

2 **FIG S1** 16S rRNA (*rrsD*) expression increases under the nutrient limitation stress

- 3 conditions used in this paper. *E. coli* MG1655 wild-type and isogenic $\Delta dksA1000::cat^+$,
- 4 and $\Delta dksA1000::cat^+ \Delta greA788::kan^+$ strains were grown at 37°C to A₆₀₀=0.2–0.4 in rich
- 5 medium (LB) and then shifted to minimal medium (MOPS with no amino acids, 4 g l⁻¹
- 6 glucose, 0.1 mM K₂HPO₄, 0.1 mM uracil) for 2 hours. qRT-PCR was used to measure
- 7 fold changes in transcript abundance, relative to the wild-type at t = 0 h, at the indicated
- 8 timepoints ($n=3, \pm SD$).

- 10 FIG S2 Heatmap of RNA sequencing data. E. coli strains MG1655, MJG1419
- 11 ($\Delta dksA1000::cat^+$), and MJG1561 ($\Delta dksA1000::cat^+ \Delta greA788::cat^+$) were grown at
- 12 37°C to A₆₀₀=0.2–0.4 in rich medium (LB)(black circles) and then shifted to minimal
- 13 medium (MOPS with no amino acids, 4 g l⁻¹ glucose, 0.1 mM K₂HPO₄) for 5 minutes (n
- 14 = 1). Heatmap was generated by hierarchical clustering of normalized gene expression
- 15 values (from Supplemental Dataset S1) with Morpheus

9

16 (https://software.broadinstitute.org/morpheus), using the default parameters.

FIG S3 Select *E. coli* operons and pathways regulated by nutrient limitation, *dksA*, and *greA*. (1) (*A*) Operons for flagellar regulation and biosynthesis. (*B*) Operons for glycerol dissimilation and regulation thereof. (*C*) The *E. coli* pathway for glycerol uptake and dissimilation. Dashed lines indicate an alternative pathway active in the absence of GlpK activity. (*D*) The *gadE* operon, which includes the multidrug efflux pump-encoding *mdtEF* genes.

- 24 rpoB3449 rpoB3443
- FIG S4 Stringent mutations of RNA polymerase lead to enhanced motility. E. coli
- 26 MG1655 wild-type and isogenic *rpoB3449* and *rpoB3443* strains were inoculated into
- LB containing 0.25% agar and incubated at 37°C (representative of 3 independent
- 28 experiments).

29

30 FIG S5 An *rsd* null mutation does not affect polyP synthesis. *E. coli* MG1655 wild-type

- 31 and isogenic Δrsd -766:: kan^+ strains were grown at 37°C to A₆₀₀=0.2–0.4 in rich medium
- 32 (LB)(black circles) and then shifted to minimal medium (MOPS with no amino acids, 4 g
- 33 I^{-1} glucose, 0.1 mM K₂HPO₄) for 2 hours (white circles)(n=3, ± SD). PolyP
- 34 concentrations are in terms of individual phosphate monomers. No significant difference
- 35 was found between polyP levels in the mutant and wild-type strains (two-way repeated
- 36 measures ANOVA with Holm-Sidak's multiple comparisons test).

37	DATA	SET S1 Results of RNA sequencing of wild-type, dksA, and dksA greA mutants
38	before and after nutrient limitation stress. E. coli strains MG1655, MJG1419	
39	($\Delta dksA1000::cat^+$), and MJG1561 ($\Delta dksA1000::cat^+ \Delta greA788::cat^+$) were grown at	
40	37° C to A_{600} =0.2–0.4 in rich medium (LB)(black circles) and then shifted to minimal	
41	medium (MOPS with no amino acids, 4 g l ⁻¹ glucose, 0.1 mM K_2HPO_4) for 5 minutes (n	
42	= 1). Gene expression values (RPKM normalized to the upper quartile of gene	
43	expression) were determined using Rockhopper 2 (2), with the default parameters.	
44		
45	REFERENCES	
46	1.	Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martinez C,
47		Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse
48		M, Muniz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velazquez-
49		Ramirez DA, Weaver D, Collado-Vides J, Paulsen I, Karp PD. 2017. The EcoCyc
50		database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids
51		Res 45:D543-D550.
52	2.	Tjaden B. 2015. De novo assembly of bacterial transcriptomes from RNA-seq
53		data. Genome Biol 16:1.