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Supplementary Figure 1: Fabrication process of NO sensors

Poly(eugenol)
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Supplementary Figure 2: Current response of Au electrodes fabricated with different substrate
templates in phosphate buffered saline (PBS) at 37 °C. Black line: smooth glass template; red line:
1000 mesh glass template; blue line: 2000 mesh glass template. n = 3 independent experiments.
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Supplementary Figure 3: Surface morphology of Au electrodes. (a) Optical image (50X). (b) Optical
image (600X). (c) SEM image (1000X).
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Supplementary Figure 4: Preparation and characterization of selective poly(eugenol) membrane of
the NO sensor. (a) Electropolymerization curves with 5 mM eugenol solution. (b) Electropolymerization
curves with 10 mM eugenol solution. (c) Electropolymerization curves with 15 mM eugenol solution. (d)
The first cyclic voltammetry cycle of eugenol electropolymerization (5, 10, 15 mM). (e) Selectivity of
NO sensors performed at 37 °C with different thickness of poly(eugenol) layers (electropolymerization
with 5, 10, 15mM eugenol solutions). (f) Quantitative analysis of the selectivity with different thickness
of poly(eugenol) layers (electropolymerization with 5, 10, 15mM eugenol solutions). In a–f, n =3
independent experiments. In f, data are shown as means ± standard deviations.
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Supplementary Figure 5: FTIR curves of the Au electrodes of NO sensors before and 
after eugenol electropolymerization. n =3 independent experiments. 
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Supplementary Figure 6: Height profile of the working electrode of a NO sensor. n = 3 independent 
experiments.

Au film ≈ 32 nm

poly(eugenol) film ≈ 16 nm
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Supplementary Figure 7: Resistance of biodegradable paste made of Mo particles and PLLA-PTMC.
(a) Resistance of the biodegradable paste with different Mo particle sizes and concentrations. (b)
Resistance of biodegradable paste mixing different concentrations of 100 nm Mo and 500 nm Mo. n = 3
independent experiments.
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Supplementary Figure 8: (a) Resistance of Au electrodes of tensile tests with the strain of 20% and
50% for 1000 cycles. (b) Resistance and length of Au electrodes of bend tests at angels up to 90
degree for 1000 cycles. (c) Resistance of Au electrodes as a function of strain upon stretching. (d)
Response current to NO with Au electrodes of different resistance. In a and b, n = 3 independent
experiments.
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Supplementary Figure 9: Degradation process of a NO sensor at various stages in PBS at 65 oC for
15 weeks.
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Supplementary Figure 10: Optical images of human aortic vascular smooth muscle cells (HA-VSMCs)
proliferation of the sensor group (cells co-incubated on the NO sensor) and the control group. n = 3
independent experiments.
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Supplementary Figure 11: Florescent images of HA-VSMCs proliferation of the sensor group (cells
co-incubated on the NO sensor) and the control group on the 5th day. Propidium Iodide (PI) staining
(red) for dead cells and Calcein-AM staining (green) for living cells. n = 3 independent experiments.
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Supplementary Figure 12: (a) Selectivity measurement in PBS: current response with the additions of 
L-arginine (L-Arg) (5 mM) and Nω-nitro-L-arginine methyl ester (L-NAME) (10 mM) and NO solutions 
(0.1 mM). (b) Calibration curve of Griess test.

y = 94.31x-2.57
R2 = 0.998
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Supplementary Figure 13: Surgical operation process of NO sensor implantation. 
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Supplementary Figure 14: Schematic diagram of wireless control and transmission system for the 
NO sensor.
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Supplementary Figure 15: Images of system architecture for NO sensor. (a) 1-Battery management
system (BMS); 2-Digital to Analog Converter (DAC); 3-Amplifier (AMP). (b) 1-Analog to Digital
Converter (ADC), General Purpose Input/Output (GPIO), Serial Peripheral Interface (SPI); 2-Antenna;
3-Test pin.

3

2

1

1

2

3

（a） （b）

5 mm

1

2

3

16



0 1200 2400 3600
0

25

50

75

100

C
u

rr
e

n
t 

(n
A

)

Time (s)

0 1200 2400 3600
0

25

50

75

100

C
u

rr
e

n
t 

(n
A

)

Time (s)

0 1200 2400 3600
0

25

50

75

100

C
u

rr
e

n
t 
(n

A
)

Time (s)

(a) (b)

1 day

2 days
3 days

4 days
5 days

Control group Penicillin group

(c)

Supplementary Figure 16: Real-time monitoring of the current response to NO in the joint cavity of a
New Zealand Rabbit. Data are recorded for one hour everyday for a 5-day period. (a) Control group
(sensor implantation without treatment). (b) Penicillin group (antibiotic treatment after sensor
implantation). (c) Interleukin-1 beta (IL-1b) group (promoting inflammation after sensor implantation).
In a-c, n = 3 independent experiments.
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Supplementary Figure 17: Anatomical images of the surrounding tissue at the implantation site of the
NO sensor after 8 weeks. n = 3 independent experiments.
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Supplementary Figure 18: Hematoxylin-eosin (HE) staining images of tissues surrounding the
implantation site of the NO sensor. Sensor group: with NO sensor implantation. Control group: without
implantation. n = 3 independent experiments.
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Supplementary Figure 19: ICP-MS results showing Mo and Au concentrations of the tissues at the
implantation site and various organs of the New Zealand Rabbit after 8 weeks of implantation. Sensor
group (green): with NO sensor implantation. Control group (red): without implantation. (a) Mo
concentration; (b) Au concentration. n = 3 independent experiments. Data are shown as means ±
standard deviations.

(a) (b)
Control group

Sensor group

Control group

Sensor group

20



Supplementary Table 1: Comparison of the performance of amperometric NO sensors from the 
previously reported work and the current work.

Sensor type
Working 
potential 

(V)

Sensitivity 
（nA/μM）

Linear 
dynamic 

range (μM)

Detection 
limit
(nM)

Response 
time
(s)

Applications
Flexibility and 
Degradability

In vivo 
test

Ref

Carbon fiber/
Nafion/o-PD

0.74 vs. 
SCE

9.60 0.02-0.2 36 - NO solution No No 1

Au fiber/
Nafion

0.68 vs. 
SCE

0.8 10-100 - - NO solution No No 2

AuNPs/GO
0.8 vs. 
SCE

27.5 0.036-70 18 -
Fish liver 

homogenate 
No No 3

AuNPs/
3D GH

0.81 vs. 
Ag/AgCl

45.27 0.2-6 9 2.92
JB6-C30 cells
B16-F10 cells

No No 4

PEBT
0.8 vs. 

Ag/AgCl
356.4 0.1-99 36 3

Rat heart 
homogenate

No No 5

Pt/ fluorinated 
xerogel

0.85 vs. 
Ag/AgCl

0.106 ±
0.028

0-3.13 9.55 3.7 ±0.7
Rat cortical deep-

layer
No Yes 6

Hemin/Carbon 
nanotubes/Chitosa

n

-0.76 vs. 
Ag/AgCl

1.72 0.25-1 25 - Rat brain No Yes 7

FGPC/AuNPs 0.78 vs. 
Ag/AgCl

357 0.005-0.2 3.2
HUVECs

Rat acupoints
No No 8

WPI
ISO-NOP

2 - 1 ＜5 Cell culture No No 9

Rough Au film/
Poly(eugenol)

~ 0.8 vs. 
Au

5.29 
(0.01-5μM)

4.17
(5-100μM)

0.01-100 3.97 ＜0.35

Rat chondrocyte;
Rat and rabbit 

kidney, liver, heart
and brain; Rat heart 

and joint cavity

Yes Yes
This 
work
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