Supplemental Figures (S1 – S22)

Supplemental Tables (S1 – S2)

Related Supplemental File, pertaining to:

- Additional replicates and full-view gels/blots
- Log-plot of cytotoxic plots in Figure 4
- Flow-cytometry analysis (related to Table S2)

a) MK-HNE MK-2206 b)

MK-2206

Anti-actin Anti-actin

Streptavidin

YFP

DMSO

Akt2 MK-2206

MK-HNE

<0.0001

F

MK-HNE-

MK-2206-

Western blot a)

ELISA b)

0.021

MKHNE

Anti-actin

a)

MK-NE-

MK-HNE

Ч Ч Ч

MK

0.758

Anti-actin

a)

C)

 \sim

MK-NE

//

[E]: Free enzyme concentration; [I]: Inhibitor concentration; [E-I]: concentration of initial non-covalent enzyme-inhibitor complex; [E–I]: concentration of covalent enzyme-inhibitor complex; v_i : initial rate of

product formation; v_s : rate of product formation at steady state; k_{obs} : rate constant for converting the initial active form of the enzyme to the inhibited form at steady state; K_i^{app} : apparent reversible and covalent binding kinetics between covalent inhibitor and enzyme; n: Hill coefficient for inhibitory cooperativeness of inhibitor upon binding to enzyme.

 k_i : rate of product formation at the indicated inhibitor concentration; k_0 : rate of product formation in the absence of inhibitor; [/]: inhibitor concentration; K_i : inhibitor constant

(MK-FNE) kt2:Akt3C119S

b)

0:100

(MK-FNE) **19S** kt2:Akt3C

d)

50:50

25:75

f)

0.00

Relative FRET emission ratio = YFP/CFP_{MK-FNE}/<YFP/CFP>_{DMSO} for the stated plasmid mixture

b)

Fold increase in MK-2206 resistance: 5.3

Fold increase in **MK-FNE** resistance: 1.6

a)

100 "Heavy" MDA-MB-468 80b)

MDA-MB-468 (MK-2206) PSP

KIFC1

64 TSHP RVPS LTTVPQ ^a	77
90 KTGP RCST AIATGL	103
150 LK RCRERTQT LDQE	163
215 ELEE RLST QEGLVQ	228
250 EKER RLQT SEAALS	263
269 VASLRQETVAQAAL ^a	282
352 RSDE RRGT LSGAPA ^a	365
533 ERSS RSHS VFQLQI	546
651 LNSL RFAS KVNQCV	664

Grsf1

55 AVPT**RSYS**QESKTT^a 68 227 DYRG**RRKT**GEAYVQ 240

JUP

47 EACGRQYTLKKTTa60199 LDTARCTTSILHNL212

229 PALVRMLSSPVESV	242
316 VQIMRNYSYEKLLW	329
373 LWTL RNLS DVATKQ	386
456 VCALRHLTSRHPEA ^a	469
578 MEIF RLNT IPLFVQ	591

short short

shoont shill

Grsf1

		Akt3		A	kt2	Akt1		
	KIFC1	Grsf1	Akt1	KIFC1	Grsf1	KIFC1	Grsf1	
<i>r</i> -value	-0.3196	-0.2150	-0.3302	0.02945	-0.08708	0.2209	-0.05116	
P-value (two	<0.0001	<0.0001	<0.0001	0.3046 (ns)	0.0024	<0.0001	0.0744 (ns)	

talied)				

GDC & TCGA lung adenocarcinoma database

		Akt3		Α	kt2	Akt1		
	KIFC1	Grsf1	Akt1	KIFC1	Grsf1	KIFC1	Grsf1	
r-value	-0.2356	-0.1428	-0.1802	0.3050	-0.1134	0.07164	-0.1547	
P-value (two		0 0 0 0 5						

GDC & TCGA stomach cancer database

		Akt3		A	kt2	Akt1		
	KIFC1	Grsf1	Akt1	KIFC1	Grsf1	KIFC1	Grsf1	
r-value	-0.6038	-0.3894	-0.07261	-0.01795	-0.2237	0.02342	0.1099	
P-value (two	<0.0001	<0.0001	0.1437 (ns)	0.7181 (ns)	<0.0001	0.6375 (ns)	0.0267	

TCGA colon and rectal cancer database

		Akt3		A	kt2	Akt1		
	KIFC1	Grsf1	Akt1	KIFC1	Grsf1	KIFC1	Grsf1	
<i>r-value</i>	-0.3640	-0.3467	0.08688	0.1553	-0.2343	0.07418	0.03202	

GDC & TCGA melanoma database

		Akt3		<u> </u>	kt2	Akt1		
	KIFC1	Grsf1	Akt1	KIFC1	Grsf1	KIFC1	Grsf1	
r-value	-0.1696	0.2069	-0.3300	0.1751	-0.04888	0.2569	-0.07167	
<i>P</i> -value (two tailed)	0.0002	<0.0001	<0.0001	0.0001	0.2892 (ns)	<0.0001	0.1200 (ns)	

Table S1

Summary of the extrapolated EC₅₀s from cytotoxicity plots of **MK-FNE** and **MK-2206** against MDA-MB-468 cells

transfected with Akt-isoform-targeting siRNA (n = 8, mean \pm s.e.m). See also Figure 4b. The selectivity of MK-

FNE is calculated according to the indicated equation.

siCont-1 siCont-2 siCont-3 siAkt1-1 siAkt1-2 siAkt2-1 siAkt2-2 siAkt2-3 siAkt2-4 siAkt2-5 siAkt3-1 siAkt3-2

EC ₅₀ (MK- 2206)	2.2 ± 0.2	3.3 ± 0.2	3.1 ± 0.4	1.1 ± 0.1	0.3 ± 0.1	1.1 ± 0.1	4.0 ± 0.4	1.7 ± 0.3	2.8 ± 0.4	3.0 ± 0.5	1.1 ± 0.1	1.3 ± 0.1
EC ₅₀ (MK-FNE)	8.7 ± 0.7	10.0 ± 1.0	9.7 ± 2.5	8.2 ± 0.7	$\textbf{2.3}\pm\textbf{0.4}$	4.7 ± 0.7	4.9 ± 1.4	7.1 ± 1.0	7.3 ± 1.0	8.1 ± 1.7	1.0 ± 0.3	1.2 ± 0.2
Fold increase in Selectivity	-0.1	0.1	0.1	-0.5	-0.6	-0.2	1.8	-0.2	0.3	0.3	2.9	2.7

[<(EC₅₀)_{siCont}>]

Where $<(EC_{50})_{siCont}$ designates the average of a given compound's EC₅₀s against the two control knockdown lines; $(EC_{50})_{siAkt(n)}$ is the given compound's EC₅₀ against the indicated Akt isoform-specific knockdown line by siRNA.

Table S2

Cell cycle analysis

	DMSO								690693
		EC_{60}	EC ₈₀	EC ₆₀	EC ₈₀	EC ₆₀	EC ₈₀	EC_{60}	EC_{60}
G1/G0	39.2	47.1	59.9	43.7	44.3	46.4	52.4	52.6	47.7
G2/M	32.4	27.7	20.4	26.1	23.0	28.6	28.2	28.3	30.0
S	22.2	23.7	18.6	27.4	22.1	23.0	16.6	12.1	14.3
subG0	0.8	0.5	0.7	1.3	9.7	0.9	1.8	1.6	0.9

Related Manuscript File

- Additional replicates and full-view gels (pp 2-19) -
- Log-plot of cytotoxic plots in Figure 4 (pp 20) -
- Flow-cytometry analysis (pp 21-23) (related to Supplementary Table S2) —

Representative replicates related to data in Main Figure 1b-c

Note: Rectangular box indicates the Cy5 signal of Halo-Akt(n) used in the quantitation

Representative replicates related to data in Main Figure 1b-c

Note: Rectangular box indicates the Cy5 signal of Halo-Akt(n) used in the quantitation

Anti-actin (post sodium azide treatment)

Note: Rectangular box indicates the Cy5 signal of Halo-Akt(n) used in the quantitation

Note: Rectangular box indicates the Cy5 signal of Halo-Akt(n) used in the quantitation

Cy5 (Halo-Akt3)

anti-Halo

anti-actin

Cy5 (Halo-Akt3)

anti-Halo

anti-Halo

7

anti-actin

Cy5 (Halo-Akt2)

anti-Halo

anti-Halo

anti-actin

anti-actin

anti-actin

Endogenous Akt pull-down using MK-HNE (5 µM)

Residual Halo signal

Anti-actin

(post sodium azide treatment)

12

(post sodium azide treatment)

Note: Rectangular box indicates the Cy5 signal of Halo-Akt(n) used in the quantitation

Representative replicates and full-view blots related to data in Supplemental Figure S10b

MK-res (MK-2206-resistant cells)

— Anti-Akt3

— Non-specific band

13

Anti-gapdh (post sodium azide treatment)

Anti-gapdh (post anti-Akt1 probing) (post sodium azide treatment)

Anti-gapdh Anti-gapdh (post sodium azide treatment) (post sodium azide treatment)

14

-75

-50

-37

Anti-Akt2

Anti-Akt2

Anti-actin

-75

50

-37

Anti-actin (post sodium azide treatment) Anti-actin (post sodium azide treatment)

(post sodium azide treatment)

(post sodium azide treatment)

Actin protein was inefficiently transferred in these two blots, therefore, vinculin was used as loading control

Representative replicates related to data in Main Figure 5

Anti-actin (post anti-KIFC1 probing)

Anti-KIFC1

Anti-actin (post anti-KIFC1 probing)

Log-plot of cytotoxic plots in Figure 4

Flow-cytometry analysis (related to **Supplementary Table S2**)

Cells were analyzed based on cellular DNA content using PI dye (excited at 488 nm) to quantitate the percentage of cells in the respective phases (G₁, S, G₂/M and sub-G₀) of the cell cycle. Flow experiments were carried out on separate days using MDA-MB-468 in different passage numbers. Each treatment group was normalized relative to the respective DMSO control group on the same day. The relative mean percentages of cell cycle arrest

by the tested compounds are summarized in Supplementary Table S2.

Gating demonstration: control samples

Representative FACS analysis of cell cycle arrest

