Supporting Information

CONTENTS

Table S1. List of variables used in Supplementary Data S1.

Table S2. List of variables used in Supplementary Data S2.

Fig. S1. Map showing locations of studies (N = 211) used in meta-analysis.

Fig. S2. Map showing number of samples positive/number of samples tested for (A) *Campylobacter* spp., (B) pathogenic *E. coli*, and (C) *Salmonella* spp. by study location.

Table S3. List of variables used in Supplementary Data S3.

Table S4. Studies reporting data on pathogen prevalence by sex (male, female).

Table S5. Studies reporting data on pathogen prevalence by age (juvenile, nestling, adult).

Table S6. Summary of studies reporting coinfection data.

Fig. S3. Forest plot showing the results of six studies examining the difference in *Salmonella* spp. prevalence in female *versus* male birds.

Fig. S4. Forest plot showing the results of 10 estimates from seven studies examining the difference in *Campylobacter* spp. prevalence in juvenile *versus* adult birds from four orders.

Fig. S5. Forest plot showing the results of two estimates from two studies examining the difference in pathogenic *E. coli* prevalence in juvenile *versus* adult birds.

Fig. S6. Forest plot showing the results of 13 estimates from 12 studies examining the difference in *Salmonella* spp. prevalence in juvenile *versus* adult birds.

Table S7. Studies reporting data on pathogen prevalence versus condition metrics.

Table S8. Bacterial concentration shed in wild bird faeces and duration of shedding for naturally occurring faeces (surveys) and inoculation experiments.

Table S9. Seasonal variation in bacterial prevalence and shedding.

Table S10. Studies seeking to demonstrate crossover of bacteria between wild birds and humans and/or livestock, including molecular technique used (comparison method), extent of coverage/comparison group, the number of isolates or strains from wild birds that matched human/livestock isolates/strain types, number of birds tested or number of bird isolates, and wild bird species tested.

Fig S7. Estimated prevalence of (A) *Campylobacter* spp., (B) pathogenic *E. coli*, and (C) *Salmonella* spp. for all species with enough observations to estimate prevalence with 5% precision.

Fig. S8. Estimated prevalence of *Campylobacter* spp., pathogenic *E. coli*, and *Salmonella* spp. by taxonomic order.

Table S11. Prevalence of *Campylobacter* spp. by taxonomic order.

Table S12. Tukey HSD pairwise comparisons of *Campylobacter* spp. prevalence in avian taxonomic orders.

Table S13. Prevalence of pathogenic (path)*E. coli* by taxonomic order. Total number of individuals reported positive and tested for pathogenic *E. coli* across the literature and prevalence (total positive across the literature/total number tested, "Path *E. coli* prevalence") by taxonomic order.

Table S14. Tukey HSD pairwise comparisons of pathogenic *E. coli* prevalence in avian taxonomic orders.

Table S15. Prevalence of *Salmonella* spp. by taxonomic order. Total number of individuals reported positive and tested for *Salmonella* spp. across the literature and prevalence (total positive across the literature/total number tested, "*Salmonella* prevalence") by taxonomic order.

Table S16. Tukey HSD pairwise comparisons of *Salmonella* spp. prevalence in avian taxonomic orders.

Table S17. Chi-square test for bias in testing within bird orders for *Campylobacter* spp., *E. coli*, and *Salmonella* spp. for a vulnerable farming population.

Table S18. Chi-square test for bias in testing within bird orders for *Campylobacter* spp., *E. coli*, and *Salmonella* spp. for a vulnerable farming population.

Table S19. Number and percentage of farm bird species and number of combined sightings of species and percentage of total sightings for species with enough data to calculate prevalence for three, two, or one pathogen, those with some data and those with no data.

Fig. S9. Scatterplot showing the percentage of pathogen observations belonging to each taxonomic order observed on farms by Smith *et al.* (2019).

Fig. S10. Scatterplot showing the percentage of pathogen observations belonging to each taxonomic order *versus* their relative abundances observed on farms by Smith *et al.* (2019).

Fig. S11. Scatterplot showing the percentage of pathogen observations belonging to each taxonomic order listed in the North American Breeding Bird Survey species list.

Table S20. Chi-square test for bias in testing within bird order for *Campylobacter* spp., *E. coli*, and *Salmonella* spp. in North American breeding birds by percentage of species within each order.

Table S21. Chi-square test for bias in testing within bird order for *Campylobacter* spp., *E. coli*, and *Salmonella* spp. in North American breeding birds by relative abundance reported in eBird.

Table S22. Number and percentage of North American breeding bird species and number of combined eBird sightings of species and percentage of total sightings with enough data to calculate prevalence for three, two, or one pathogen, those with some data and those with no data.

Table S23. Comparison of estimated prevalence by substance tested for house sparrow.

Table S24. Comparison of estimated prevalence by substance tested for European starling.

Table S25. Comparison of estimated prevalence by substance tested for rock pigeon.

Fig. S12. Percentage of total (A) diet guild and (B) foraging strata comprised by each taxonomic order denoted by colour.

Table S26. Prevalence of *Campylobacter* spp. by diet guild in wild birds.

Table S27. Tukey HSD pairwise comparisons examining *Campylobacter* spp. prevalence by diet guild.

Table S28. Prevalence of *Campylobacter* spp. by foraging strata in wild birds.

Table S29. Tukey HSD pairwise comparisons examining *Campylobacter* spp. prevalence by foraging strata.

Table S30. Prevalence of pathogenic *E. coli* by diet guild in wild birds.

Table S31. Tukey HSD pairwise comparisons examining pathogenic *E. coli* prevalence by diet guild.

Table S32. Prevalence of pathogenic *E. coli* by foraging strata in wild birds.

Table S33. Tukey HSD pairwise comparisons examining pathogenic *E. coli* prevalence by foraging strata.

Table S34. Prevalence of *Salmonella* spp. by diet guild in wild birds.

Table S35. Tukey HSD pairwise comparisons examining *Salmonella* spp. prevalence by diet guild.

Table S36. Prevalence of Salmonella spp. by foraging strata in wild birds.

Table S37. Tukey HSD pairwise comparisons examining *Salmonella* spp. prevalence by foraging strata.

Category	Class	Number of studies	Definition
Reference		211	Publication identifier
Pathogen(s)			Pathogens for which the study reported data; must be <i>Campylobacter</i> spp., <i>E. coli</i> , and/or <i>Salmonella</i> spp. Other pathogens not included in meta-analysis
Campylobacter	0 – study did not report data on <i>Campylobacter</i> spp. 1 – study reported data on <i>Campylobacter</i> spp.	61	If study reported data on <i>Campylobacter</i> spp.
E. coli	0 – study did not report data on <i>E.</i> <i>coli</i> 1 – study reported data on <i>E. coli</i>	80	If study reported data on <i>E. coli</i> ; generic or pathogenic
Salmonella	0 – study did not report data on <i>Salmonella</i> spp. 1 – study reported data on <i>Salmonella</i> spp.	134	If study reported data on Salmonella spp.
REJECTED?			Indicates if paper did not meet criteria 7–9; any papers not meeting criteria 1–6 for inclusion were excluded from the meta-data in Supplementary Data 1. (1) paper reported if one or more of the 431 North American breeding birds was/were tested for <i>Campylobacter</i> spp., <i>Escherichia coli</i> , and/or <i>Salmonella</i> spp.; (2) study presented primary data that were not duplicated from other studies included in the meta-analysis; (3) study identified bird species that provided sample (e.g. <i>Larus</i> spp. was not sufficient but <i>Larus argentatus</i> was); (4) study reported natural infections, i.e. no experimental infection data; (5) paper was in English, Spanish, or French or had all data extractable from English language abstract; and (6) birds had not been in captivity for more than 24 h at the start of the study (no farm, long-term rehabilitation centre, or laboratory animals). Data were further considered unsuitable for generating pathogen prevalence estimates but suitable for reporting presence/absence of bacteria if they: (7) reported only generic <i>E. coli</i> ; (8) did not report number of individuals tested or positive (including only reporting number of isolates); or (9) only reported data on birds collected after death (excluding hunted birds which we assumed to be a random sample of wild bird populations) or

Table S1. List of variables used in Supplementary Data S1.

Source			Where paper was found; <i>Web of Science</i> search or within another publication
Substance tested			Written description of substances tested; N/A, not available
Blood	0 – substance not tested 1 – substance tested	15	Blood was tested for one or more bacteria included in the meta-analysis
Body surface	0 – substance not tested 1 – substance tested	3	The body surface (feathers, feet, etc.) was tested for one or more bacteria included in the meta-analysis
Intestines	0 – substance not tested 1 – substance tested	38	Whole intestines or extruded intestinal contents were tested for one or more bacteria included in the meta- analysis
Choana	0 – substance not tested 1 – substance tested	2	The choana was tested for one or more bacteria included in the meta-analysis
Cloacal swab	0 – substance not tested 1 – substance tested	81	Swab was inserted into cloaca and tested for one or more bacteria included in the meta-analysis
Faeces	0 – substance not tested 1 – substance tested	83	Faeces were tested for one or more bacteria included in the meta-analysis; excludes faecal matter recovered by squeezing a dissected intestine
Egg	0 – substance not tested 1 – substance tested	1	Egg surfaces or insides were tested for one or more bacteria included in the meta-analysis
Tissues	0 – substance not tested 1 – substance tested	44	Tissues (liver, pancreas, spleen, heart, etc.) were tested for one or more bacteria included in the meta-analysis
Pharynx	0 – substance not tested 1 – substance tested	8	Pharynx, larynx, or other throat area was tested for one or more bacteria included in the meta-analysis
Other	0 – substance not tested 1 – substance tested	5	Substance other than those listed above (e.g. bile, crop, lymph nodes, and nests) was tested for one or more bacteria included in the meta-analysis
N/A	0 – substance tested included 1 – substance tested not included	3	Not enough information to determine what substance was tested
Condition			Written description of bird condition upon testing; N/A, not available
Environmental	0 – birds not tested in condition	35	Faeces on ground upon collection; to be included in meta-analysis, researchers had to identify defecating species

	1 – birds tested		
	in condition		
Hunted	0 - birds not	32	Hunters or researchers shot birds which were
Tuntou	tested in	52	subsequently tested for bacteria
	condition		
	1 - birds tested		
	in condition		
Live	0 – birds not	130	Live, healthy birds, captured using trapping or mist-
	tested in		netting
	condition		
	1 – birds tested		
	in condition		
Necropsy	0 – birds not	33	Birds found dead and submitted for necropsy
	tested in		
	condition		
	1 – birds tested		
	in condition		
Sick	0 – birds not	10	Bird showing signs of illness upon capture; birds
	tested in		admitted to rehabilitation centre for less than 24 h
	condition		
	1 – birds tested		
	in condition		
N/A	0 - bird	4	Not enough information to determine condition of bird
	condition tested		upon testing
	was listed		
	1 - bird		
	condition tested		
	was not listed		
Test method			Written description of how individual birds were
			determined as positive or negative for individual
A 1 .1 .1	0 1 1 1	10	bacteria included in meta-analysis
Agglutination	0 - study did not	40	Bacterial identification confirmed using agglutination
	use method on		
	1+ bacteria		
	1 - study used method on $1+$		
Culture	bacteria 0 – study did not	190	Bacteria cultured
Culture	0 – study did not use method on	190	Daciena cultureu
	1+ bacteria		
	1 + bacteria 1 - study used		
	method on 1+		
	bacteria		
PCR	0 - study did not	67	Bacterial identification confirmed using polymerase
1.011	use method on		chain reaction (PCR) or bacterial presence/absence
	1+ bacteria		determined using PCR in rare cases
	1 - study used		containing a strain full cubes
	method on 1+		
	bacteria		
PFGE	0 - study did not	22	Pulsed field gel electrophoresis (PGFE) used to
	use method on		compare isolates
	1+ bacteria		T. T
	1 - study used		
	method on 1+		
	bacteria		
	Cueteriu	L	

Diochamical	0 attack at a st	111	Dischamical confirmation word to determine has to it
Biochemical confirmation	0 – study did not use method on 1+ bacteria 1 – study used method on 1+	111	Biochemical confirmation used to determine bacterial identification following culture
	bacteria		
Sequencing	0 – study did not use method on 1+ bacteria 1 – study used method on 1+ bacteria	11	Some form of sequencing used to confirm bacterial identification or compare isolates; Multi-locus sequence typing (MLST), High Throughput Multi Locus Sequence Typing (HiMLST), Sanger sequencing, etc.
16S	0 – study did not use method on 1+ bacteria 1 – study used method on 1+ bacteria	10	16S gene used for bacterial identification
Serotyping	0 – study did not use method on 1+ bacteria 1 – study used method on 1+ bacteria	64	Bacterium sent for serotyping to confirm serovar
Necropsy	0 – study did not use method on 1+ bacteria 1 – study used method on 1+ bacteria	25	Morbid birds visually examined and dissected for signs of disease
ELISA	0 – study did not use method on 1+ bacteria 1 – study used method on 1+ b4acteria	7	Enzyme-linked immunosorbent assay (ELISA) used to test for antibodies to bacteria
Other	0 – study did not use method on 1+ bacteria 1 – study used method on 1+ bacteria	8	Other method used: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Vero cell cytotoxity assay, random amplified polymorphic DNA
N/A	0 – study listed method used 1 – study did not list method used	4	Not enough information to determine how study determined bacterial presence/absence
Setting			Written description of habitat type in which study was conducted; N/A, not available
Agriculture	0 – study did not test individuals from habitat type 1 – study tested individuals from habitat type	21	Non-livestock agriculture such as row cropping and orchards

Contivity	0 study did not	2	Birds at rehabilitation contra tested upon admission
Captivity	0 – study did not test individuals	۷ ک	Birds at rehabilitation centre tested upon admission
	from habitat type		
	1 - study tested		
	individuals from		
	habitat type		
Livestock	0 - study did not	32	Livestock farm such as a concentrated animal feeding
	test individuals		operation (CAFO) or chicken house
	from habitat type		
	1 – study tested		
	individuals from		
	habitat type		
Natural	0 – study did not	36	Native habitat such as forest, wetland, grassland, etc.;
	test individuals		does not include urban parks or beaches with
	from habitat type		surrounding native habitat
	1 – study tested		
	individuals from		
	habitat type		
Urban	0 – study did not	77	Urban, suburban, or residential areas; includes urban
	test individuals		parks
	from habitat type		
	1 – study tested		
	individuals from		
	habitat type		
Open water	0 – study did not	39	Open or fast-moving water bodies such as large lakes,
	test individuals		oceans, estuaries, bays, beaches, and rivers
	from habitat type		
	1 – study tested		
	individuals from		
	habitat type		
Closed water	0 - study did not	17	Closed water bodies such as urban ponds and small
	test individuals		lakes
	from habitat type		
	1 – study tested individuals from		
Refuse	habitat type	14	T
Keruse	0 – study did not	14	Landfill site with human garbage
	test individuals		
	from habitat type		
	1 – study tested individuals from		
Sowago	habitat type 0 – study did not	4	Waste water from humans or livestock
Sewage	test individuals	4	waste water from numans of fivestock
	from habitat type		
	1 - study tested		
	individuals from		
	habitat type		
Zoo	0 - study did not	4	Wild birds tested within zoo grounds
200	test individuals	.	The ones color within 200 grounds
	from habitat type		
	1 - study tested		
	individuals from		
	habitat type		
	nuonui type	1	

N/A	0 – study listed	64	Study did not list habitat in which birds were tested or
11/11	habitat type	04	recovered from
	1 - study did not		
	list habitat type		
Continent		Africa – 2	Continent in which study took place
		Asia – 12	
		Europe – 78	
		Europe and	
		North	
		America – 1	
		North	
		America – 95	
		South	
		America – 18	
~		Zealandia – 5	
Country		Algeria – 1	Country in which study took place
		Argentina – 1	
		Belgium – 2 Brazil – 8	
		Canada - 13	
		Canada,	
		England,	
		United States	
		-1	
		Chile – 6	
		Costa Rica –	
		1	
		Croatia – 2	
		Czech	
		Republic – 5	
		Denmark – 3	
		Ecuador – 1	
		Egypt – 1	
		England -15	
		Germany – 5	
		India – 2	
		Iran - 2	
		Ireland -2	
		Italy – 8 Japan – 7	
		Lithuania – 1	
		Mexico -2	
		New Zealand	
		-5	
		Norway – 4	
		Peru - 1	
		Poland – 7	
		Saudi Arabia	
		- 1	
		Scotland - 2	
		Slovenia – 2	
		Spain – 9	
		Sweden – 6	
		The	
		Netherlands	

		and Poland –	
		1	
		Trinidad – 1 Turkey – 2 United States – 79 Wales – 2	
Lat			Approximate or exact latitude of study site
Long			Approximate or exact longitude of study site
Exact?	Yes – coordinates listed are exact study site location No – coordinates estimated due to lack of information	33 178	If study location is exact or estimated
Notes			Any notes on data acquisition or study
Salm_pos			Number of individuals from the 431 species examined that tested positive for <i>Salmonella</i> spp. that met criteria for inclusion 1–9
Salm_tested			Number of individuals from the 431 species examined that were tested for <i>Salmonella</i> spp. that met criteria for inclusion 1–9
Salm_prev	Proportion 0–1 N/A – no individuals tested		Overall study prevalence for individuals tested that met criteria for inclusion 1–9; Salm_pos/Salm_tested
Path_ecoli_pos			Number of individuals from the 431 species examined that tested positive for <i>E. coli</i> that met criteria for inclusion 1–9
Path_ecoli _tested			Number of individuals from the 431 species examined that were tested for <i>E. coli</i> that met criteria for inclusion 1–9
Path_ecoli _prev	Proportion 0–1 N/A – no individuals tested		Overall study prevalence for individuals tested that met criteria for inclusion 1–9; Path_ecoli_pos/Path_ecoli_tested
Campy_pos			Number of individuals from the 431 species examined that tested positive for <i>Campylobacter</i> spp. that met criteria for inclusion 1–9
Campy_tested			Number of individuals from the 431 species examined that were tested for <i>Campylobacter</i> spp. that met criteria for inclusion 1–9
Campy_prev	Proportion 0–1 N/A – no individuals tested		Overall study prevalence for individuals tested that met criteria for inclusion 1–9; Campy_pos/Campy_tested
Habitat (Exposure)	0 – study reported	22	Study tested individuals from multiple, listed habitat types and reported estimates by habitat location

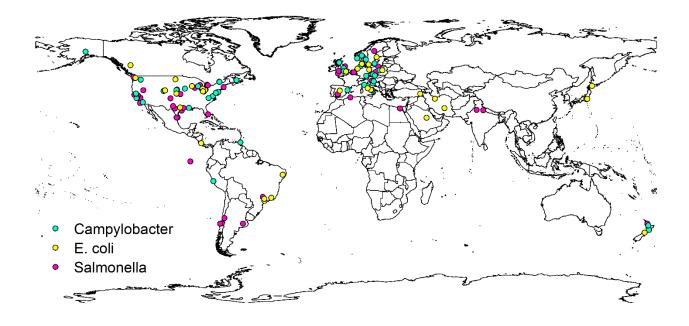
	estimates in		
	results		
	1 – study did not		
	report estimates		
	in results		
Landscape	0 - study	5	Study explicitly examined effects of landscape context
(Exposure)	reported		on pathogen presence/absence or prevalence
	estimates in		
	results		
	1 – study did not		
	report estimates		
	in results		
Diet guild	0 - study	8	Study reported estimates of pathogen presence/absence
(Exposure)	reported	0	or prevalence summarized by diet guild or gut content
(LAPOSULC)	estimates in		or prevalence summarized by diet guild of gut content
	results		
	1 - study did not		
	report estimates		
F :	in results	4	
Foraging traits	0 - study	4	Study reported estimates of pathogen presence/absence
(Exposure)	reported		or prevalence for multiple foraging traits (not diet
	estimates in		guild; foraging strata)
	results		
	1 - study did not		
	report estimates		
	in results		
Movement ability	0 - study	6	Study reported pathogen presence/absence or
(Exposure)	reported		prevalence for species divided into groups with
	estimates in		differing movement or dispersal capacity; monitored
	results		daily movement capacity
	1 – study did not		
	report estimates		
	in results		
Migratory pattern	0 - study	5	Study reported pathogen presence/absence or
(Exposure)	reported		prevalence for birds divided into migratory strategy
-	estimates in		groups; migratory, partial migratory, long distance
	results		migratory, short distance migratory, resident
	1 – study did not		
	report estimates		
	in results		
Taxa (Reservoir	0 – study	2	Paper conducts statistical analysis comparing pathogen
competence)	reported		presence/absence or prevalence by bird taxonomic
1 /	estimates in		order or family
	results		
	1 - study did not		
	report estimates		
	in results		
Sex (Reservoir	0 - study	15	Study summarized pathogen presence/absence or
competence)	reported		prevalence by sex; reported positive and negative
compotence)	estimates in		individuals by sex
	results		marriadus by sex
	1 - study did not		
	report estimates		
	in results		
	micsuits		

A se (Decomosin	0	20	Stude was set a
Age (Reservoir	0 - study	29	Study reported pathogen presence/absence or
competence)	reported		prevalence by individual's age; hatch year, after-hatch
	estimates in		year, juvenile, adult, nestling; reported positive and
	results		negative individuals by age
	1 – study did not		
	report estimates in results		
Condition	0 - study	15	Study reported pathogen presence/absence or
(Reservoir	reported	15	prevalence in relation to individual's condition or
competence)	estimates in		conducted statistical analyses on a condition gradient
competence)	results		including body size, mass, etc.; mentioning general
	1 - study did not		appearance and condition not sufficient
	report estimates		appearance and condition not sufficient
	in results		
Microbiome	0 - study	0	Study reported impacts of microbiome diversity or
(Reservoir	reported	0	composition on pathogen presence/absence or
competence)	estimates in		prevalence
competence)	results		prevalence
	1 - study did not		
	report estimates		
	in results		
Coinfection	0 - study	23	Study reported coinfection data for one or more
(Reservoir	reported	25	pathogens in one or more wild bird species included in
competence)	estimates in		meta-analysis; could include coinfection of meta-
competence)	results		analysis pathogen with non-meta-analysis pathogen
	1 - study did not		anarysis partogen with non-meta anarysis partogen
	report estimates		
	in results		
Immunity	0 - study	0	Study estimated impacts of innate or acquired
(Reservoir	reported	-	immunity on pathogen presence/absence or prevalence
competence)	estimates in		
······	results		
	1 – study did not		
	report estimates		
	in results		
Infectious dose	0 – study	0	Study quantified infectious dose required for shedding
(Reservoir	reported		or disease in wild birds
competence)	estimates in		
-	results		
	1 – study did not		
	report estimates		
	in results		
Shedding amount	0 - study	13	Study quantified the number of microorganisms
(Reservoir	reported		included in meta-analysis that were shed in faeces
competence)	estimates in		
	results		
	1 – study did not		
	report estimates		
	in results		
Shedding duration	0 - study	5	Study examined duration of pathogen shedding or
(Reservoir	reported		reported carrier state at various capture times
competence)	estimates in		
	results		

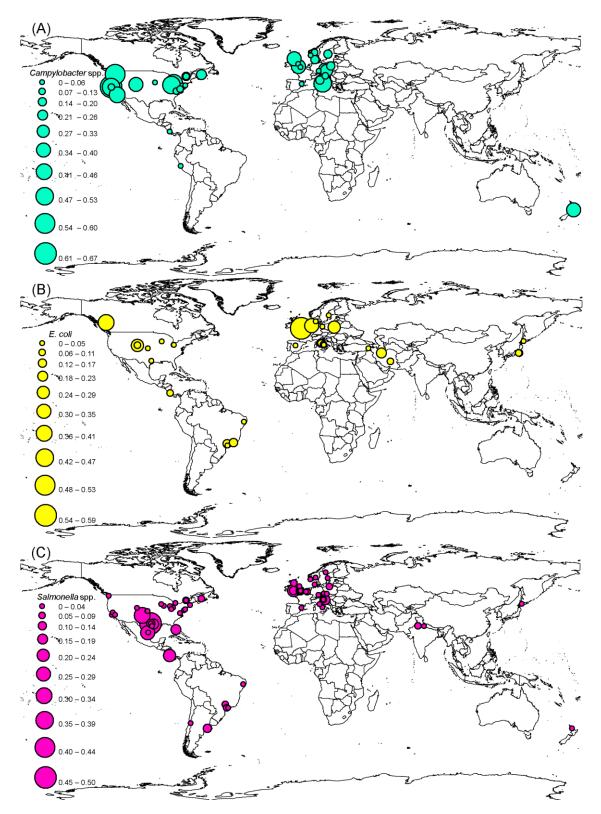
	1 . 1		
	1 - study did not		
	report estimates		
	in results		
Species/serovar	0 - study	143	Study identified bacteria to Campylobacter species or
(Reservoir	reported		Salmonella serovar; did not stop at genus
competence)	estimates in		
	results		
	1 – study did not		
	report estimates		
	in results		
Strain (Reservoir	0 - study	80	Study identified bacterial strain; would include E. coli
competence)	reported	00	O157:H7 but not <i>E. coli</i> with <i>stx</i> 1; would include <i>S</i> .
competence)	estimates in		Typhimurium ST40 but not <i>S</i> . Typhimurium which
	results		would be under species/serovar
			would be under species/seroval
	1 – study did not		
	report estimates		
A1.11. 0	in results	1	
Ability of strain	0 - study	1	Study inoculated wild birds with one or more strains
to colonize	reported		and examined differential ability to colonize or cause
(Reservoir	estimates in		disease
competence)	results		
	1 – study did not		
	report estimates		
	in results		
Virulence	0 – study	8	Study tested virulence of bacteria to wild birds or
(Reservoir	reported		livestock through inoculation, mark-recapture,
competence)	estimates in		population changes, or other survival metric
······	results		
	1 - study did not		
	report estimates		
	in results		
Faecal output	0 - study	4	Study quantified faecal output per unit time of wild
(Contact)	reported	4	birds or used published estimates in analyses
(Contact)	estimates in		bitus of used published estimates in analyses
	results		
	1 - study did not		
	report estimates		
	in results		
Direct contact	0 - study	9	Study quantified direct contact rates of wild birds with
(Contact)	reported		livestock, humans, produce, etc. by indexing
	estimates in		abundance or contact frequency in sensitive areas
	results		
	1 – study did not		
	report estimates		
	in results		
Indirect contact	0 - study	6	Study quantified faecal contamination in water, ability
(Contact)	reported		to mechanically vector, or contact of non-avian
(<i>)</i>	estimates in		mechanical vectors with faeces
	results		
	1 - study did not		
	report estimates		
C	in results	45	
Seasonality	0 - study	45	Study examined seasonal variation in pathogen
(Contact)	reported		prevalence, shedding intensity, etc.

Survival in faeces (Bacterial survival and transmission)	estimates in results 1 – study did not report estimates in results 0 – study reported estimates in results 1 – study did not report estimates	1	Study examined survival of pathogen in faeces; inoculated or naturally occurring bacteria
Other survival (Bacterial survival and transmission)	in results 0 – study reported estimates in results 1 – study did not report estimates in results	0	Study examined survival of pathogen in water, compost, soil, etc.
Crossover (Bacterial survival and transmission)	0 – study reported estimates in results 1 – study did not report estimates in results	49	Study attempted to demonstrate crossover of pathogens between wild birds and people, livestock, zoo animals, and/or domestic pets by presenting pathogen data from wild birds and people, livestock, zoo animals, and/or domestic pets (beyond citing literature)
Shared strains (Bacterial survival and transmission)	0 – study reported estimates in results 1 – study did not report estimates in results	25	Study quantifies wild bird bacterial strain similarity to bacterial strains found in humans, livestock, domestic pets, etc. using genetic approach to examine crossover robustly
Antibiotic resistance (Bacterial survival and transmission)	0 – study did not test for antibiotic resistance 1 – study tested for antibiotic resistance	60	Study tested for antibiotic resistance in one or more bacteria recovered from one or more individual birds in study
Outbreak (Bacterial survival and transmission)	0 – study reported estimates in results 1 – study did not report estimates in results	1	Study robustly isolated wild bird faeces as cause of human foodborne illness outbreak

Category	Class	Definition
AOU		American Ornithologists' Union four-letter code for species
		(https://www.birdpop.org/docs/misc/Alpha_codes_tax.pdf)
Common_name		Species common name following American Ornithologist's
		Union
Scientific		Scientific name following Birds of North America Online (last
		searched November 2018)
Order		Scientific order following Birds of North America Online (last
		searched November 2018)
Family		Scientific family following Birds of North America Online (last
		searched November 2018)
Diet	Carnivore – reptiles,	Classified as guild if diet category represents $\geq 60\%$ of content
	amphibians, birds,	
	mammals	Diet guild as classified by Wilman <i>et al.</i> (2014), Birds of North
	Frugivore – fruits,	America Online, de Graff et al. (1985), and Smith et al. (2019)
	drupes	
	Granivore – seeds,	http://www.esapubs.org/archive/ecol/E095/178/metadata.php
	maize, nuts, grains,	
	spores	http://birdsna.org
	Herbivore – grass,	
	ground vegetation,	
	weeds, vegetables,	
	fungi, aquatic	
	vegetation, etc.	
	Invertebrate –	
	aquatic	
	invertebrates,	
	ground insects,	
	insect larvae, flying	
	insects, etc.	
	Nectarivore –	
	nectar, pollen, plant	
	exudates, gums	
	Omnivore $- \le 50\%$	
	in all four binned	
	categories in	
	Wilman <i>et al</i> .	
	(2014)	
	Piscivore – fish	
	Scavenger –	
	garbage, carcasses,	
	carrion	
Forg_strat	Aerial – foraging in	Foraging strata; classified as highest percentage of foraging time
<u> </u>	air; doesn't include	in strata estimated in Wilman et al. (2014), Birds of North
	sallying from perch	America Online, and de Graff et al. (1985)
	Canopy – foraging	
	in tree canopy	http://www.esapubs.org/archive/ecol/E095/178/metadata.php
	Ground – on ground	
	Midhigh – mid-high	http://birdsna.org
	levels in trees or	
	bushes (2 m to just	
	below canopy)	


Table S2. List of variables used in Supplementary Data S2.

	Understorey –	
	below 2 m in	
	understorey	
	Wataroundsurf -	
	foraging on or just	
	(<12.5 cm) below	
	water surface	
	Watbelowsurf –	
	foraging below	
	water surface	
Compy pos	water surface	Number of individuals testing positive for any <i>Campylobacter</i>
Campy_pos		spp. across all studies in meta-analysis that met inclusion
		criteria 1–9
Canadensis		Number of individuals testing positive for Campylobacter
		canadensis across all studies in meta-analysis that met inclusion
		criteria 1–9
Coli		Number of individuals testing positive for Campylobacter coli
		across all studies in meta-analysis that met inclusion criteria 1–9
Jejuni		Number of individuals testing positive for Campylobacter jejuni
J		across all studies in meta-analysis that met inclusion criteria 1–9
Lari		Number of individuals testing positive for Campylobacter lari
		across all studies in meta-analysis that met inclusion criteria 1–9
Campy_tested		Number of individuals tested for any <i>Campylobacter</i> spp. across
Campy_tested		all studies in meta-analysis that met inclusion criteria 1–9
Commence	Descertion 0 1	
Campy_prev	Proportion 0–1	Campy_pos/Campy_tested; <i>Campylobacter</i> spp. prevalence
		across all studies in meta-analysis that met inclusion criteria 1–9
	N/A - no	
	individuals tested	
Campy_prev_rma.mv	Proportion 0-1	Estimated Campylobacter spp. prevalence using random effects
		models in the rma.mv function in the metafor package in R
	N/A – not	(Viechtbauer, 2010; R Core Team, 2018) including study as a
	calculated	random effect. Only calculated when data came from two or
		more studies and we estimated that sufficient observations were
		available based on the Thrusfield (2007) formula
Campy_prev_se_rma.	Proportion 0–1	Standard error of estimated Campylobacter spp. prevalence
mv		using random effects models in the rma.mv function in the
	N/A – not	metafor package in R
	calculated	mountor puckuge in R
Campy_studies		Number of studies that tested for any <i>Campylobacter</i> spp. across
Campy_studies		all studies in meta-analysis that met inclusion criteria 1–9
Commy total mag		
Campy_total_pos		Number of individuals testing positive for any <i>Campylobacter</i>
		spp. across all studies in meta-analysis that met inclusion
0		criteria 1–6
Campy_total_tested		Number of individuals tested for any <i>Campylobacter</i> spp. across
		all studies in meta-analysis that met inclusion criteria 1–6
Campy_yes	Yes – one or more	If one or more individuals tested positive for Campylobacter
	individuals of bird	spp. across all studies in meta-analysis that met inclusion
	species tested	criteria 1–9
	positive for	
	<i>Campylobacter</i> spp.	
	No – no	
	<i>Campylobacter</i> spp.	
	found in bird	
	species	
	species	


Compy registert	Voc. one or mere	If antibiotic resistance was found in Commulabactor and from
Campy_resistant	Yes – one or more individuals of bird	If antibiotic resistance was found in <i>Campylobacter</i> spp. from bird species
	species had	ond species
	Campylobacter spp.	
	that was antibiotic	
	resistant	
	No – no	
	Campylobacter spp.	
	with antibiotic	
	resistance found in	
	bird species tested	
	for antibiotic	
	resistance	
	N/A – no	
	<i>Campylobacter</i> spp.	
	tested for antibiotic	
	resistance in bird	
	species	
Path_ecoli_pos		Number of individuals testing positive for pathogenic E. coli
		across all studies in meta-analysis that met inclusion criteria 1-9
Generic_ecoli_pos		Number of individuals testing positive for generic E. coli across
		all studies in meta-analysis that met inclusion criteria 1–6 and
		8–9
Path_ecoli_tested		Number of individuals tested for pathogenic <i>E. coli</i> across all
~		studies in meta-analysis that met inclusion criteria 1–9
Generic_ecoli_tested		Number of individuals tested for generic <i>E. coli</i> across all
		studies in meta-analysis that met inclusion criteria 1–6 and 8–9
Path_ecoli_prev	Proportion 0–1	Path_ecoli_pos/Path_ecoli_tested; pathogenic <i>E.coli</i> prevalence
	N/A me	across all studies in meta-analysis that met inclusion criteria 1–9
	N/A - no	
Deth agoli prov rma	individuals tested	Estimated Commulabates and provalance using random affacts
Path_ecoli_prev_rma.	Proportion 0–1	Estimated <i>Campylobacter</i> spp. prevalence using random effects models in the rma.mv function in the metafor package in R
mv	N/A – not	(Viechtbauer, 2010; R Core Team, 2018) including study as a
	calculated	random effect. Only calculated when data came from two or
	calculated	more studies and we estimated that sufficient observations were
		available based on the Thrusfield (2007) formula
Path_ecoli_prev_se_r	Proportion 0–1	Standard error of estimated <i>Campylobacter</i> spp. prevalence
ma.mv		using random effects models in the rma.mv function in the
	N/A – not	metafor package in R
	calculated	
Generic_ecoli_prev	Proportion 0–1	Generic_ecoli_pos/Generic_ecoli_tested; pathogenic E.coli
— — <u> </u>	1	prevalence across all studies in meta-analysis that met inclusion
	N/A – no	criteria 1–6 and 8–9
	individuals tested	
Path_ecoli_studies		Number of studies that tested for pathogenic E. coli across all
		studies in meta-analysis that met inclusion criteria 1-9
Generic_ecoli_studies		Number of studies that tested for generic E. coli across all
		studies in meta-analysis that met inclusion criteria 1-6 and 8-9
Path_ecoli_tot_pos		Number of individuals testing positive for pathogenic E. coli
		across all studies in meta-analysis that met inclusion criteria 1-9
Path_ecoli_tot_tested		Number of individuals tested for pathogenic E. coli across all
		studies in meta-analysis that met inclusion criteria 1–9

Path_ecoli_yes	Yes – one or more individuals of bird species tested positive for pathogenic <i>E. coli</i> spp. No – no pathogenic <i>E. coli</i> found in bird species	If one or more individual tested positive for pathogenic <i>E. coli</i> across all studies in meta-analysis that met inclusion criteria 1–6 and 8–9
Generic_ecoli_resistan t	Yes – one or more individuals of bird species had <i>E. coli</i> that was antibiotic resistant No – no <i>E. coli</i> with antibiotic resistance found in bird species tested for antibiotic resistance N/A - no E. coli tested for antibiotic resistance in bird species	If antibiotic resistance was found in <i>E. coli</i> from bird species
Ecoli_test_any		Number of individuals tested for <i>E. coli</i> across all studies in meta-analysis
Salm_pos		Number of individuals testing positive for any <i>Salmonella</i> spp. across all studies in meta-analysis that met inclusion criteria 1–9
Salm_tested		Number of individuals tested for any <i>Salmonella</i> spp. across all studies in meta-analysis that met inclusion criteria 1–9
Salm_prev	Proportion 0–1 N/A – no individuals tested	Salm_pos/Salm_tested; <i>Salmonella</i> spp. prevalence across all studies in meta-analysis that met inclusion criteria 1–9
Salm_prev_rma.mv	Proportion 0–1 N/A – not calculated	Estimated <i>Salmonella</i> spp. prevalence using random effects models in the rma.mv function in the metafor package in R (Viechtbauer, 2010; R Core Team, 2018) including study as a random effect. Only calculated when data came from two or more studies and we estimated that sufficient observations were available based on the Thrusfield (2007) formula
Salm_prev_se_rma.mv	Proportion 0–1 N/A – not calculated	Standard error of estimated <i>Salmonella</i> spp. prevalence using random effects models in the rma.mv function in the metafor package in Program R
Salm_studies		Number of studies that tested for any <i>Salmonella</i> spp. across all studies in meta-analysis that met inclusion criteria 1–9
Salm_total_pos		Number of individuals testing positive for any <i>Salmonella</i> spp. across all studies in meta-analysis that met inclusion criteria 1–6
Salm_total_tested		Number of individuals tested for any <i>Salmonella</i> spp. across all studies in meta-analysis that met inclusion criteria 1–6
Salm_yes	Yes – one or more individuals of bird species tested positive for <i>Salmonella</i> spp.	If one or more individuals tested positive for <i>Salmonella</i> spp. across all studies in meta-analysis that met inclusion criteria 1–9

	No – no <i>Salmonella</i> spp. found in bird species	
Salm_resistant	Yes – one or more individuals of bird species had Salmonella spp. that was antibiotic resistant No – no Salmonella spp. with antibiotic resistance found in bird species tested for antibiotic resistance N/A – no Salmonella spp. tested for antibiotic resistance in bird species	If antibiotic resistance was found in <i>Salmonella</i> spp. from bird species
Abony to 11:d-		Number of individuals testing positive for <i>Salmonella</i> serovar named in column across all studies in meta-analysis that met inclusion criteria 1–9

Fig. S1. Map showing locations of studies (N = 211) used in meta-analysis.

Fig. S2. Map showing number of samples positive/number of samples tested for (A) *Campylobacter* spp., (B) pathogenic *E. coli*, and (C) *Salmonella* spp. by study location.

Table S3. List of variables used in Supplementary Data S3. One tab is included for data on each of *Campylobacter* spp., pathogenic *E. coli*, generic *E. coli*, and *Salmonella* spp. (4 tabs in total).

Category	Class	Definition
Study		Publication identifier
Species		American Ornithologists' Union four-letter code for species
1		https://www.birdpop.org/docs/misc/Alpha_codes_tax.pdf
Positive		Number of individual samples that tested positive for bacteria for that
		species in that study
Negative		Number of individual samples that tested negative for bacteria for that
U		species in that study
Tested		Total number of individual samples tested for bacteria for that species in
		that study
Order		Scientific order following Birds of North America Online (last searched
		November 2018)
Family		Scientific family following Birds of North America Online (last searched
		November 2018)
Diet	Carnivore –	Classified as guild if diet category represents $\geq 60\%$ of content
	reptiles,	
	amphibians, birds,	Diet guild as classified by Wilman et al. (2014), Birds of North America
	mammals	Online, de Graff et al. (1985), and Smith et al. (2019)
	Frugivore – fruits,	
	drupes	http://www.esapubs.org/archive/ecol/E095/178/metadata.php
	Granivore - seeds,	
	maize, nuts, grains,	http://birdsna.org
	spores	
	Herbivore – grass,	
	ground vegetation,	
	weeds, vegetables,	
	fungi, aquatic	
	vegetation, etc.	
	Invertebrate –	
	aquatic	
	invertebrates,	
	ground insects,	
	insect larvae, flying	
	insects, etc.	
	Nectarivore –	
	nectar, pollen, plant	
	exudates, gums	
	Omnivore - $\leq 50\%$	
	in all four binned	
	categories in Wilmon <i>et al</i>	
	Wilman <i>et al.</i> (2014)	
	(2014) Dissivers fish	
	Piscivore – fish	
	Scavenger –	
	garbage, carcasses,	
-	carrion	
Forg_strat	Aerial – foraging in	Foraging strata; classified as highest percentage of foraging time in strata
	air; doesn't include	estimated in Wilman et al. (2014), Birds of North America Online, and
	sallying from perch	de Graff <i>et al.</i> (1985)
	Canopy – foraging	
	in tree canopy	http://www.esapubs.org/archive/ecol/E095/178/metadata.php

Ground – on	http://birdsna.org
ground	
Midhigh – mid-high	
levels in trees or	
bushes (2 m to just	
below canopy)	
Understorey –	
below 2 m in	
understorey	
Wataroundsurf –	
foraging on or just	
(<12.7 cm) below	
water surface	
Watbelowsurf –	
foraging below	
water surface	

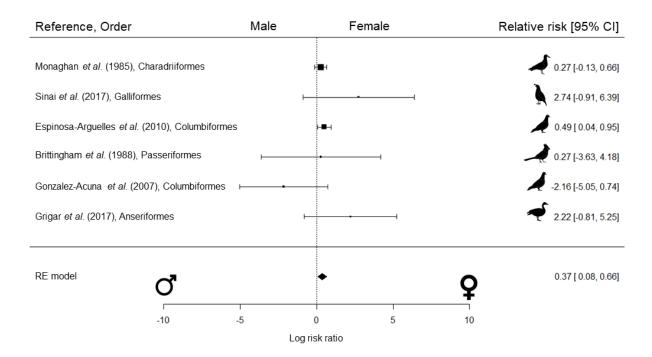
Study	Bacteria	Female positive	Female tested	Female prevalence	Male positive	M tested	M prevalence	Higher?	Significant?	Species	Notes
Colles <i>et al.</i> (2009)	C. jejuni	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	EUST	
Hald <i>et al.</i> (2016)	Campylobacter spp.	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	ROPI, HOSP, ETSP, EUST, European birds	
Sulzner <i>et</i> <i>al.</i> (2014)	<i>Campylobacter</i> spp.	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	TUVU	Author doesn't report numbers tested but reports statistical results
Brittingham et al. (1988)	Generic E. coli	N/A	63	N/A	N/A	83	N/A	Same	No	ВССН	Does not clarify which sex was positive
Gaulker <i>et</i> <i>al.</i> (2009)	Generic E. coli	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	EUST	
Sulzner <i>et</i> <i>al.</i> (2014)	Generic E. coli	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	TUVU	Author doesn't report numbers tested but reports statistical results
Gibbs <i>et al.</i> (2007)	Pathogenic <i>E. coli</i>	1	7	14.3%	1	14	7.1%	Female	Not tested	YHBL	
Monaghan et al. (1985)	Salmonella spp.	45	316	14.2%	42	385	10.9%	Female	Yes	HERG	Only higher in non-breeding season
Sinai <i>et al.</i> (2017)	Salmonella spp.	0	1	0.0%	0	30	0.0%	Same	Not tested	GRSG	
Sulzner <i>et</i> <i>al.</i> (2014)	Salmonella enterica	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	TUVU	Author doesn't report numbers

Table S4. Studies reporting data on pathogen prevalence by sex (male, female). Studies that tested for significant differences between the sexes are highlighted in bold. N/A, not available.

											tested but reports statistical results
Espinosa- Arguelles <i>et</i> <i>al.</i> (2010)	<i>Salmonella</i> Gallinarum- Pullorum	27	78	34.6%	26	123	21.1%	Female	Marginally significant	MODO, WWDO	
Brittingham et al. (1988)	Salmonella spp.	0	63	0.0%	0	83	0.0%	Same	No	ВССН	
Gonzalez- Acuna <i>et al.</i> (2007)	Salmonella spp.	0	47	0.0%	4	49	8.2%	Male	No	ROPI	
Grigar <i>et al.</i> (2017)	Salmonella spp.	2	132	1.5%	0	243	0.0%	Female	Not tested	BWTE, REDH	
Hughes <i>et</i> <i>al.</i> (2008)	Salmonella spp.	19	19	100.0%	10	10	100.0%	Same	Not tested	HOSP, EUST, EUCD, European birds	Necropsies
Lawson <i>et al.</i> (2010)	Salmonella spp.	12	12	100.0%	12	12	100.0%	Same	No	HOSP	Necropsies
Toro <i>et al.</i> (1999)	Salmonella spp.	N/A	53	N/A	N/A	47	N/A	Same	Not tested	ROPI	"The resultsare presented as a group because there were no important differences among them depending onsex" (p. 620)
Daoust <i>et</i> <i>al.</i> (2000)	<i>Salmonella</i> Typhimurium	12	12	100.0%	19	19	100.0%	Same	Not tested	PISI, PUFI, EVGR, AMGO, CORE	Necropsies

Study	Bacteria	Juvenile positive	Juvenile tested	Juvenile prevalence	Adult positive	Adult tested	Adult prevalence	Higher	Significant	Species	Notes
Keller & Shriver (2014)	Campylobacter jejuni	8	92	8.7%	8	35	22.9%	Adult	Not tested	Larus spp.	
Lillehaug <i>et al.</i> (2005)	Campylobacter jejuni	3	102	2.9%	4	103	3.9%	Adult	Not tested	ROPI, MALL	
Colles <i>et al.</i> (2009)	Campylobacter jejuni	N/A	N/A	N/A	N/A	N/A	N/A	Juvenile	Yes	EUST	
Gabriele- Rivet <i>et al.</i> (2015)	Campylobacter jejuni	1	6	16.7%	14	167	8.4%	Juvenile	No	ROPI	
Keller & Shriver (2014)	Campylobacter jejuni	6	36	16.7%	2	206	1.0%	Juvenile	Not tested	CANG	
Taff <i>et al.</i> (2016)	Campylobacter jejuni	73	102	71.6%	106	235	45.1%	Nestling	Yes	AMCR	Nestlings
Waldenstrom et al. (2002)	<i>Campylobacter</i> spp.	11	20	55.0%	276	364	75.8%	Adult	Yes	European shorebirds	
Lombardo <i>et al.</i> (1996)	<i>Campylobacter</i> spp.	5	13	38.5%	8	8	100.0%	Adult	Yes	TRES	
Weis <i>et al.</i> (2014)	<i>Campylobacter</i> spp.	59	91	64.8%	27	40	67.5%	Adult	Not tested	AMCR	Nestlings versus adults/subadults
Waldenstrom et al. (2002)	<i>Campylobacter</i> spp.	50	676	7.4%	7	115	6.1%	Juvenile	No	European Passerines, EUST	
Levesque <i>et</i> <i>al.</i> (2000)	<i>Campylobacter</i> spp.	N/A	N/A	N/A	N/A	N/A	N/A	Juvenile	Marginally significant	RBGU	Testing bacterial concentration in colony

Table S5. Studies reporting data on pathogen prevalence by age (juvenile, nestling, adult). Studies that tested for significant differences between age groups are highlighted in bold. N/A, not available.


											forming units (CFU)/g rather than prevalence
Sulzner <i>et al.</i> (2014)	<i>Campylobacter</i> spp.	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	TUVU	Author doesn't report numbers tested but reports statistical results
Hald <i>et al.</i> (2016)	Campylobacter spp.	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	ROPI, HOSP, ETSP, EUST, European birds	
Gibbs <i>et al</i> . (2007)	E. coli	1	15	6.7%	1	6	16.7%	Adult	Not tested	YHBL	
Morabito <i>et</i> <i>al.</i> (2001)	E. coli (STEC)	30	156	19.2%	40	487	8.2%	Juvenile	Yes	ROPI	
Sulzner <i>et al.</i> (2014)	Generic E. coli	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	TUVU	Author doesn't report numbers tested but reports statistical results
Gaulker <i>et al.</i> (2009)	Generic E. coli	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	EUST	
Espinosa- Arguelles <i>et</i> <i>al.</i> (2010)	<i>Salmonella</i> Gallinarum- Pullorum	8	26	30.8%	45	175	25.7%	Juvenile	Marginally significant	MODO, WWDO	
Gonzalez- Acuna <i>et al.</i> (2007)	Salmonella spp.	1	40	2.5%	3	56	5.4%	Adult	No	ROPI	
Kapperud & Rosef (1983)	Salmonella spp.	2	125	1.6%	2	54	3.7%	Adult	No	Larus spp.	
Monaghan <i>et al.</i> (1985)	Salmonella spp.	24	125	19.2%	63	552	11.4%	Juvenile	No	HERG	
Butterfield <i>et al.</i> (1983)	Salmonella spp.	3	118	2.5%	9	656	1.4%	Juvenile	No	HERG	November–February
Sulzner <i>et al.</i> (2014)	Salmonella enterica	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	TUVU	Author doesn't report numbers tested but reports statistical results
Wood & Trust (1972)	Salmonella spp.	0	103	0.0%	0	51	0.0%	Same	No	GWGU	

Levesque <i>et</i> <i>al.</i> (2000)	Salmonella spp.	N/A	N/A	N/A	N/A	N/A	N/A	Same	No	RBGU	Testing bacterial concentration in CFU/g
<i>ui</i> . (2000)	spp.										rather than prevalence
Grigar <i>et al.</i> (2017)	Salmonella spp.	0	43	0.0%	2	332	0.6%	Adult	Not tested	BWTE, REDH	
Phalen <i>et al.</i> (2010)	<i>Salmonella</i> spp.	82	135	60.7%	0	10	0.0%	Juvenile	Not tested	CAEG	
Sinai <i>et al.</i> (2017)	<i>Salmonella</i> spp.	0	7	0.0%	0	22	0.0%	Same	Not tested	GRSC	
Toro <i>et al.</i> (1999)	Salmonella spp.	N/A	N/A	N/A	N/A	N/A	N/A	Same	Not tested	ROPI	"The resultsare presented as a group because there were no important differences among them depending onage" (p. 620)
Hughes <i>et al.</i> (2008)	Salmonella spp.	12	12	100.0%	11	11	100.0%	Same	Not tested	HOSP, EUST, EUCD, HERG, European birds	Necropsies
Lillehaug <i>et</i> al. (2005)	Salmonella spp.	0	102	0.0%	0	103	0.0%	Same	Not tested	ROPI, MALL	
Daoust <i>et al</i> . (2000)	Salmonella Typhimurium	12	12	100.0%	31	31	100.0%	Same	Not tested	PISI, PUFI, EVGR, AMGO, CORE	Necropsies
Fukui <i>et al.</i> (2014)	<i>Salmonella</i> Typhimurium	13	13	100.0%	8	8	100.0%	Same	Not tested	ETSP	Necropsies
Butterfield <i>et</i> <i>al.</i> (1983)	Salmonella spp.	25	258	9.7%	18	902	2.0%	Juvenile	Yes	HERG	July–October
Hernandez <i>et</i> <i>al.</i> (2016)	Salmonella spp.	8	22	36.4%	4	33	12.1%	Nestling	Yes	WHIB	Nestling>subadult>adult

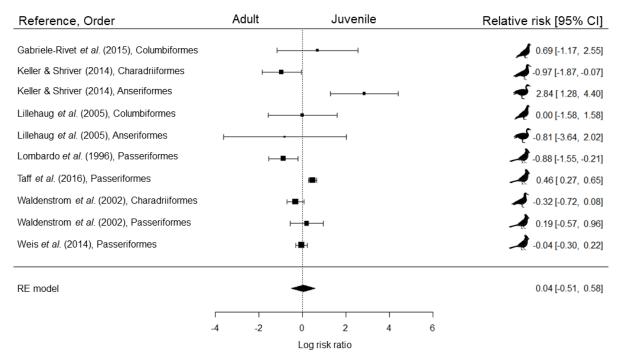
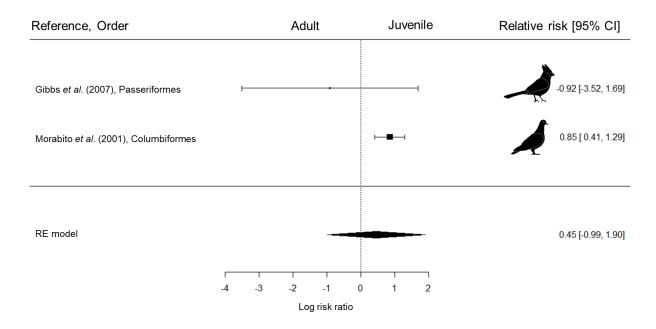

Study	Bacteria	Positive	Tested	Prevalence	Birds	Notes
Borilova <i>et al.</i> (2007)	C. coli/C. jejuni	3	200	1.5%	RNPH	
Callaway <i>et al.</i> (2014)	Salmonella/E. coli O157:H7	3	376	0.8%	BHCO, COGR	
Doumandji <i>et al.</i> (2010)	Salmonella/generic E. coli	1	34	2.9%	CAEG	
Fichtel (1978)	Salmonella/Sacrosporidiosis (fungus)	2	6	33.3%	NOCA, WTSP, DEJU	
Gaukler <i>et al.</i> (2009)	Salmonella/generic E. coli	3	434	0.7%	EUST	
Gibbs <i>et al.</i> (2007)	E. coli/Serratia spp.	1	21	4.8%	YHBL	
Gibbs <i>et al.</i> (2007)	E. coli/Enterobacter spp.	1	21	4.8%	YHBL	
Glunder <i>et al.</i> (1992)	C. jejuni/Salmonella Typhimurium	2	37	5.4%	HERG	
Kalisinka <i>et al.</i> (2008)	<i>E. coli/trematodes (Strigea falconis, Conodiplostomum spathula)/cestodes</i> (<i>Cladotaenia cylindracea</i>)/nematodes (<i>Serratospiculum tendo</i>)/Aspergillus nidulans/Cladophialophora boppi/Micrococcus luteus/Proteus mirabilis	1	1	100.0%	PEFA	
Kapperud & Rosef (1983)	<i>C. jejuni</i> /nalidixic acid-resistant thermophilic <i>Campylobacters</i>	3	138	2.2%	Larus spp.	
Levre <i>et al.</i> (1989)	Campylobacter spp./Salmonella spp.	1	217	0.5%	GRAP, RNPH, EUST, European birds	
Levre <i>et al.</i> (1989)	<i>Campylobacter</i> spp./Salmonella spp./Yersinia spp.	1	217	0.5%	GRAP, RNPH, EUST, European birds	
Levre <i>et al.</i> (1989)	Campylobacter spp./Yersinia spp.	9	217	4.1%	GRAP, RNPH, EUST, European birds	
Moriarty <i>et al.</i> (2011)	Campylobacter spp./E. coli	N/A	320	N/A	CANG	Spearman rank correlation analysis $r_s = 0.116$ between bacterial species
Nebola <i>et al.</i> (2007)	C. coli/C. jejuni	3	55	5.5%	RNPH	

Table S6. Summary of studies reporting coinfection data. Bird species are identified according to AOU four-letter codes (see Supplementary Data S2).


Oteo <i>et al.</i> (2018)	Generic E. coli/Klebsiella pneumoniae	2	95	2.1%	Gulls, egrets, vultures, owls, ducks, European	
					birds	
Pao <i>et al.</i> (2014)	C. jejuni/Salmonella spp.	0	446	0.0%	EUST, BHCO, MODO, CHSP, HOSP, ROPI, and others	
Pennycott <i>et al.</i> (2006)	Salmonella Typhimurium/Ichthyocotylurus platycephalus (trematode)	1	495	0.2%	HOSP, ETSP, ROPI, HERG, European birds	Necropsies
Pennycott <i>et al.</i> (2006)	Salmonella Typhimurium/Pasteurella spp.	1	495	0.2%	HOSP, ETSP, ROPI, HERG, European birds	Necropsies
Pennycott <i>et al.</i> (2006)	Salmonella Typhimurium/Avian tuberculosis (Mycobacterium avium)	1	495	0.2%	HOSP, ETSP, ROPI, HERG, European birds	Necropsies
Radwan & Lampky (1972)	Salmonella Typhimurium/generic E. coli	1	5	20.0%	HERG, RTHU, ATSP, HOSP, OVEN	Can infer for these five because one tested of each
Robino <i>et al.</i> (2010)	C. coli/C. jejuni	5	116	4.3%	Hooded crows, MALL, HOSP, ROPI	
Sovada <i>et al.</i> (2008)	BoNT Type C/Salmonella	3	28	10.7%	AWPE	
Sovada <i>et al.</i> (2008)	WNV/Salmonella	8	40	20.0%	AWPE	
Vasconcelos <i>et al.</i> (2017)	E. coli/Pseudomonas aeruginosa	1	1	100.0%	ROPI	
Vaughan- Higgins <i>et al.</i> (2013)	Nematodes (<i>Cyanthostoma</i> , <i>Porracaecum</i>), metazoan parasite eggs, <i>E. coli</i>	1	1	100.0%	NOHA	
Waldenstrom <i>et al.</i> (2002)	C. coli/C. jejuni	10	1794	0.6%	N/A	
Yogasundram et al. (1989)	C. jejuni/endoparasites	11	445	2.5%	Ducks, Galliformes, owls, doves, etc.	Some turned in for necropsy and some hunted
Yogasundram et al. (1989)	C. jejuni/fungal infection	7	445	1.6%	Ducks, Galliformes, owls, doves, etc.	Some turned in for necropsy and some hunted
Yogasundram et al. (1989)	C. jejuni/protozoan infection	3	445	0.7%	Ducks, Galliformes, owls, doves, etc.	Some turned in for necropsy and some hunted
Yogasundram et al. (1989)	C. jejuni/viral infection	4	445	0.9%	Ducks, Galliformes, owls, doves, etc.	Some turned in for necropsy and some hunted
Yogasundram et al. (1989)	C. jejuni/other bacterial infection	7	445	1.6%	Ducks, Galliformes, owls, doves, etc.	Some turned in for necropsy and some hunted

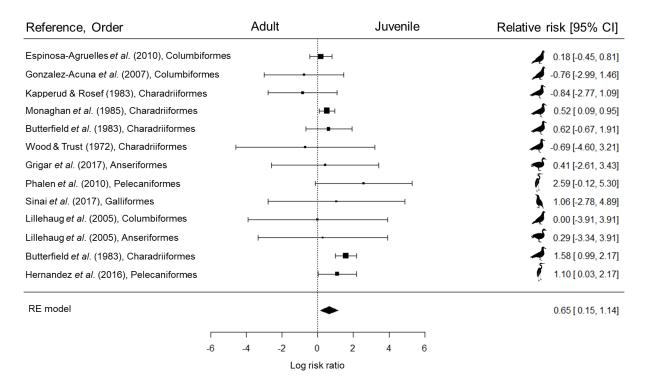

Fig. S3. Forest plot showing the results of six studies examining the difference in *Salmonella* spp. prevalence in female *versus* male birds. The figure shows the relative risk of detecting *Salmonella* spp. in female (right of 0) *versus* male (left of 0) birds with corresponding 95% confidence intervals in the individual studies using a random effects model in the metaphor package in R.

Fig. S4. Forest plot showing the results of 10 estimates from seven studies examining the difference in *Campylobacter* spp. prevalence in juvenile versus adult birds from four orders. The figure shows the relative risk of detecting *Campylobacter* spp. in adult (left of 0) *versus* juvenile (right of 0) birds with corresponding 95% confidence intervals in the individual studies using a random effects model in the metaphor package in R.

Fig. S5. Forest plot showing the results of two estimates from two studies examining the difference in pathogenic *E. coli* prevalence in juvenile *versus* adult birds. The figure shows the relative risk of detecting pathogenic *E. coli* in adult (left of 0) *versus* juvenile (right of 0) birds with corresponding 95% confidence intervals in the individual studies using a random effects model in the metaphor package in R.

Fig. S6. Forest plot showing the results of 13 estimates from 12 studies examining the difference in *Salmonella* spp. prevalence in juvenile *versus* adult birds. The figure shows the relative risk of detecting *Salmonella* spp. in adult (left of 0) *versus* juvenile (right of 0) birds with corresponding 95% confidence intervals in the individual studies using a random effects model in the metaphor package in R.

Study	Bacteria	Condition metric	Significant	Direction	Species	Notes
Taff & Townsend (2017)	C. jejuni	Condition index	Yes	Negative	AMCR	Adult crows in winter
Colles <i>et al.</i> (2009)	C. jejuni	Mass	Yes	Negative	EUST	
Taff & Townsend (2017)	C. jejuni	Mass	Yes	Negative	AMCR	Adult crows in winter
Colles <i>et al.</i> (2009)	C. jejuni	Wing cord	Yes	Negative	EUST	
Gabriele-Rivet <i>et al.</i> (2015)	C. jejuni	Body score	Yes	Positive	ROPI	Score 1 (very thin) to 5 (very fat)
Gabriele-Rivet et al. (2015)	C. jejuni	Condition index	No		ROPI	Weight in g/average metatarsus length
Taff & Townsend (2017)	C. jejuni	Condition index	No		AMCR	Nestlings
Gabriele-Rivet et al. (2015)	C. jejuni	Metatarsus length	No		ROPI	
Taff & Townsend (2017)	C. jejuni	Skeletal size	No		AMCR	Adult crows in winter
Mills <i>et al.</i> (1999)	Campylobacter spp.	Left tarsus length	Yes	Positive	TRES	Nestlings
Waldenstrom <i>et al.</i> (2002)	Campylobacter spp.	Mass	Yes	Positive	European birds (66 species), EUST	Tested whether larger body size led to higher prevalence across species
Hald <i>et al.</i> (2016)	Campylobacter spp.	Fat score	No		ROPI, HOSP, ETSP, EUST,	

Table S7. Studies reporting data on pathogen prevalence *versus* condition metrics. Bird species are identified according to AOU fourletter codes (see Supplementary Data S2). Studies that found significant relationships are highlighted in bold. N/A, not available.

					European	
					birds	
Mills <i>et al.</i> (1999)	Campylobacter spp.	Left wing length	No		TRES	Nestlings
Mills <i>et al.</i> (1999)	Campylobacter spp.	Mass	No		TRES	Nestlings
Vazquez <i>et al.</i> (2010)	Campylobacter spp.	Mass	No		ROPI	
Vazquez <i>et al.</i> (2010)	Campylobacter spp.	Packed cell volume	No		ROPI	
Mills <i>et al.</i> (1999)	Campylobacter spp.	Tarsus asymmetry	No		TRES	Nestlings
Vazquez <i>et al.</i> (2010)	Campylobacter spp.	Tarsus length	No		ROPI	
Mills <i>et al.</i> (1999)	Campylobacter spp.	Wing asymmetry	No		TRES	Nestlings
Vazquez <i>et al.</i> (2010)	Campylobacter spp.	Wing cord	No		ROPI	
Mills <i>et al.</i> (1999)	Campylobacter spp.	Wing parasites	No		TRES	Nestlings
Mills <i>et al.</i> (1999)	Desoxycholate citrate lactose sugar agar (DCLS) media for <i>E. coli, Salmonella, Vibrio,</i> <i>Shigella</i>	Tarsus asymmetry	Yes	Negative	TRES	Nestlings
Mills <i>et al.</i> (1999)	DCLS media for <i>E. coli,</i> Salmonella, Vibrio, Shigella	Left tarsus length	Yes	Positive	TRES	Nestlings
Mills <i>et al.</i> (1999)	DCLS media for <i>E. coli,</i> Salmonella, Vibrio, Shigella	Left wing length	No		TRES	Nestlings
Mills <i>et al.</i> (1999)	DCLS media for <i>E. coli,</i> Salmonella, Vibrio, Shigella	Mass	No		TRES	Nestlings
Mills <i>et al.</i> (1999)	DCLS media for <i>E. coli,</i> Salmonella, Vibrio, Shigella	Wing asymmetry	No		TRES	Nestlings
Mills <i>et al.</i> (1999)	DCLS media for <i>E. coli,</i> Salmonella, Vibrio, Shigella	Wing parasites	No		TRES	Nestlings
Morabito <i>et al.</i> (2001)	E. coli (STEC)	Mass	Yes	Negative	ROPI	Juvenile/subadult

Morabito <i>et al.</i> (2001)	E. coli (STEC)	Mass	No		ROPI	Adult
Kalisinka <i>et al.</i> (2008)	Generic E. coli	Condition index	Not tested	Negative	PEFA	One bird tested
Gaukler <i>et al.</i> (2009)	Generic E. coli	Mass	No		EUST	
Monaghan <i>et al.</i> (1985)	Salmonella spp.	Scaled mass	No		HERG	
Espinosa- Arguelles <i>et al.</i> (2010)	<i>Salmonella</i> Gallinarum- Pullorum	Mass	Yes	Negative	MODO, WWDO	
Lawson <i>et al.</i> (2010)	Salmonella spp.	Mass	Not tested	Negative	HOSP	Salmonellosis cases <i>versus</i> trauma cases
Fichtel (1978)	Salmonella Typhimurium	Mass	Not tested	Negative	NOCA, American tree sparrow	Compared weight at death to earlier banding records for Salmonellosis cases
Fukui <i>et al.</i> (2014)	Salmonella Typhimurium	Mass	Yes	Negative	ETSP	Compared Salmonellosis case birds to healthy birds

Table S8. Bacterial concentration shed in wild bird faeces and duration of shedding for naturally occurring faeces (surveys) and inoculation experiments. Bird species are identified according to AOU four-letter codes (see Supplementary Data S2). CE = cell equivalents, CFU = colony forming units, MPN = most probable number

Study	Species	Species/strain	Average	Minimum	Maximum	Inoculum Concentration	Mean duration (d)	Max duration (d)	Sample size	Study duration (d)	Type	Notes
Atterby <i>et al.</i> (2018)	MALL	<i>C. jejuni</i> mallard ST	10 ⁴ — 10 ⁶ CFU/ml	10 ³ CFU/ml	10 ⁸ CFU/ml	5×10^4 CFU/ml of water	18	18	10	18	Experiment	Data from Experiment 1 only. All birds shed for full 18 days of study.
Atterby et al. (2018)	MALL	<i>C. jejuni</i> thrush ST	10 ³ — 10 ⁴ CFU/ml	10 ² CFU/ml	10 ⁷ CFU/ml	5 × 10 ⁴ CFU/ml of water		16	10	18	Experiment	Data from Experiment 1 only. Mean value of $10^3 - 10^4$ CFU/ml occurred in first few days of experiment. Discrepancy in maximum shedding duration reported in main text abstract, results, and supporting table.
Atterby <i>et al.</i> (2018)	MALL	<i>C. jejuni</i> chicken ST	10 ⁴ CFU/ml	10 ² CFU/ml	10 ⁶ CFU/ml	5×10^4 CFU/ml of water		18	10	18	Experiment	Data from Experiment 1 only. 2/6 birds still shed bacteria at day 18. 10 ⁴ CFU/ml described as "peak mean level" [p. 3]
Glunder <i>et al.</i> (1992)	HERG	C. jejuni						35	27	329	Survey	Taken into lab
Levesque <i>et al.</i> (2000)	HERG	<i>Campylo</i> <i>bacter</i> spp.	2.44 × 10 ⁵ CFU/g	2×10^3 CFU/g	1.2 × 10 ⁷ CFU/g						Survey	Average for adults; min and max adult and juvenile

Lu <i>et al.</i> (2011)	CAGU	<i>Campylo</i> <i>bacter</i> spp.	6.7 × 10 ⁶ CE/g	340 CE/g	1×10^{8} CE/g						Survey	
Lu <i>et al.</i> (2013)	SACR	Campylo bacter spp.	5×10^3 CE/g								Survey	
Moriarty <i>et al.</i> (2011)	CANG	<i>Campylo</i> bacter spp.	4.84 × 10 ³ CFU/g								Survey	
Murphy <i>et al.</i> (2005)	MALL	Campylo bacter spp.	6×10^3 CFU/g								Survey	
Seguino <i>et al.</i> (2018)	RNPH	Campylo bacter spp.	$\begin{array}{c} 2.7\times10^4\\ \text{CFU/g} \end{array}$		1×10^8 CFU/g						Survey	
Waldenst rom <i>et al.</i> (2010)	European Robin	<i>C. jejuni</i> thrush ST				10 ⁵ CFU	6.8	10	8	25	Experiment	
Waldenst rom <i>et al.</i> (2010)	European Robin	<i>C. jejuni</i> human ST				10 ⁵ CFU		3	16	25	Experiment	Includes 8 thrush initially inoculated with <i>C. jejuni</i> human ST then reinoculated on day 14 (reported in main text of this manuscript) and control group of 8 birds inoculated on day 19 (not reported in main text of this manuscript)
Kauffma n & LeJeune (2011)	EUST	<i>E. coli</i> O157:H7 strain 977	10 ³ CFU/g	10 ¹ CFU/g	10 ⁶ CFU/g	$1 \times 10^{0.6}$ to 5×10^{6} CFU		14		14	Experiment	Infectious dose varied by strain; higher doses led to longer duration and higher intensity of shedding. Mean value reported is for higher doses.
Douman dji <i>et al.</i> (2010)	CAEG	Generic E. coli	6.6 log CFU/ml	4.0 log CFU/ml	9.3 log CFU/ml						Survey	

Fogarty <i>et al.</i> (2003)	Larus spp.	Generic E. coli	$\begin{array}{c} 1.4\times10^7\\ \text{to } 4.9\times\\ 10^8\end{array}$	<10 ⁵ CFU/g	1.9 × 10 ⁹ CFU/g						Survey	
Lu <i>et al.</i> (2013)	SACR	Generic E. coli	$\begin{array}{c} CFU/g \\ 6.9 \times 10^7 \\ CE/g \end{array}$								Survey	
Middleto n & Ambrose (2005)	CANG	Generic E. coli	$\frac{3.6 \times 10^5}{\text{CFU/g}}$	0	1×10^7 CFU/g						Survey	
Moriarty <i>et al.</i> (2011)	CANG	Generic E. coli	3.61 × 10 ⁴ CFU/g								Survey	
Murphy <i>et al.</i> (2005)	MALL	Generic E. coli	1.36 × 10 ⁵ CFU/g								Survey	
Nelson <i>et</i> <i>al.</i> (2008)	HERG	Generic E. coli	1.0 × 10 ⁶ CFU/g	1.9 × 10 ² CFU/g	2.5 × 10 ⁹ CFU/g						Survey	
Vogel <i>et</i> <i>al.</i> (2013)	SACR	Generic E. coli	2.8 × 10 ⁴ MPN/g						30		Survey	
Girdwoo d <i>et al.</i> (1985)	HERG	Salmonel la spp.	22 MPN/g		170 MPN/g		3	4	84	21	Survey	Taken into laboratory
Glunder <i>et al.</i> (1992)	HERG	S. typhimur ium						56	27	56	Survey	Taken into laboratory; one came in with <i>S.</i> <i>typhimurium</i> and spread to four others; treated at day 56
Levesque <i>et al.</i> (2000)	HERG	Salmonel la spp.	1.9 × 10 ⁶ CFU/g	$\begin{array}{c} 2.3\times10^2\\ \text{CFU/g} \end{array}$	2.4 × 10 ⁹ CFU/g						Survey	Average for adults; min. and max.for adults and juveniles
Albuquer que <i>et al.</i> (2013)	ROPI	S. Enteritidi s		$\begin{array}{c} 1.5\times10^4\\ \text{CFU/g} \end{array}$	2×10^5 CFU/g	$\begin{array}{c} 9.5\times10^7\\ \text{CFU/ml} \end{array}$		14	24	35	Experiment	Low dose inoculum
Albuquer que <i>et al.</i> (2013)	ROPI	S. Enteritidi s		1 × 10 ⁷ CFU/g	2 × 10 ⁹ CFU/g	9.5 × 10 ⁹ CFU/ml		7	24	35	Experiment	High dose inoculum

Connolly <i>et al.</i>	HOSP	S. Typhimu	0 CFU/g	0 CFU/g	10 ¹ CFU	0	6	10	Experiment	100% survival
(2006)		rium DT160								
Connolly <i>et al.</i> (2006)	HOSP	S. Typhimu rium DT160			10 ² CFU	5	6	10	Experiment	100% survival
Connolly <i>et al.</i> (2006)	HOSP	S. Typhimu rium DT160			10 ³ CFU	10	6	10	Experiment	100% survival
Connolly et al. (2006)	HOSP	S. Typhimu rium DT160			10 ⁵ CFU		6	10	Experiment	2/6 birds died on day 8 and day 10
Connolly <i>et al.</i> (2006)	HOSP	S. Typhimu rium DT160			2×10^8 CFU	8	6	10	Experiment	6/6 birds died on days 3, 4, 5, 6, and 8
Douman dji <i>et al.</i> (2010)	CAEG	Salmonel la spp.	5.78 log CFU/ml						Survey	

Highest prevalence Lowest prevalence Highest concentration Lowest concentration Species/strain Significant Significant Study Notes Bird Campylobacter No Pao et al. (2014) Same Same Passerines, doves spp. Campylobacter Always low Colles et al. Same Not EUST Same (2009)coli tested Yogasundram et Campylobacter Autumn Not Ducks. Galliformes. Some turned in for al. (1989) jejuni tested owls, doves, etc. necropsy and some hunted Campylobacter Colles et al. Spring EUST Not tested (2009)lari Sippy *et al*. Campylobacter Autumn HOSP, RBGR, WTSP Spring Not (2012)tested spp. Campylobacter Wahlstrom *et al*. Spring Summer Not Gulls (2003)tested spp. Campylobacter Waldenstrom et Autumn Not European birds, EUST Tested spring and Spring autumn migration al. (2002) tested spp. Campylobacter AMCR Taff *et al.* (2016) Winter Yes Summer jejuni Colles et al. Campylobacter EUST Summer Winter Yes (2009)jejuni Gargiulo et al. Campylobacter Summer Winter Yes ROPI (2014)jejuni Mohan et al. Campylobacter Winter/ Yes EUST, MALL Summer Spring (2013)spp. Vazquez et al. Campylobacter ROPI Spring Autumn Yes (2010)spp. Hald et al. (2016) Campylobacter ROPI, HOSP, ETSP, Summer Winter Yes EUST, European birds spp.

Table S9. Seasonal variation in bacterial prevalence and shedding. Bird species are identified according to AOU four-letter codes (see Supplementary Data S2). Studies that tested for significant differences between seasons are highlighted in bold.

Levesque <i>et al.</i> (2000)	<i>Campylobacter</i> spp.				Same		No	RBGU	
Morabito <i>et al.</i> (2001)	Shiga toxin- producing <i>E.</i> <i>coli</i> (STEC)	Summer	Winter	No				ROPI	
Hsu et al. (2016)	E. coli	Winter		Not tested				CANG	
Medhanie <i>et al.</i> (2014)	<i>E. coli</i> O157:H7	Autumn/W inter		Not tested				EUST	
Medhanie <i>et al.</i> (2014)	<i>E. coli</i> O157:H7	Autumn		Not tested				EUST	
Kullas <i>et al.</i> (2002)	E. coli	Summer	Winter	Yes				CANG	
Gargiulo <i>et al.</i> (2014)	E. coli O157	Summer	Winter	Yes				ROPI	
Pedersen <i>et al.</i> (2006)	Pathogenic <i>E. coli</i>	Summer/ Autumn	Winter	Yes				ROPI	
Hughes <i>et al.</i> (2009)	STEC (<i>eae</i>) (Shiga toxin- producing <i>E</i> . <i>coli</i> attachment gene)	Autumn	Winter	Yes				Owls, ducks, geese, doves, passerines, falcons, shorebirds	
Hughes <i>et al.</i> (2009)	STEC (<i>stx1</i>) (Shiga toxin- producing gene for <i>E. coli</i>)	Summer	Winter	Yes				Owls, ducks, geese, doves, passerines, falcons, shorebirds	
Hughes <i>et al.</i> (2009)	STEC (<i>stx2</i>) (Shiga toxin- producing gene for <i>E. coli</i>)	Autumn	Spring	Yes				Owls, ducks, geese, doves, passerines, falcons, shorebirds	
Middleton & Ambrose (2005)	Generic E. coli	Autumn	Winter	Not tested	Winter	Autum n	Not tested	CANG	
Gaukler <i>et al.</i> (2009)	Generic E. coli	Summer	Winter	Yes				EUST	
Torres-Mejia <i>et</i> <i>al.</i> (2018)	Salmonella Braenderup	Same	Same	No				ROPI	Dry versus wet season
Monaghan <i>et al.</i> (1985)	Salmonella spp.	Same	Same	No				HERG	Male

Pedersen et al.	Salmonella	Same	Same	No	ROPI	
(2006)	spp.					
Butterfield et al.	Salmonella	Same	Same	No	HERG	Adults
(1983)	spp.					
Hernandez et al.	Salmonella	Same		No	WHIB	
(2016)	spp.					
Galbraith et al.	Salmonella	Same		No	HOSP	
(2017)	Typhimurium					
Skov et al. (2008)	Salmonella	Same	Same	No	BARS, HOSP, EUST,	
	Typhimurium				European birds	
Coulson et al.	Salmonella	Same		Not	HERG	
(1983)	Montevideo			tested		
Millan et al.	Salmonella	Winter/Spr		Not	Raptors	Necropsies
(2004)	spp.	ing		tested		-
Williams et al.	Salmonella	Autumn		Not	Gull	
(1977)	spp.			tested		
Gaukler et al.	Salmonella	Same		Not	EUST	
(2009)	spp.			tested		
Girdwood et al.	Salmonella	Autumn	Winter	Not	HERG	
(1985)	spp.			tested		
Gorski et al.	Salmonella	Summer		Not	AMCR, WCSP, SPTO	
(2011)	spp.			tested		
Hughes et al.	Salmonella	Winter	Summer	Not	EUST, HOSP, EUCD,	Necropsies
(2008)	spp.			tested	HERG, European birds	1
Lawson et al.	Salmonella	Winter		Not	HOSP, European birds	Necropsies
(2010)	spp.			tested		1
Lopez-Martin et	Salmonella	Winter	Summer	Not	FRGU, Kelp Gull	
al. (2011)	spp.			tested		
Pennycott et al.	Salmonella	Winter		Not	HOSP, ETSP, ROPI,	Necropsies
(2006)	Typhimurium			tested	gulls, raptors, European	1
	•				passerines	
Refsum et al.	Salmonella	Winter/Spr		Not	Small passerines	Necropsies
(2002)	Typhimurium	ing		tested		
Refsum et al.	Salmonella	Same	Same	Not	Gulls, ducks, doves,	Necropsies
(2002)	Typhimurium			tested	corvids, geese, murres,	1
. /	~ 1				raptors	
Wobeser &	Salmonella	Winter		Not	HOSP	Necropsies
Finlayson (1969)	Typhimurium			tested		·

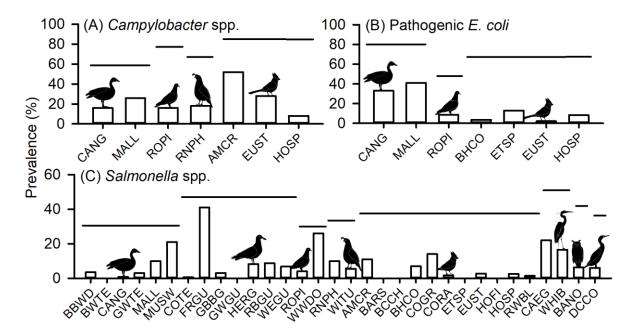
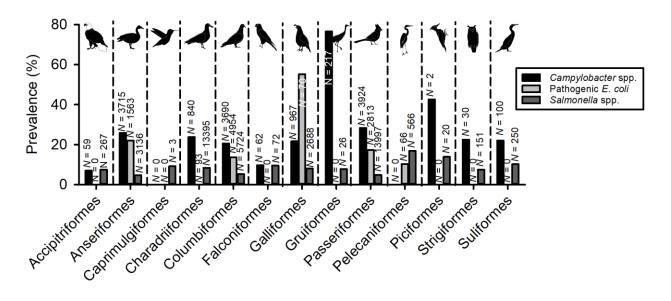

Daoust et al.	Salmonella	Winter/Spr		Not			PISI, PUFI, EVGR,	Necropsies
(2000)	Typhimurium	ing		tested			AMGO, CORE	_
Faddoul et al.	Salmonella	Winter		Not			BHCO, HOSP, HERG,	Necropsies
(1966)	Typhimurium			tested			WTSP	_
Fukui et al.	Salmonella	Winter		Not			ETSP	Necropsies
(2014)	Typhimurium			tested				_
Grigar et al.	Salmonella	Summer	Spring	Not			GTGR	
(2016)	Typhimurium			tested				
Hernandez et al.	Salmonella	Winter		Not			PISI, NOCA	Necropsies
(2012)	Typhimurium			tested				
Hurvell et al.	Salmonella	Winter	Autumn	Not			HOSP, ETSP, European	Necropsies
(1975)	Typhimurium			tested			birds	
Monaghan et al.	Salmonella	Winter	Summer	Yes			HERG	Female
(1985)	spp.							
Rodriguez et al.	Salmonella	Autumn	Spring	Yes			FRGU	
(2012)	spp.							
Butterfield et al.	Salmonella	Summer	Winter	Yes			HERG	Juveniles
(1983)	spp.							
Gonzalez-Acuna	Salmonella	Summer		Yes			ROPI	
et al. (2007)	spp.							
Gargiulo et al.	Salmonella	Summer	Winter	Yes			ROPI	
(2014)	Typhimurium							
Levesque et al.	Salmonella				Same	No	RBGU	
(2000)	spp.							

Table S10. Studies seeking to demonstrate crossover of bacteria between wild birds and humans and/or livestock, including molecular technique used (comparison method), extent of coverage/comparison group, the number of isolates or strains from wild birds that matched human/livestock isolates/strain types, number of birds tested or number of bird isolates, and wild bird species tested. Bird species are identified according to AOU four-letter codes (see Supplementary Data S2). *Bln*I = restriction enzyme for PFGE, *fla*A = flagellin-encoding A gene, HiMLST = high-throughput multilocus sequence typing, *Kpn*I = restriction enzyme for PFGE, MLST = Multilocus sequence typing, MLVA = Multiple loci variable-number tandem repeat analysis, N/A = not available, NCBI BLAST = National Center for Biotechnology Information Basic Local Alignment Search Tool, *Not*I = restriction enzyme for PFGE, *PFGE* = pulsed-field gel electrophoresis, *por*A = major outer-membrane protein gene, PubMLST = Public databases for molecular typing, RFLP = restriction fragment length polymorphism, rRNA = ribosomal ribonucleic acid, *Sfi*I = restriction enzyme for PFGE, *Sma*I = restriction enzyme for PFGE, *Sv* = sequence type, STEC = Shiga toxin-producing *E. coli*, SVR = short variable region, VTEC = Verocytotoxin-producing E. coli, *Xba*I = restriction enzyme for PFGE


Study	Bacteria	Comparison method	Comparison group	Human/ livestock	Tested	Species	Notes
Mohan <i>et al</i> . (2013)	Campylobacter jejuni	MLST; <i>fla</i> A SVR and <i>por</i> A gene sequence typing	PubMLST	14	43	EUST, MALL	Sequence types
Palmgren <i>et al.</i> (2004)	Campylobacter jejuni	PFGE (<i>Sma</i> I and <i>Kpn</i> I)	Malmö, Sweden region database of <i>C. jejuni</i> profiles with gull, chicken, and human isolates; 172 profiles from wild bird and human isolates from Kalmar County, Sweden	2	2	PEFA	
Pao <i>et al</i> . (2014)	Campylobacter jejuni	PFGE (SmaI)	Small ruminants from farms on which birds were caught	0	19	BHCO, CHSP, EUST, HOSP, MODO, ROPI	
Sanad <i>et al.</i> (2013)	Campylobacter jejuni	PFGE (<i>Sma</i> I); Antimicrobial resistance typing; MLST (7 housekeeping genes)	Dairy cattle from farms on which starlings were caught; <i>Campylobacter</i> MLST database for ST	20	57	EUST	Comparing EUST to cattle on feedlot
Weis et al. (2014)	Campylobacter jejuni	16S rRNA and Sanger sequencing	NCBI BLAST reference sequences	5	65	AMCR	
Lawton <i>et al.</i> (2018)	Campylobacter jejuni subsp. jejuni	Whole-genome sequencing and MLST	Chickens; <i>Campylobacter</i> MLST database for ST	3	19	AMCR, MALL	

Colles <i>et al.</i> (2009)	Campylobacter spp.	MLST and <i>fla</i> A SVR sequence typing	uence typing		277	EUST	Unclear how many matches there were
Colles <i>et al.</i> (2011)	<i>Campylobacter</i> spp.	MLST and <i>fla</i> A SVR sequence typing	PubMLST	1	109	MALL	
Gardner <i>et al.</i> (2011)	<i>Campylobacter</i> spp.	PFGE (SmaI and KpnI)	Clinical isolates, PulseNet, farm environmental samples	3	14	SACR	
Nebola <i>et al.</i> (2007)	Campylobacter spp.	PFGE (<i>Sma</i> I) and <i>fla</i> -RFLP	Farmed and wild pheasants	2	51	RNPH	Comparing farmed to wild RNPH
Seguino <i>et al.</i> (2018)	<i>Campylobacter</i> spp.	HiMLST	PubMLST	16	80	RNPH	
Sippy <i>et al.</i> (2012)	Campylobacter spp.	PFGE (<i>Sma</i> I or <i>Kpn</i> I) and MLST on 7 target gene loci (<i>asp</i> A, <i>gln</i> A, <i>glt</i> A, <i>gly</i> A, <i>pgm</i> , <i>tkt</i> and <i>unc</i> A)	PubMLST, sheep abortion isolates, small wild mammals	2	9	HOSP, RBGR, WTSP	Comparing to sheep
Torres-Mejia et al. (2018)	Salmonella Braenderup	PFGE	N/A but mentions it matching human clinical isolate from Costa Rica	0	34	ROPI	
Hernandez <i>et al.</i> (2012)	Salmonella enterica	PFGE and MLVA	PulseNet, archived wild bird outbreak strains	28	72	NOCA, AMGO, PUFI, PISI, BHCO, CORE	Necropsy study
Haesendonck <i>et</i> <i>al.</i> (2016)	Salmonella Enteritidis	PFGE (XbaI, NotI, SfiI)	BioNumerics S. Enteritidis database at the Institute for Agricultural and Fisheries Research including human, poultry, wildlife, and food isolates from Belgium 1999– 2010	10	10	ROPI	
Luque <i>et al.</i> (2009)	<i>Salmonella</i> Indiana	PFGE (XbaI)	Sheep from farm with outbreak	6	6	ROPI, turtledove	
Gorski <i>et al.</i> (2011)	Salmonella spp.	PFGE (<i>Xba</i> I and <i>Bln</i> I)	PulseNet, mammalian wildlife, environmental samples	0	7	AMCR, SPTO, WCSP	

Hernandez <i>et al.</i> (2016)	Salmonella spp.	PFGE	PulseNet; archived wild bird, domesticated bird, environmental, and human isolates	15	72	WHIB	
Pao et al. (2014)	Salmonella spp.	PFGE (XbaI)	Small ruminants from farms on which birds were caught	0	1	EUST	
Hughes <i>et al.</i> (2008)	Salmonella Typhimurium	PFGE (<i>Xba</i> I and <i>Spe</i> I)	N/A	0	32	HOSP, EUST, EUCD, European birds	Necropsy study
Skov <i>et al.</i> (2008)	Salmonella Typhimurium	PFGE (<i>Xba</i> I and <i>Bln</i> I)	Cattle, pigs, pets, rodents, and insects from farms on which birds were caught	82	82	HOSP, BARS, EUST, European birds	At outbreak livestock farms
Morabito <i>et al.</i> (2001)	Shiga toxin- producing <i>E. coli</i> (STEC)	PFGE (XbaI)	Human O45 STEC strain	0	18	ROPI	
Nielsen <i>et al.</i> (2004)	Verocytotoxin- producing <i>E. coli</i> (VTEC)	PFGE (XbaI)	Cattle, pigs, and rats from farms on which birds were caught	1	3	EUST	

Fig. S7. Estimated prevalence of (A) *Campylobacter* spp., (B) pathogenic *E. coli*, and (C) *Salmonella* spp. for all species with enough observations to estimate prevalence with 5% precision. Bars span taxonomic groups with illustrated representations of order. Four-letter codes follow the American Ornithological Society and can be found in Supplementary Data S2.

Fig. S8. Estimated prevalence of *Campylobacter* spp., pathogenic *E. coli*, and *Salmonella* spp. by taxonomic order. Number above bar shows number of individuals tested for each pathogen by order.

Table S11. Prevalence of *Campylobacter* spp. by taxonomic order. Total number of individuals reported positive and tested for *Campylobacter* spp. across the literature and prevalence (total positive across the literature/total number tested; *Campylobacter* prevalence) by taxonomic order. Estimated prevalence by taxonomic order using mixed–effects models and corresponding standard errors and 95% confidence intervals are also presented. N/A, not available.

Order	Positive Campylobacter spp.	Tested <i>Campylobacter</i> spp.	<i>Campylobacter</i> spp. prevalence	Estimated prevalence	Estimated standard error	Estimated 95% confidence interval
Accipitriformes	3	59	5.1%	7.0%	14.0%	(-20.4, 34.4%)
Anseriformes	997	3715	26.8%	25.9%	4.7%	(16.6%, 35.1%)
Caprimulgiformes	0	0	N/A	N/A	N/A	N/A
Charadriiformes	171	840	20.4%	23.8%	5.6%	(12.7%, 34.8%)
Ciconiiformes	0	0	N/A	N/A	N/A	N/A
Columbiformes	1034	3690	28.0%	20.5%	7.0%	(6.8%, 34.2%)
Coraciiformes	0	0	N/A	N/A	N/A	N/A
Cuculiformes	0	0	N/A	N/A	N/A	N/A
Falconiformes	6	62	9.7%	9.7%	24.1%	(-37.5, 56.9%)
Galliformes	221	967	22.9%	21.7%	7.2%	(7.6%, 35.7%)
Gaviiformes	0	0	N/A	N/A	N/A	N/A
Gruiformes	134	217	61.8%	76.6%	10.6%	(55.9%, 97.3%)
Passeriformes	1270	3924	32.4%	28.4%	4.2%	(20.2%, 36.6%)
Pelecaniformes	0	0	N/A	N/A	N/A	N/A
Piciformes	0	2	0.0%	42.6%	22.9%	(-2.3%, 87.5%)
Podicipediformes	0	0	N/A	N/A	N/A	N/A
Strigiformes	1	30	3.3%	22.5%	9.9%	(3.1%, 41.8%)
Suliformes	22	100	22.0%	22.0%	24.1%	(-25.3%, 69.3%)

Comparison	Estimate	SE	Ζ	P
Gruiformes – Passeriformes	-0.48	0.11	-4.51	<0.0001
Accipitriformes – Gruiformes	0.70	0.17	4.03	<0.0001
Galliformes – Gruiformes	0.55	0.12	4.51	<0.0001
Columbiformes – Gruiformes	0.56	0.12	4.65	<0.0001
Charadriiformes – Gruiformes	0.53	0.11	4.69	<0.0001
Anseriformes – Gruiformes	0.51	0.11	4.73	<0.0001
Gruiformes – Strigiformes	-0.54	0.14	-3.88	0.0001
Falconiformes – Gruiformes	0.67	0.26	2.55	0.011
Gruiformes – Suliformes	-0.55	0.26	-2.07	0.038
Accipitriformes – Passeriformes	0.21	0.14	1.51	0.13
Accipitriformes – Anseriformes	0.19	0.14	1.31	0.19
Columbiformes – Passeriformes	0.079	0.068	1.16	0.25
Accipitriformes – Charadriiformes	0.17	0.15	1.14	0.26
Accipitriformes – Galliformes	0.15	0.15	0.95	0.34
Galliformes – Passeriformes	0.067	0.071	0.95	0.34
Accipitriformes – Strigiformes	0.15	0.17	0.93	0.35
Accipitriformes – Columbiformes	0.13	0.15	0.89	0.38
Charadriiformes – Passeriformes	0.046	0.058	0.81	0.42
Falconiformes – Passeriformes	0.19	0.24	0.77	0.44
Anseriformes – Columbiformes	-0.054	0.074	-0.73	0.47
Anseriformes – Falconiformes	-0.16	0.25	-0.66	0.51
Passeriformes – Strigiformes	-0.059	0.10	-0.61	0.54
Charadriiformes – Falconiformes	-0.14	0.25	-0.57	0.57
Anseriformes – Galliformes	-0.042	0.075	-0.56	0.58
Accipitriformes – Suliformes	0.15	0.28	0.54	0.59
Anseriformes – Passeriformes	0.025	0.047	0.53	0.59
Falconiformes – Strigiformes	0.13	0.26	0.49	0.62
Falconiformes – Galliformes	0.12	0.25	0.48	0.63
Columbiformes – Falconiformes	-0.11	0.25	-0.43	0.67
Charadriiformes – Columbiformes	-0.033	0.080	-0.41	0.68
Falconiformes – Suliformes	0.12	0.34	0.36	0.72
Anseriformes – Charadriiformes	-0.021	0.061	-0.35	0.73
Anseriformes – Strigiformes	-0.034	0.10	-0.34	0.74
Passeriformes – Suliformes	-0.064	0.24	-0.26	0.79
Charadriiformes – Galliformes	-0.021	0.083	-0.25	0.80
Columbiformes – Strigiformes	0.020	0.11	0.17	0.86
Anseriformes – Suliformes	-0.039	0.25	-0.16	0.88
Columbiformes – Galliformes	0.012	0.091	0.13	0.90

Table S12. Tukey HSD pairwise comparisons of *Campylobacter* spp. prevalence in avian taxonomic orders. Values in bold indicate the comparison was significant at P = 0.05; SE = standard error.

Charadriiformes – Strigiformes	-0.013	0.11	-0.12	0.90
Accipitriformes – Falconiformes	0.026	0.28	0.09	0.92
Charadriiformes – Suliformes	-0.018	0.25	-0.07	0.94
Galliformes – Strigiformes	0.008	0.12	0.07	0.94
Columbiformes – Suliformes	0.015	0.25	0.06	0.95
Strigiformes – Suliformes	-0.005	0.26	-0.02	0.99
Galliformes – Suliformes	0.003	0.25	0.01	0.99

Table S13. Prevalence of pathogenic (path) *E. coli* by taxonomic order. Total number of individuals reported positive and tested for pathogenic *E. coli* across the literature and prevalence (total positive across the literature/total number tested; Path *E. coli* prevalence) by taxonomic order. Estimated prevalence by taxonomic order using mixed-effects models and corresponding standard errors and 95% confidence intervals are also presented. N/A, not available.

Order	Positive path E. coli	Tested path <i>E.</i> <i>coli</i>	Path <i>E. coli</i> prevalence	Estimated prevalence	Estimated standard error	Estimated 95% confidence interval
Accipitriformes	0	0	N/A	N/A	N/A	N/A
Anseriformes	553	1563	35.4%	22.1%	10.3%	(2.0%, 42.2%)
Caprimulgiformes	0	0	N/A	N/A	N/A	N/A
Charadriiformes	0	93	0.0%	-1.7%	20.9%	(-42.6%, 39.2%)
Ciconiiformes	0	0	N/A	N/A	N/A	N/A
Columbiformes	402	4954	8.1%	13.6	3.5	(6.7%, 20.5%)
Coraciiformes	0	0	N/A	N/A	N/A	N/A
Cuculiformes	0	0	N/A	N/A	N/A	N/A
Falconiformes	0	0	N/A	N/A	N/A	N/A
Galliformes	40	70	57.1%	55.2%	16.6%	(22.6%, 87.8%)
Gaviiformes	0	0	N/A	N/A	N/A	N/A
Gruiformes	0	0	N/A	N/A	N/A	N/A
Passeriformes	179	2439	7.3%	17.3%	8.3%	(1.1%, 33.6%)
Pelecaniformes	1	66	1.5%	10.3%	13.4%	(-15.5%, 36.0%)
Piciformes	0	0	N/A	N/A	N/A	N/A
Podicipediformes	0	0	N/A	N/A	N/A	N/A
Strigiformes	0	0	N/A	N/A	N/A	N/A
Suliformes	0	0	N/A	N/A	N/A	N/A

Comparison	Estimate	SE	Z	P
Charadriiformes – Galliformes	0.57	0.26	2.23	0.026
Galliformes – Pelecaniformes	-0.45	0.21	-2.17	0.030
Galliformes – Passeriformes	-0.38	0.18	-2.12	0.034
Anseriformes – Galliformes	0.33	0.18	1.80	0.072
Columbiformes – Galliformes	0.41	0.26	1.56	0.12
Anseriformes – Charadriiformes	-0.24	0.22	-1.07	0.28
Charadriiformes – Passeriformes	0.19	0.22	0.87	0.38
Anseriformes – Pelecaniformes	-0.12	0.16	-0.74	0.46
Charadriiformes – Columbiformes	0.16	0.29	0.56	0.58
Passeriformes – Pelecaniformes	-0.071	0.14	-0.50	0.61
Charadriiformes – Pelecaniformes	0.12	0.24	0.49	0.62
Anseriformes – Passeriformes	-0.048	0.12	-0.39	0.70
Anseriformes – Columbiformes	-0.077	0.23	-0.34	0.73
Columbiformes – Pelecaniformes	-0.042	0.24	-0.18	0.86
Columbiformes – Passeriformes	0.029	0.22	0.13	0.89

Table S14. Tukey HSD pairwise comparisons of pathogenic *E. coli* prevalence in avian taxonomic orders. Values in bold indicate the comparison was significant at P = 0.05; SE = standard error.

Table S15. Prevalence of *Salmonella* spp. by taxonomic order. Total number of individuals reported positive and tested for *Salmonella* spp. across the literature and prevalence (total positive across the literature/total number tested; *Salmonella* prevalence) by taxonomic order. Estimated prevalence by taxonomic order using mixed-effects models and corresponding standard errors and 95% confidence intervals are also presented. N/A, not available.

Order	Positive Salmonella spp.	Tested Salmonella spp.	Salmonella spp. prevalence	Estimated prevalence	Estimated standard error	Estimated 95% confidence interval
Accipitriformes	22	267	8.2%	7.5%	3.5%	(0.7%, 14.3%)
Anseriformes	71	3136	2.3%	4.7%	1.2%	(2.3%, 7.0%)
Caprimulgiformes	0	3	0.0%	9.2%	17.9%	(-25.9%, 44.2%)
Charadriiformes	1063	13395	7.9%	8.4%	1.5%	(5.5%, 11.2%)
Ciconiiformes	0	0	N/A	N/A	N/A	N/A
Columbiformes	211	5724	3.7%	5.2%	1.3%	(2.7%, 7.7%)
Coraciiformes	0	0	N/A	N/A	N/A	N/A
Cuculiformes	0	0	N/A	N/A	N/A	N/A
Falconiformes	2	72	2.8%	9.5%	6.2%	(-2.7%, 21.8%)

Galliformes	52	2688	1.9%	8.0%	2.6%	(2.8%, 13.1%)
Gaviiformes	0	0	N/A	N/A	N/A	N/A
Gruiformes	1	26	3.8%	7.8%	6.6%	(-5.0%, 20.7%)
Passeriformes	377	13997	2.7%	4.8%	1.0%	(2.9%, 6.8%)
Pelecaniformes	136	566	24.0%	16.8%	3.7%	(9.6%, 24.0%)
Piciformes	3	20	15.0%	13.9%	6.4%	(1.2%, 26.5%)
Podicipediformes	0	0	N/A	N/A	N/A	N/A
Strigiformes	11	151	7.3%	7.4%	3.1%	(1.5%, 13.4%)
Suliformes	15	250	6.0%	10.2%	3.2%	(4.0%, 16.4%)

Table S16. Tukey HSD pairwise comparisons of *Salmonella* spp. prevalence in avian taxonomic orders. Values in bold indicate the comparison was significant at P = 0.05; SE = standard error.

Comparisons	Estimate	SE	Ζ	P
Passeriformes – Pelecaniformes	0.12	0.037	3.25	0.0011
Anseriformes – Pelecaniformes	0.12	0.038	3.23	0.0012
Columbiformes – Pelecaniformes	0.12	0.038	3.08	0.0020
Charadriiformes – Passeriformes	-0.035	0.013	-2.70	0.007
Anseriformes – Charadriiformes	0.037	0.015	2.45	0.014
Charadriiformes – Pelecaniformes	0.084	0.039	2.19	0.029
Charadriiformes – Columbiformes	-0.032	0.016	-2.02	0.043
Pelecaniformes – Strigiformes	-0.094	0.047	-1.99	0.047
Galliformes – Pelecaniformes	0.088	0.045	1.97	0.049
Accipitriformes – Pelecaniformes	0.093	0.050	1.86	0.064
Anseriformes – Suliformes	0.056	0.032	1.72	0.085
Passeriformes – Suliformes	0.054	0.031	1.72	0.086
Columbiformes – Suliformes	0.050	0.032	1.54	0.12
Anseriformes – Piciformes	0.092	0.064	1.43	0.15
Passeriformes – Piciformes	0.091	0.064	1.42	0.16
Pelecaniformes – Suliformes	-0.066	0.048	-1.38	0.17
Columbiformes – Piciformes	0.087	0.064	1.35	0.18
Anseriformes – Galliformes	0.033	0.028	1.19	0.24
Galliformes – Passeriformes	-0.031	0.027	-1.16	0.25
Falconiformes – Pelecaniformes	0.072	0.072	1.00	0.32
Columbiformes – Galliformes	0.028	0.028	0.98	0.33
Anseriformes – Strigiformes	0.028	0.030	0.94	0.35
Piciformes – Strigiformes	-0.064	0.071	-0.91	0.36
Accipitriformes – Piciformes	0.064	0.073	0.88	0.38
Passeriformes – Strigiformes	0.026	0.030	0.86	0.39
Galliformes – Piciformes	0.059	0.069	0.85	0.39
Charadriiformes – Piciformes	0.055	0.065	0.85	0.40
Accipitriformes – Anseriformes	-0.028	0.036	-0.78	0.44

Anseriformes – Falconiformes	0.049	0.063	0.77	0.44
Falconiformes – Passeriformes	-0.047	0.063	-0.75	0.45
Accipitriformes – Passeriformes	-0.026	0.036	-0.74	0.46
Columbiformes – Strigiformes	0.023	0.031	0.72	0.47
Columbiformes – Falconiformes	0.044	0.064	0.69	0.49
Strigiformes – Suliformes	0.028	0.043	0.64	0.52
Charadriiformes – Suliformes	0.018	0.029	0.64	0.52
Accipitriformes – Columbiformes	-0.023	0.037	-0.62	0.54
Accipitriformes – Suliformes	0.027	0.047	0.59	0.56
Galliformes – Suliformes	0.022	0.041	0.55	0.58
Piciformes – Suliformes	-0.037	0.071	-0.52	0.60
Anseriformes – Gruiformes	0.032	0.066	0.49	0.63
Falconiformes – Piciformes	0.043	0.090	0.48	0.63
Gruiformes – Passeriformes	-0.030	0.066	-0.46	0.65
Anseriformes – Columbiformes	0.005	0.013	0.43	0.67
Columbiformes – Gruiformes	0.026	0.066	0.40	0.69
Pelecaniformes – Piciformes	-0.029	0.074	-0.40	0.69
Columbiformes – Passeriformes	-0.004	0.010	-0.38	0.71
Accipitriformes – Falconiformes	0.021	0.063	0.33	0.74
Falconiformes – Strigiformes	-0.021	0.068	-0.31	0.76
Charadriiformes – Strigiformes	-0.009	0.032	-0.29	0.78
Accipitriformes – Charadriiformes	0.009	0.037	0.24	0.81
Falconiformes – Galliformes	-0.016	0.068	-0.23	0.81
Falconiformes – Gruiformes	-0.017	0.090	-0.19	0.85
Anseriformes – Passeriformes	0.002	0.009	0.19	0.85
Charadriiformes – Falconiformes	0.012	0.064	0.18	0.85
Charadriiformes – Galliformes	-0.004	0.029	-0.14	0.89
Galliformes – Strigiformes	-0.005	0.040	-0.13	0.90
Accipitriformes – Galliformes	0.005	0.044	0.11	0.91
Falconiformes – Suliformes	0.007	0.070	0.094	0.93
Charadriiformes – Gruiformes	-0.005	0.067	-0.080	0.94
Accipitriformes – Gruiformes	0.004	0.074	0.050	0.96
Galliformes – Gruiformes	-0.001	0.071	-0.018	0.99
Accipitriformes – Strigiformes	-0.0002	0.042	-0.005	1.00

Table S17. Chi-square test for bias in testing within bird orders for *Campylobacter* spp., *E. coli*, and *Salmonella* spp. for a vulnerable farming population. Comparison uses percentage of species within an order. Exp. = expected, path = pathogenic, gen = generic; *Campylobacter* spp. (χ^{2}_{13} =73,612, *P* < 0.0001), pathogenic *E. coli* (χ^{2}_{13} =90,389, *P* < 0.0001), generic *E. coli* (χ^{2}_{13} =69,170, *P* < 0.0001), and *Salmonella* spp. (χ^{2}_{13} =215,468, *P* < 0.0001).

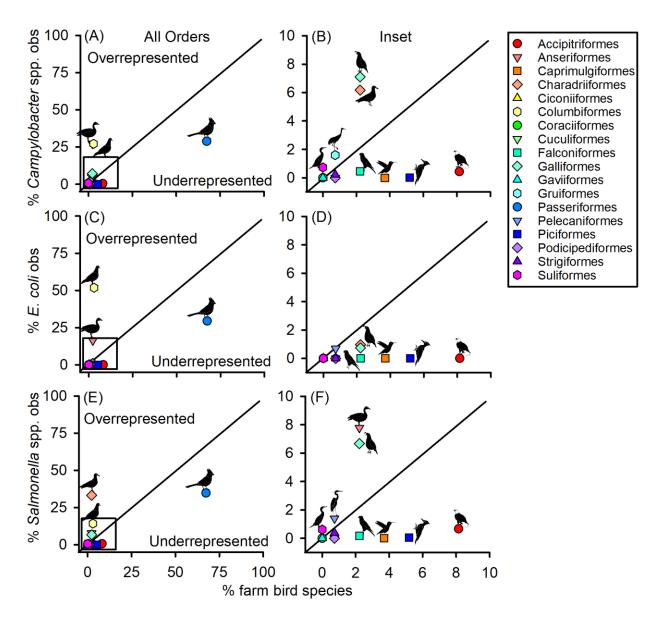

Order	Species	% Farm bird species	Tested <i>Campylobacter</i> spp.	Exp. <i>Campylobacter</i> spp.	Tested path E. coli	Exp. path <i>E. coli</i>	Tested gen <i>E. coli</i>	Exp. gen <i>E. coli</i>	Tested Salmonella spp.	Exp. Salmonella spp.
Accipitriformes	11	8.15%	59	1109	0	779	111	251	267	3283
Anseriformes	3	2.22%	3715	302	1563	212	1949	69	3136	895
Caprimulgiformes	5	3.70%	0	504	0	354	0	114	3	1492
Charadriiformes	3	2.22%	843	302	93	212	730	69	13395	895
Columbiformes	4	2.96%	3690	403	4954	283	1055	91	5724	1194
Cuculiformes	1	0.74%	0	101	0	71	0	23	0	298
Falconiformes	3	2.22%	62	302	0	212	1	69	72	895
Galliformes	3	2.22%	967	302	70	212	180	69	2688	895
Gruiformes	1	0.74%	217	101	0	71	30	23	26	298
Passeriformes	91	67.41%	3924	9171	2439	6443	2872	2080	13997	27162
Pelecaniformes	1	0.74%	0	101	66	71	72	23	566	298
Piciformes	7	5.19%	2	705	0	496	0	160	20	2089
Podicipediformes	1	0.74%	0	101	0	71	0	23	0	298
Strigiformes	1	0.74%	30	101	0	71	2	23	151	298

Table S18. Chi-square test for bias in testing within bird orders for *Campylobacter* spp., *E. coli*, and *Salmonella* spp. for a vulnerable farming population. Comparison uses percentage of total sightings. Exp. = expected, path = pathogenic, gen = generic; *Campylobacter* spp. (χ^{2}_{13} =172,355, *P* < 0.0001), pathogenic *E. coli* (χ^{2}_{13} =58,180, *P* < 0.0001), generic *E. coli* (χ^{2}_{13} =318,036, *P* < 0.0001).

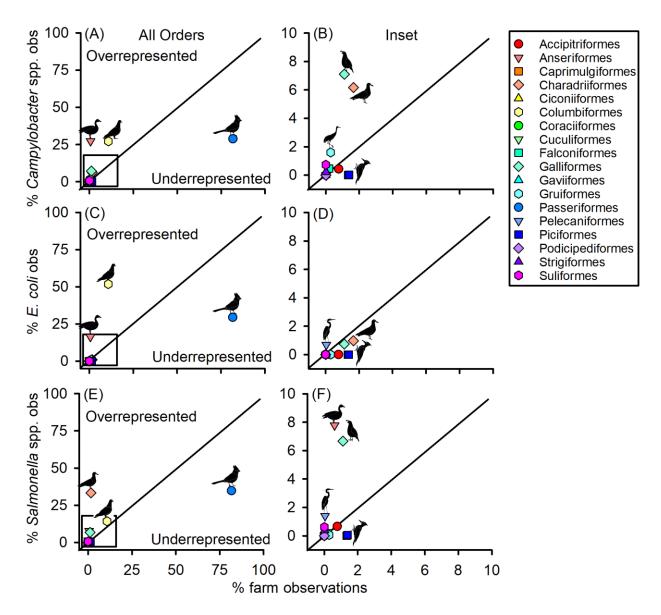

Order	Species	% Sightings	Tested <i>Campylobacter</i> spp.	Exp. Campylobacter spp.	Tested path E. coli	Exp. path <i>E. coli</i>	Tested gen <i>E. coli</i>	Exp. gen <i>E. coli</i>	Tested Salmonella spp.	Exp. Salmonella spp.
Accipitriformes	11	0.78%	59	107	0	75	111	24	267	316
Anseriformes	3	0.62%	3715	84	1563	59	1949	19	3136	249
Caprimulgiformes	5	1.34%	0	183	0	128	0	41	3	541
Charadriiformes	3	1.67%	843	227	93	159	730	51	13395	672
Columbiformes	4	10.79%	3690	1468	4954	1032	1055	333	5724	4348
Cuculiformes	1	0.01%	0	1	0	1	0	0	0	3
Falconiformes	3	0.20%	62	27	0	19	1	6	72	79
Galliformes	3	1.12%	967	152	70	107	180	34	2688	450
Gruiformes	1	0.29%	217	40	0	28	30	9	26	119
Passeriformes	91	81.72%	3924	11119	2439	7812	2872	2522	13997	32929
Pelecaniformes	1	0.05%	0	6	66	4	72	1	566	18
Piciformes	7	1.40%	2	190	0	133	0	43	20	562
Podicipediformes	1	0.01%	0	1	0	1	0	0	0	3
Strigiformes	1	0.02%	30	2	0	1	2	0	151	6

Table S19. Number and percentage of farm bird species and number of combined sightings of species and percentage of total sightings for species with enough data to calculate prevalence for three, two, or one pathogen, those with some data and those with no data. Data on farm bird species from Smith *et al.* (2019).

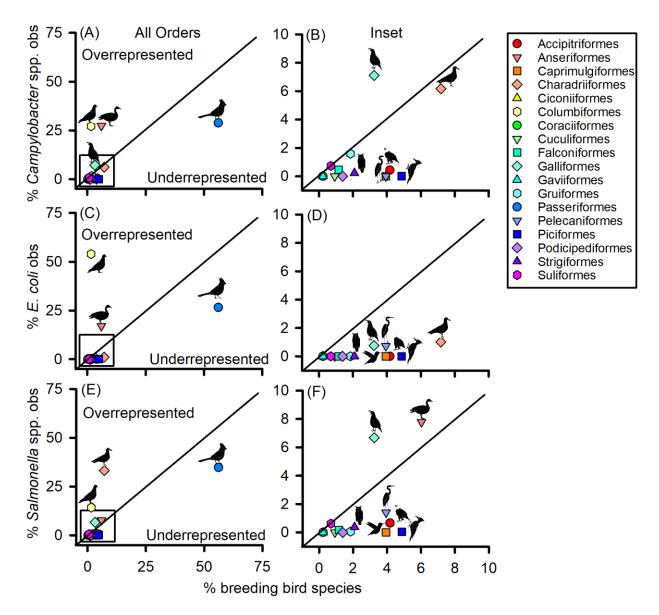

Category	# Species	% Species	# Sightings	% Sightings
3 pathogens	5	3.7%	3306	25.0%
2 pathogens	3	2.2%	441	3.3%
1 pathogens	7	5.2%	2031	15.3%
Some	65	48.5%	6413	48.5%
observations				
No observations	54	40.3%	1043	7.9%

Fig. S9. Scatterplot showing the percentage of pathogen observations (obs) belonging to each taxonomic order *versus* % of farm bird species observed by Smith *et al.* (2019). A, C and E show all orders; B, D and F show orders that comprise less than 10% of pathogen observations and less than 10% of farm bird observations (boxed regions in A, C and E, respectively).

Fig. S10. Scatterplot showing the percentage of pathogen observations (obs) belonging to each taxonomic order *versus* % of total observations on farms within each taxa by Smith *et al.* (2019). A, C and E show all orders; B, D and F show orders that comprise less than 10% of pathogen observations and less than 10% of farm bird observations (boxed regions in A, C and E, respectively).

Fig. S11. Scatterplot showing the percentage of pathogen observations (obs) belonging to each taxonomic order *versus* % of North American breeding birds each taxon comprises. A, C and E show all orders; B, D and F show orders that comprise less than 10% of pathogen observations and less than 10% of North American breeding bird species (boxed regions in A, C and E, respectively).

Order	Species	% NA species	Tested <i>Campylobacter</i> spp.	Exp. <i>Campylobacter</i> spp.	Tested path E. coli	Exp. path <i>E. coli</i>	Tested gen <i>E. coli</i>	Exp. gen <i>E. coli</i>	Tested Salmonella spp.	Exp. Salmonella spp.
Accipitriformes	18	4.18%	59	569	0	340	111	129	267	1684
Anseriformes	26	6.03%	3715	821	1563	577	1949	186	3136	2431
Caprimulgiformes	17	3.94%	0	537	0	377	0	122	3	1589
Charadriiformes	31	7.19%	840	978	93	687	730	222	13395	2897
Ciconiiformes	1	0.23%	0	32	0	22	0	7	0	93
Columbiformes	7	1.62%	3690	221	4954	155	1055	50	5724	654
Coraciiformes	1	0.23%	0	32	0	22	0	7	0	93
Cuculiformes	4	0.93%	0	126	0	89	0	29	0	374
Falconiformes	5	1.16%	62	158	0	111	1	36	72	467
Galliformes	14	3.25%	967	442	70	311	180	100	2688	1309
Gaviiformes	1	0.23%	0	32	0	22	0	7	0	93
Gruiformes	8	1.86%	217	253	0	177	30	57	26	748
Passeriformes	242	56.15%	3924	7640	2439	5367	2872	1733	13997	22625
Pelecaniformes	17	3.94%	0	537	66	377	72	122	566	1589
Piciformes	21	4.87%	2	663	0	466	0	150	20	1963
Podicipediformes	6	1.39%	0	189	0	133	0	43	0	561
Strigiformes	9	2.09%	30	284	0	200	2	64	151	841
Suliformes	3	0.70%	100	95	0	67	0	21	250	280

Table S20. Chi-square test for bias in testing within bird order for *Campylobacter* spp., *E. coli*, and *Salmonella* spp. in North American breeding birds by percentage of species within each order. NA = North American, Exp. = expected, path = pathogenic, gen = generic.

Table S21. Chi-square test for bias in testing within bird order for *Campylobacter* spp., *E. coli*, and *Salmonella* spp. in North American breeding birds by relative abundance reported in eBird. Exp. = expected, path = pathogenic, gen = generic.

Order	Species	% eBird reports	Tested <i>Campylobacter</i> spp.	Exp. <i>Campylobacter</i> spp.	Tested path E. coli	Exp. path <i>E. coli</i>	Tested gen <i>E. coli</i>	Exp. gen <i>E. coli</i>	Tested Salmonella spp.	Exp. Salmonella spp.
Accipitriformes	18	5.16%	59	702	0	493	111	159	267	2080
Anseriformes	26	8.76%	3715	1192	1563	838	1949	270	3136	3531
Caprimulgiformes	17	1.50%	0	204	0	143	0	46	3	604
Charadriiformes	31	5.62%	840	764	93	537	730	173	13395	2263
Ciconiiformes	1	0.06%	0	8	0	6	0	2	0	25
Columbiformes	7	4.11%	3690	559	4954	393	1055	127	5724	1656
Coraciiformes	1	0.58%	0	79	0	55	0	18	0	234
Cuculiformes	4	0.21%	0	28	0	20	0	6	0	83
Falconiformes	5	0.77%	62	105	0	74	1	24	72	312
Galliformes	14	0.63%	967	86	70	60	180	19	2688	253
Gaviiformes	1	0.24%	0	33	0	23	0	7	0	96
Gruiformes	8	1.06%	217	144	0	101	30	33	26	426
Passeriformes	242	59.19%	3924	8054	2439	5658	2872	1827	13997	23851
Pelecaniformes	17	4.10%	0	558	66	392	72	127	566	1652
Piciformes	21	5.80%	2	789	0	554	0	179	20	2336
Podicipediformes	6	0.88%	0	119	0	84	0	27	0	353
Strigiformes	9	0.33%	30	45	0	32	2	10	151	135
Suliformes	3	1.01%	100	137	0	96	0	31	250	405

Table S22. Number and percentage of North American breeding bird species and number of combined eBird sightings of species and percentage of total sightings with enough data to calculate prevalence for three, two, or one pathogen, those with some data and those with no data.

Category	# Species	% Species	# Sightings	% Sightings
3 pathogens	5	1.2%	26,477,111	7.6%
2 pathogens	4	0.9%	10,962,473	3.1%
1 pathogens	23	5.3%	41,837,705	12.0%
Some	119	27.6%	178,879,007	51.4%
observations				
No observations	280	65.0%	90,065,928	25.9%

Table S23. Comparison of estimated prevalence by substance tested for house sparrow. Table includes prevalence estimated by summing across literature [positive (+)/number tested (N) (percentage); positive/tested] and estimated through a mixed-effects model in the rma.mv function in the metafor package in R (estimated prevalence). The column on the left in each case indicates the substance listed first in the comparison column, and the column on the right indicates the substance listed second in the comparison column. The right side of the table includes Tukey HSD pairwise comparisons.

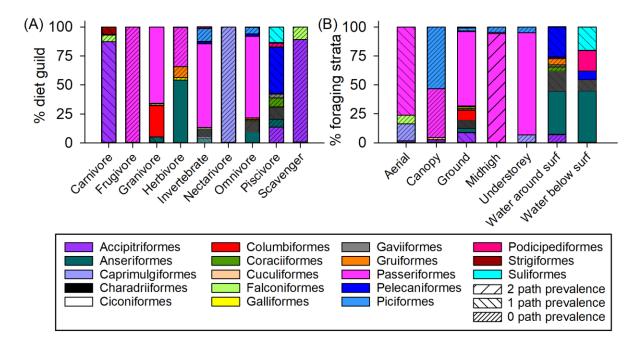

Comparison	Positive/tested		Estimated prevalence		Tukey HSD comparison			
	+/N(%)	+/N(%)	$\% \pm SE$	$\% \pm SE$	Estimate	SE	Ζ	Р
Cloaca –	25/3847	0/557	$0.7\% \pm$	$0.2\% \pm$	-0.005	0.002	-2.1	0.035
Faeces	(0.9%)	(0%)	0.2%	0.2%				
Cloaca –	25/3847	57/1046	$0.7\% \pm$	$4.0\% \pm$	0.033	0.006	5.33	< 0.0001
Necropsy	(0.9%)	(5.4%)	0.2%	0.6%				
Faeces –	0/557	57/1046	$0.2\% \pm$	$4.0\% \pm$	0.038	0.006	6.06	< 0.0001
Necropsy	(0%)	(5.4%)	0.2%	0.6%				

Table S24. Comparison of estimated prevalence by substance tested for European starling. Table includes prevalence estimated by summing across literature [positive (+)/number tested (N) (percentage); positive/tested] and estimated through a mixed-effects model in the rma.mv function in the metafor package in R (estimated prevalence). The column on the left in each case indicates the substance listed first in the comparison column, and the column on the right indicates the substance listed second in the comparison column. The right side of the table includes Tukey HSD pairwise comparisons.

Comparison	Positive/tested			nated alence	Tukey HSD comparison			
	+/N (%)	+/N (%)	% ± SE	% ± SE	Estimate	SE	Ζ	Р
Cloaca –	63/1013	6/858	3.3% ±	1.0% ±	-0.023	0.034	-0.66	0.51
Faeces	(6.2%)	(0.7%)	2.5%	2.3%				
Cloaca –	63/1013	35/378	3.3% ±	4.9% ±	0.016	0.034	0.48	0.63
Necropsy	(6.2%)	(9.3%)	2.5%	2.3%				
Faeces –	6/858	35/378	1.0% ±	4.9% ±	0.039	0.033	1.19	0.23
Necropsy	(0.7%)	(9.3%)	2.3%	2.3%				

Table S25. Comparison of estimated prevalence by substance tested for rock pigeon. Table includes prevalence estimated by summing across literature [positive (+)/number tested (N) (percentage); positive/tested] and estimated through a mixed-effects model in the rma.mv function in the metafor package in R (estimated prevalence). The column on the left in each case indicates the substance listed first in the comparison column, and the column on the right indicates the substance listed second in the comparison column. The right side of the table includes Tukey HSD pairwise comparisons.

Comparison	Positive	/tested		nated alence	Т	Tukey HSD comparison			
	+/N (%)	+/N(%)	% ± SE	% ± SE	Estimate	SE	Ζ	Р	
Blood –	1/240	96/3904	$0.4\% \pm$	3.7% ±	0.033	0.49	0.66	0.51	
Cloaca	(0.4%)	(2.5%)	4.8%	1.3%					
Blood –	1/240	20/832	$0.4\% \pm$	$1.9\% \pm$	0.014	0.054	0.27	0.79	
Faeces	(0.4%)	(2.4%)	4.8%	2.4%					
Blood –	1/240	16/265	$0.4\% \pm$	$6.6\% \pm$	0.062	0.055	1.13	0.26	
Necropsy	(0.4%)	(6.0%)	4.8%	3.6%					
Cloaca –	96/3904	96/3904	$3.7\% \pm$	$1.9\% \pm$	-0.018	0.028	-0.67	0.50	
Faeces	(2.5%)	(2.5%)	1.3%	2.4%					
Cloaca –	96/3904	16/265	$3.7\% \pm$	$6.6\% \pm$	0.029	0.029	0.98	0.33	
Necropsy	(2.5%)	(6.0%)	1.3%	3.6%					
Faeces –	20/832	16/265	$1.9\% \pm$	$6.6\% \pm$	0.047	0.036	1.32	0.19	
Necropsy	(2.4%)	(6.0%)	2.4%	3.6%					

Fig. S12. Percentage of total (A) diet guild and (B) foraging strata comprised by each taxonomic order denoted by colour. Pattern indicates if enough data were available to determine prevalence with 5% precision for 0 (smallest grain stripe) to three pathogens (no pattern).

Table S26. Prevalence of *Campylobacter* spp. by diet guild in wild birds. Total number of individuals reported positive and tested for *Campylobacter* spp. across the literature and prevalence (total positive across the literature/total number tested) by diet guild. Estimated prevalence by diet guild using mixed-effects models and corresponding standard errors and 95% confidence intervals are also presented.

Diet guild	<i>Campylobacter</i> spp. positive	Campylobacter spp. tested	Campylobacter spp. prevalence	Estimated prevalence	Estimated standard error	Estimated 95% confidence interval
Scavenger	0	3	0.0%	-1.6%	21.6%	(-43.9%, 40.6%)
Carnivore	10	148	6.8%	18.6%	9.6%	(-0.2%, 37.3%)
Piscivore	25	315	7.9%	19.3%	11.7%	(-3.6%, 42.2%)
Herbivore	313	1519	20.6%	23.4%	6.3%	(11.0%, 35.8%)
Invertebrate	54	258	20.9%	35.1%	7.0%	(21.5%, 48.8%)
Granivore	1228	4791	25.6%	22.2%	5.4%	(11.5%, 32.9%)
Omnivore	2229	6572	33.9%	30.9%	4.3%	(22.6%, 39.2%)
Frugivore	0	0	N/A	N/A	N/A	N/A
Nectarivore	0	0	N/A	N/A	N/A	N/A

Table S27. Tukey HSD pairwise comparisons examining *Campylobacter* spp. prevalence by diet guild. SE = standard error.

Comparison	Estimate	SE	Ζ	P
Granivore – Invertebrate	0.13	0.077	1.67	0.095
Granivore – Omnivore	0.087	0.056	1.56	0.12
Carnivore – Invertebrate	0.17	0.11	1.47	0.14
Herbivore – Invertebrate	0.12	0.085	1.39	0.16
Carnivore – Omnivore	0.12	0.10	1.25	0.21
Invertebrate – Piscivore	-0.16	0.13	-1.21	0.23
Herbivore – Omnivore	0.075	0.064	1.17	0.24
Omnivore – Piscivore	-0.12	0.12	-0.98	0.33
Invertebrate – Omnivore	-0.042	0.071	-0.59	0.55
Carnivore – Herbivore	0.048	0.11	0.44	0.66
Carnivore – Granivore	0.036	0.10	0.35	0.73
Herbivore – Piscivore	-0.041	0.13	-0.32	0.75
Granivore – Piscivore	-0.029	0.12	-0.24	0.81
Granivore – Herbivore	0.012	0.072	0.16	0.87
Carnivore – Piscivore	0.007	0.15	0.048	0.96

Table S28. Prevalence of *Campylobacter* spp. by foraging strata in wild birds. Total number of individuals reported positive and tested for *Campylobacter* spp. across the literature and prevalence (total positive across the literature/total number tested) by foraging strata. Estimated prevalence by foraging strata using mixed-effects models and corresponding standard errors and 95% confidence intervals are also presented.

Foraging strata	<i>Campylobacter</i> spp. positive	Campylobacter spp. Tested	<i>Campylobacter</i> spp. prevalence	Estimated prevalence	Estimated standard error	Estimated 95% confidence interval
Canopy	0	2	0.0%	42.3%	23.7%	(-4.2%, 88.6%)
Midhigh	1	23	4.3%	29.5%	11.1%	(7.8%, 51.1%)
Water below surf	37	338	10.9%	32.9%	9.6%	(14.1%, 51.6%)
Aerial	33	245	13.5%	15.8%	10.8%	(-5.3%, 36.9%)
Understorey	43	311	13.8%	29.1%	8.8%	(11.8%, 46.3%)
Ground	2989	10136	29.5%	28.2%	4.1%	(20.2%, 36.3%)
Water around surf	756	2551	29.6%	24.2%	5.4%	(14.1%, 51.6%)

Table S29. Tukey HSD pairwise comparisons examining *Campylobacter* spp. prevalence by foraging strata. SE = standard error.

Comparison	Estimate	SE	Ζ	P
Aerial – Water below surf	0.17	0.14	1.21	0.22
Aerial – Ground	0.12	0.11	1.13	0.26
Aerial – Understorey	0.13	0.13	0.99	0.32
Aerial – Midhigh	0.14	0.15	0.91	0.36
Water Around Surf – Water below surf	0.087	0.10	0.85	0.40
Ground – Water around surf	-0.041	0.054	-0.75	0.45
Aerial – Water around surf	0.084	0.12	0.73	0.47
Understorey – Water around surf	-0.049	0.095	-0.51	0.61
Ground – Water below surf	0.046	0.10	0.48	0.63
Midhigh – Water around surf	-0.053	0.12	-0.45	0.65
Understorey – Water below surf	0.038	0.12	0.31	0.76
Ground – Midhigh	0.012	0.11	0.11	0.91
Ground – Understorey	0.008	0.087	0.094	0.93
Midhigh – Understorey	-0.004	0.13	-0.030	0.98

Table S30. Prevalence of pathogenic *E. coli* by diet guild in wild birds. Total number of individuals reported positive and tested for pathogenic *E. coli* across the literature and prevalence (total positive across the literature/total number tested) by diet guild. Estimated prevalence by diet guild using mixed-effects models and corresponding standard errors and 95% confidence intervals are also presented.

Diet	<i>E. coli</i> positive	E. coli tested	<i>E. coli</i> prevalence	Estimated prevalence	Estimated standard error	Estimated 95% confidence interval
Invertebrate	6	248	2.4%	9.8%	14.0%	(-17.6%, 37.2%)
Piscivore	1	41	2.4%	10.3%	23.5%	(-35.8%, 56.4%)
Granivore	540	6121	8.8%	13.7%	11.1%	(-8.1%, 35.4%)
Omnivore	157	1638	9.6%	27.3%	9.1%	(9.4%, 45.2%)
Herbivore	471	1137	41.4%	27.1%	15.8%	(-3.9%, 58.0%)
Carnivore	0	0	N/A	N/A	N/A	N/A
Frugivore	0	0	N/A	N/A	N/A	N/A
Nectarivore	0	0	N/A	N/A	N/A	N/A
Scavenger	0	0	N/A	N/A	N/A	N/A

Table S31. Tukey HSD pairwise comparisons examining pathogenic *E. coli* prevalence by diet guild. SE = standard error.

Comparison	Estimate	SE	Z	P
Invertebrate – Omnivore	0.18	0.16	1.10	0.27
Granivore – Omnivore	0.14	0.13	1.02	0.31
Herbivore – Invertebrate	-0.17	0.21	-0.83	0.41
Granivore – Herbivore	0.13	0.19	0.72	0.47
Herbivore – Piscivore	-0.17	0.28	-0.60	0.55
Granivore – Invertebrate	-0.039	0.17	-0.23	0.82
Granivore – Piscivore	-0.034	0.25	-0.13	0.89
Invertebrate – Piscivore	0.005	0.27	0.019	0.98
Herbivore – Omnivore	0.002	0.17	0.014	0.99

Table S32. Prevalence of pathogenic *E. coli* by foraging strata in wild birds. Total number of individuals reported positive and tested for pathogenic *E. coli* across the literature and prevalence (total positive across the literature/total number tested) by foraging strata. Estimated prevalence by foraging strata using mixed-effects models and corresponding standard errors and 95% confidence intervals are also presented.

Foraging strata	<i>E. coli</i> positive	<i>E. coli</i> tested	<i>E. coli</i> prevalence	Estimated prevalence	Estimated standard error	Estimated 95% confidence interval
Midhigh	0	0	N/A	N/A	N/A	N/A
Aerial	4	84	4.8%	12.8%	23.1%	(-32.5%, 58.1%)
Ground	1004	8175	12.3%	22.6%	8.4%	(6.2%, 39.1%)
Understorey	52	297	17.5%	13.3%	23.1%	(-32.1%, 58.6%)
Water around surf	115	629	18.3%	18.1%	9.6%	(-0.7%, 36.8%)
Canopy	0	0	N/A	N/A	N/A	N/A
Water below surf	0	0	N/A	N/A	N/A	N/A

Table S33. Tukey HSD pairwise comparisons examining pathogenic *E. coli* prevalence by foraging strata. SE = standard error.

Comparison	Estimate	SE	Ζ	P
Aerial – Ground	0.10	0.24	0.41	0.68
Ground – Water around surf	-0.046	0.12	-0.40	0.69
Ground – Understorey	-0.094	0.24	-0.39	0.70
Aerial – Water around surf	0.052	0.24	0.21	0.83
Understorey – Water around surf	0.048	0.24	0.20	0.84
Aerial – Understorey	0.004	0.32	0.013	0.99

Table S34. Prevalence of *Salmonella* spp. by diet guild in wild birds. Total number of individuals reported positive and tested for *Salmonella* spp. across the literature and prevalence (total positive across the literature/total number tested) by diet guild. Estimated prevalence by diet guild using mixed-effects models and corresponding standard errors and 95% confidence intervals are also presented

Diet	Salmonella spp. positive	Salmonella spp. tested	Salmonella spp. prevalence	Estimated prevalence	Estimated standard error	Estimated 95% confidence interval
Frugivore	0	4	0.0%	17.2%	14.7%	(-11.5%, 46.0%)
Nectarivore	0	2	0.0%	6.7%	21.8%	(-36.0%, 49.3%)
Herbivore	49	2642	1.9%	4.9%	1.3%	(2.4%, 7.3%)
Granivore	418	13252	3.2%	5.4%	1.0%	(3.4%, 7.4%)
Invertebrate	83	2416	3.4%	6.1%	1.2%	(3.9%, 8.4%)
Omnivore	1293	20577	6.3%	6.9%	1.0%	(4.9%, 9.0%)
Carnivore	34	472	7.2%	7.6%	2.4%	(2.3%, 12.4%)
Scavenger	1	11	9.1%	7.3%	8.3%	(-9.0%, 23.5%)
Piscivore	86	919	9.4%	9.6%	2.3%	(5.0%, 14.1%)

Table S35. Tukey HSD pairwise comparisons examining *Salmonella* spp. prevalence by diet guild. Bold values indicate the comparison was significant at P = 0.05; SE = standard error.

Comparison	Estimate	SE	Ζ	P
Granivore – Omnivore	0.016	0.007	2.33	0.020
Herbivore – Omnivore	0.021	0.011	1.99	0.047
Herbivore – Piscivore	0.047	0.024	1.93	0.054
Granivore – Piscivore	0.042	0.023	1.80	0.071
Invertebrate – Piscivore	0.034	0.024	1.43	0.15
Omnivore – Piscivore	0.026	0.023	1.16	0.25
Herbivore – Invertebrate	0.013	0.011	1.13	0.26
Carnivore – Herbivore	-0.028	0.025	-1.12	0.26
Granivore – Invertebrate	0.008	0.008	0.96	0.34
Invertebrate – Omnivore	0.008	0.009	0.91	0.36
Carnivore – Granivore	-0.022	0.025	-0.90	0.37
Carnivore – Piscivore	0.019	0.033	0.60	0.55
Carnivore – Invertebrate	-0.015	0.026	-0.58	0.56
Granivore – Herbivore	-0.005	0.010	-0.53	0.59
Herbivore – Scavenger	0.024	0.083	0.29	0.77
Carnivore – Omnivore	-0.007	0.025	-0.27	0.79
Piscivore – Scavenger	-0.023	0.085	-0.27	0.79

Granivore – Scavenger	0.019	0.083	0.22	0.82
Invertebrate – Scavenger	0.011	0.083	0.13	0.89
Carnivore – Scavenger	-0.004	0.082	-0.04	0.96
Omnivore – Scavenger	0.003	0.083	0.04	0.97

Table S36. Prevalence of *Salmonella* spp. by foraging strata in wild birds. Total number of individuals reported positive and tested for *Salmonella* spp. across the literature and prevalence (total positive across the literature/total number tested) by foraging strata. Estimated prevalence by foraging strata using mixed-effects models and corresponding standard errors and 95% confidence intervals are also presented

Foraging strata	Salmonella positive	Salmonella tested	Salmonella prevalence	Estimated prevalence	Estimated standard error	Estimated 95% confidence interval
Aerial	4	1706	0.2%	5.4%	1.4%	(2.5%, 8.2%)
Understorey	2	610	0.3%	5.4%,	1.4%	(2.7%, 8.1%)
Midhigh	4	443	0.9%	6.3%	1.6%	(3.1%, 9.4%)
Canopy	2	119	1.7%	5.1%	3.5%	(-1.8%, 12.1%)
Ground	828	22373	3.7%	6.1%	1.0%	(4.2%, 8.0%)
Water below surf	17	434	3.9%	8.1%	2.9%	(2.4%, 13.9%)
Water around surf	1107	14610	7.6%	8.0%	1.2%	(5.6%, 10.4%)

Table S37. Tukey HSD pairwise comparisons examining *Salmonella* spp. prevalence by foraging strata. SE = standard error.

Comparison	Estimate	SE	Z-value	P-value
Ground – Water around surf	0.018	0.010	1.92	0.055
Understorey – Water around surf	0.025	0.014	1.85	0.064
Aerial – Water around surf	0.026	0.014	1.82	0.068
Midhigh – Water around surf	0.017	0.016	1.05	0.29
Aerial – Water below surf	0.028	0.030	0.92	0.36
Understorey – Water below surf	0.027	0.030	0.91	0.37
Canopy – Water around surf	0.028	0.036	0.80	0.43
Ground – Water below surf	0.020	0.028	0.72	0.47
Canopy – Water below surf	0.030	0.044	0.68	0.50
Aerial – Ground	0.008	0.012	0.66	0.51
Ground – Understorey	-0.007	0.011	-0.64	0.52
Midhigh – Understorey	-0.008	0.016	-0.52	0.60
Aerial – Midhigh	0.009	0.017	0.52	0.60
Canopy – Midhigh	0.011	0.037	0.31	0.76

Canopy – Ground	0.010	0.035	0.29	0.77
Ground – Midhigh	0.001	0.014	0.10	0.92
Canopy – Understorey	0.003	0.036	0.08	0.93
Water around surf – Water below surf	0.002	0.030	0.06	0.95
Aerial – Canopy	-0.002	0.036	-0.06	0.95
Aerial – Understorey	0.001	0.015	0.05	0.96