes	using	
a	computational	model	and	mathematical	analysis.	In	general,	the	article	was	interesting,	and	I	
liked	that	they	used	economic	models/approaches.	
	
We	thank	the	referee	for	the	positive	response	and	try	to	address	below	all	the	questions	and	
comments.	Basically	we	have	restructured	the	paper	clarifying	the	model	with	further	
references	as	requested.	We	have	also	clarified	the	notation	and,	more	importantly,	add	a	new	
paragraph	to	address	the	crucial	first	point	and	a	new	figure	7	plus	a	paragraph	in	order	to	
clarify	the	final	figure,	as	requested	also	by	other	referees.		We	have	also	addressed	all	the	
typos	in	text	and	figures.	
	
I	have	the	following	questions	
	
•	Equations	for	JLCC	and	JNCX	do	not	contain	csr.	Page	10,	equation	25	(and	Figure	4),	why	is	it	
dependent	on	csr?	

This	is	one	of	the	key	insights	of	the	paper	that	was	clearly	not	properly	explained	in	he	
manuscript.	We	have	added	the	following	paragraph.	

”It	is	rather	intuitive	that	release	and	uptake	depend	on	cytosolic	and	SR	calcium	concentration	
at	the	beginning	of	one	beat.	Less	intuitive	is	that	intake	and	extrusion	also	depends	on	csr	
despite	the	fact	that	the	L-type	Calcium	current	and	exchanger	expressions	do	not	depend	
instantaneously	on	it.	The	reason	of	this	strong	dependence	on	the	SR	calcium	concentration	at	
the	beginning	of	the	beat	is	because	a	larger	or	smaller	initial	calcium	SR	load	leads	to	larger	or	
smaller	cytosolic	calcium	transients	during	the	beat.	A	different	calcium	transient	results,	in	
general,	in	a	different	inactivation	in	the	LCC	and	NCX	extrusion	during	that	beat.”	

		
•	Page	7,	“We	use	the	expression	given	in	[26]	for	the	properties	of	LCC	in	rabbit.”	However,	
the	model	in	[26]	has	7	states.	Please	provide	more	details	on	your	5-state	model.	Is	the	model	
validated	based	on	experimental	data?	
•	Similarly,	the	RyR	model	has	only	one	open	state	whereas	the	RyR	model	in	[26]	has	two	
open	states.	

We	clarify	now	that	we	do	not	use	the	states	inactivated	by	Barium	in	the	original	model	
published	in	[26]	so	that	we	reduce	it	to	5	states.	We	also	use	the	standard	RyR	model	
developed	by	Stern	for	the	RyR	(Stern	et	al,	J	General	Physiol,	1999)	where	there	is	one	open	
state	and	we	take	into	account	the	possibility	of	RyR	termination/inactivation	and	includes	the	
termination	and	the	junctional	SR	dependence	on	RyR	opening	and	inactivation	described	in	
Cantalapiedra	et	al,	Chaos,	2017.	

	
•	Typical	Ca_SR	is	700	~1000uM.	In	this	study,	Ca_SR	is	too	low	(<100	uM).	It	should	be	at	least	
>500uM.	

We	use	µmol	per	liter	of	cytosol	in	our	graphs	and	analysis	as	used,	for	example,	by	Shannon,	
Ginsburg,	and	Bers,	Biophys	J,	2000.	Given	that	the	total	volume	of	the	SR	is	12.5	times	smaller	



than	the	cytosol	in	our	model,	a	concentration	of	free	calcium	in	the	SR	at	40	µmol/Lcyt	is	
roughly	500	µM	at	the	SR	level.	In	terms	of	total	calcium	in	the	SR	(free	and	bound	to	buffers),	
this	gives	a	value	of	~100	µmol/Lcyt,	that	is	the	value	obtained	in	Shannon	et	al.	We	consider	
this	level	to	be	the	standard	one	for	rabbit.		A	level	of	20	µM/Lcyt	is	highly	depleted	SR	and	a	
value	of	60	µM/Lcyt	is	a	highly	loaded	SR.	We	clarify	this	point	now	in	the	caption	of	Figure	4.	

	
•	The	organization	of	the	paper	could	be	changed	to	put	the	sections	in	a	better	order.	For	
example,	some	materials	from	the	“Discussion”	section	can	be	moved	to	the	“Result”	section.	
The	“Method”	section	can	be	simplified.	

We	agree	with	the	referee	here	and	have	reordered	the	manuscript	in	order	to	address	the	
different	points	raised	by	the	referees.	In	order	to	accommodate	all	criticisms	in	a	way	that	we	
think	it	is	better	we	have	moved	part	of	the	method	section	(the	sections	about	buffering	and	
currents	in	the	model)	to	the	SM	and	moved	the	first	part	of	the	results	to	the	methods	
sections	since	it	can	be	understood	as	the	development	of	the	new	methods.	In	the	new	
version,	both	the	validation	and	the	discussion	has	been	moved	to	the	results	section.		
Discussion	can	now	fully	addressed	a	detailed	explanation	of	figure	7	as	requested	below.	

	
•	Page	2,	line	12,	it	stated	“In	most	animal	species…”	I	wonder	if	there	is	any	animal/mammal	
that	the	amount	of	blood	pumped	at	each	beat	doesn't	increase	with	beat	rate?	

There	are	some	species,	like	mouse	and	rat,	where	the	relation	between	contractile	force	and	
beat	rate	has	been	observed	to	be	negative	(see	Antoons	et	al,	The	Journal	of	physiology,	
2002;	Georgakopoulos	and	Kass.	The	Journal	of	Physiology,	2001),	and,	certainly,	some	
isolated	cells	present	also	even	inverse	relations	(Ashley	et	al,	Am	J	Physiol.	1999;	Gattoni	et	al,	
J	Physiol	594,	2016).	This	most	probably	will	translate	to	a	decreased	amount	of	blood	pumped	
per	beat.	However,	since	it	is	true	that	this	relation	is	not	direct	(since	cardiac	output	depends	
also	on	preload,	afterload	and	contractile	state	of	the	heart),	we	have	rewritten	the	statement	
to	say	that	most	animal	species	present	important	increases	in	blood	pumped	at	each	beat.	

	
•	Page	2,	line	47,	there	is	a	typo	“calcium”	•	Page	4,	line	86,	is	“attached-to-buffers”	same	as	
“bound”?	If	yes,	it	would	be	good	to	be	consistent	and	not	to	use	different	terms	for	the	same	
thing.		

Corrected.	

Page	5,	from	line	134	to	152,	could	they	cite	one	or	two	articles?		

We	have	added	two	articles	which	are	the	origin	of	the	fast	buffering	approximation	(Wagner	
&	Keizer,	1994;	Smith,	Wagner	&	Keizer,	1996).	Besides,	we	have	clarified	the	sentence	"The	
reason	is	that	free	calcium	concentrations...."	in	the	manuscript.	We	now	clearly	state	that	"	
The	reason	is	that	end-diastolic	free	calcium	concentrations	can	be	related	to	total	calcium	
concentrations	assuming	the	equilibrium	concentration	of	calcium	bound	to	buffers.	So,	despite	
the	fact	that	in	the	mathematical	model	we	only	use	the	fast	buffering	approximation	for	



calsequestrin,	the	other	buffers	equilibrate	so	fast	that	they	attain	the	equilibrium	values	by	the	
end	of	each	period."			

Page	9,	equation	22,	does	inside	the	parenthesis	(phi_i)	refer	to	the	variables	of	the	ith	CRU?	

We	indicated	in	the	text	that	φi	refer	to	the	thousand	of	internal	variables	of	the	cell.	The	i	
index	was	not	thought	to	be	particular	related	with	ith	CRU.	However,	in	the	structure	of	the	
model	the	total	number	of	variables	is	the	sum	of	the	variables	for	each	CRU.	Strictly	one	
should	refer	to	all	internal	variables	in	the	cell	as	φji	where	j	stands	for	a	variable	in	the	ith	CRU.	
We	use	the	new	nomenclature	in	the	new	version	of	the	manuscript.	

	
•	Figure	1,	panel	2,	it	would	be	good	to	depict	the	subsarcolemmal	space	inside	the	cell	too.	
Figure	1,	panel	3,	x-axis	values	are	missing.		Figure	2,	all	the	panels	don’t	have	x-axis	values.	

We	have	corrected	the	figures	adding	the	subsarcolemmals	and	nSR	space	and	the	x-axis	
values		

•	Figure	3,	lower	panel,	in	the	3D	figure,	what	is	“fmol”?			Figure	5,	on	3D	plots,	what	is	“fmol”?		

We	have	clarified	that	fmol	is	femtomol,	that	is	10-15	mol	in	figure	caption	of	Figure	3	

Figure	4,	right	panel,	it	would	good	to	label	the	curves	as	the	f-	and	g-nullclines	(similar	to	Fig	
S1)			

We	agree	it	is	a	good	idea	to	insist	on	both	the	name	and	the	equality	behind	in	the	figure,	so	
we	have	added	the	name	of	the	nullcline	too.	

Figure	5,	for	3D	plots,	could	they	zoom	in?	it	is	hard	to	see	what	is	going	on	there.		

We	have	changed	the	distribution	of	the	different	panels	so	the	3D	plots	are	clearer	and	larger.	

Figure	6,	for	x-axis,	could	they	use	the	notations	similar	to	their	Supplemental	Material’s	
figures	(Fig	S2	and	S3)?	In	general,	I	found	the	Supplemental	Material	much	easier	to	follow.	

We	have	changed	the	figure	as	suggested.	

Figure	7,	there	is	a	typo	in	the	“SERCA	Therapy”	box.		It	is	not	easy	to	follow	figure	7.	

We	take	to	heart	this	criticism.	We	have	reworked	figure	7	and	divided	it	in	two	parts,	showing	
better	how	a	change	in	SERCA	function	can	both	increase	or	decrease	the	calcium	transient	
depending	on	the	homeostatic	properties	and	nullclines	structure.	We	have	also	changed	the	
figure	caption	accordingly	to	clarify	further	the	figure.	

	


