Supporting Information

Chrysomycin A Derivatives for the Treatment of Multi-Drug-Resistant Tuberculosis

Fan Wu^{1†}, Jing Zhang^{1†}, Fuhang Song^{2†}, Sanshan Wang¹, Hui Guo², Qi Wei², Huanqin Dai², Xiangyin Chen³, Xuekui Xia^{3,5}, Xueting Liu³, Lixin Zhang^{2,3,5}, Jin-Quan Yu⁴ and Xiaoguang Lei¹*

¹Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China

²CAS Key Laboratory of Pathogenic Microbiology & Immunology, Chinese Academy of Sciences, Institute of Microbiology, Beijing, 100101, China

³State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China

⁴The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA

⁵Key Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China

[†]These authors contributed equally to this work.

*e-mail: xglei@pku.edu.cn

Table of Contents

I) General Information	S3
II) Supplementary Tables and Schemes	S4–S8
III) Detailed Experimental Procedures	S9–S57
IV) Comparison of Natural and Synthetic Chrysomycin A	S58–S60
V) Comparison of Natural and Synthetic Polycarcin V	S61–S62
VI) Comparison of Natural and Synthetic Gilvocarcin V	S63–S64
VII) Biological Evaluation	S65
VIII) NMR Spectra	S66–S134

I) General Information

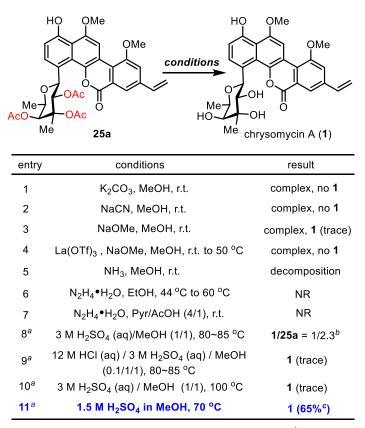
¹H NMR spectra were recorded on Brucker ARX 400 MHz, DRX 500 MHz or AVANCE III HD 600 MHz, spectrometer at ambient temperature with CDCl₃, CD₃OD or DMSO-d6 as the solvent unless otherwise stated. ¹³C NMR spectra were recorded on Brucker ARX 100 MHz, DRX 125 MHz or AVANCE III HD 600 MHz spectrometer (with complete proton decoupling) at ambient temperature. Chemical shifts are reported in parts per million relative to chloroform, methanol or DMSO (¹H, δ 7.26 for CDCl₃, 3.31 for CD₃OD, 2.50 for DMSO-d6; ¹³C, δ 77.00 for CDCl₃, 49.00 for 39.50 for CD₃OD, DMSO-d6). Data for ¹H NMR are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and coupling constants. Infrared spectra were recorded on a Thermo Fisher FT-IR200 spectrophotometer. High-resolution mass spectra were obtained at Peking University Mass Spectrometry Laboratory using a Bruker APEX Flash chromatography. Optical rotations were recorded on an AUTOPOL III digital polarimeter at 589 nm and are recorded as $\left[\alpha\right]_{D}$ (concentration in grams/100 mL solvent). Analytical thin layer chromatography was performed using 0.25 mm silica gel 60-F plates. Flash chromatography was performed using 200-300 mesh silica gel. Yields refer to chromatographically and spectroscopically pure materials unless otherwise stated. Dichloromethane, dichloroethane, acetonitrile and dimethyl formamide were distilled from calcium hydride; tetrahydrofuran was distilled from sodium/benzophenone ketyl prior to use. Reagents were purchased at the highest commercial quality and used without further purification unless otherwise stated. All reactions were carried out in oven-dried glassware under an argon atmosphere with dry solvents unless otherwise noted. No unexpected or unusually high safety hazards were encountered.

S3

II) Supplementary Tables and Schemes

Species	Strain	1	2	26	71	55	10	8	(-)-64	(+)-64	68	41	46a
M. bovis	BCG	0.4		5	>10	>10	0.32	>10	0.32	0.08	>10	5	>10
M.tb	H37Rv	0.4	5	5	>10	>10	0.16	>10	0.16	0.08	>10	>10	>10
	Hr1	0.4	>10	5	>10	>10	0.16	>10	0.16	0.08	>10	>10	>10
M.tb	Hr2	0.4	2.5	5	>10	>10	0.16	>10	0.32	0.32	>10	>10	>10
Clinical	Hr3	0.4	5	5	>10	>10	0.16	>10	0.16	0.16	>10	>10	>10
isolates	Hr4	0.4	5	5	>10	>10	0.16	>10	0.16	0.16	>10	>10	>10
	Hr5	0.4	>10	5	>10	>10	0.16	>10	0.32	0.32	>10	>10	>10
Species	Strain	46b	40	39	36	37	38	51 a	51b	31a	31b	32a	32b
M. bovis	BCG	>10	0.64	2.5	0.16	>10	>10	>10	>10	>10	>10	>10	>10
M.tb	H37Rv	>10	0.64	0.32	0.16	>10	>10	>10	>10	>10	>10	>10	>10
	Hr1	>10	0.32	0.16	0.16	>10	>10	>10	>10	>10	>10	>10	>10
M.tb	Hr2	>10	>10	0.16	0.16	>10	>10	>10	>10	>10	>10	>10	>10
Clinical	Hr3	>10	0.64	0.32	0.16	>10	>10	>10	>10	>10	>10	>10	>10
isolates	Hr4	>10	0.64	0.32	0.16	>10	>10	>10	>10	>10	>10	>10	>10
	Hr5	>10	0.64	0.32	0.16	>10	>10	>10	>10	>10	>10	>10	>10
Species	Strain	70a	70b	ent-70a	ent-70b	20	50	45	30	24	35	rifampicin	bedaquili
M. bovis	BCG	>10	>10	>10	>10	>10	>10	>10	>10	>10	>10	0.02	
M.tb	H37Rv	>10	>10	>10	>10	>10	>10	>10	>10	>10	>10	0.02	0.04
	Hr1	>10	>10	>10	>10	>10	>10	>10	>10	>10	>10	1	0.04
M.tb	Hr2	>10	>10	>10	>10	>10	>10	>10	>10	>10	>10	2	0.08
Clinical	Hr3	>10	>10	>10	>10	>10	>10	>10	>10	>10	>10	0.5	0.08
isolates	Hr4	>10	>10	>10	>10	>10	>10	>10	>10	>10	>10	1	0.64
	Hr5	>10	>10	>10	>10	>10	>10	>10	>10	>10	>10	2	0.08

Table S1. Minimum inhibitory concentrations (μ g/mL) against *M.tb* strains


Table S2. Minimum inhibitory concentrations (μ g/mL) against non-*tb* strains

Compound	Non-tb							
Compound	M.chelonae	M.abscessus	M.terrae	M.scrofulaceum	M.xenopi			
Chrysomycin A (1)	10	10	20	10	10			
Chrysomycin B (2)	20	20	>20	>20	>20			
C2-glycosyl isomer of chrysomycin A (36)	10	10	20	20	10			
Defucogilvocarcin V (26)	>20	>20	>20	>20	>20			

$R^{1} O OMe \\ R^{2} I O OMe \\ Iboron source] \\ R^{0} O C \\ R^{1} = i Pr, R^{2} = Br: 15 \\ R^{1} = i - Pr, R^{2} = H: 15a \\ R^{1} = Ac, R^{2} = H: 15b \\ R^{1} = Ac, R^{2}$							
ontry	substrate	boron source	solvent	regioselectivity	viold (%)		
entry	substrate	(equiv)	sorvent	(C3/C10b/bis)	yield (%)		
1	15	B ₂ pin ₂ (0.55)	THF		0		
2	15	HBpin (2.5)	THF	0/100/0	4		
3	15	HBpin (2.5)	hexane	0/100/0	76, 87 brsm ^a		
4	15 a	HBpin (1.1)	hexane	44/44/12 ^[b]	$< 50^{b}$		
5	15b	HBpin (1.1)	hexane	59/35/6 ^[b]	< 15 ^b		

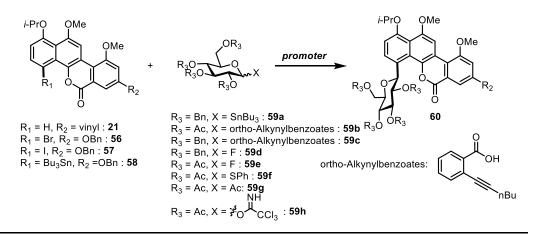
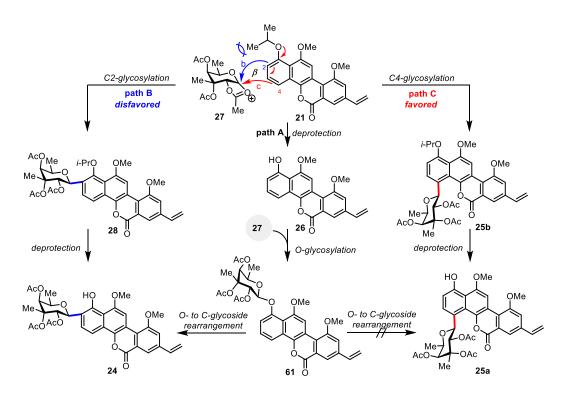

^aReaction run on 1.6 g scale. ^bDetermined by ¹H-NMR and LC-MS of the crude reaction mixture.

Table S4. Screening of conditions for the deacetylation of 25a

[[]a] Reaction run in a sealed tube. [b] Ratio determined by ¹H-NMR of the crude reaction mixture. [c] Isolated yield.

Table S5. Attempts of the C-glycosylation reaction


entry ^a	A/D	promoter	additive	T (°C)	solution	result
1^a	56/59a	$Pd_2(dba)_3$	CuCl	110	Dioxane	N.R.
2^{a}	56/59a	$Pd_2(dba)_3$	CuI	110	Dioxane	N.R.
3 ^a	57/59a	$Pd_2(dba)_3$	CuCl	110	Dioxane	N.R.
4 ^a	57/59a	$Pd_2(dba)_3$	CuI	110	Dioxane	N.R.
5 ^b	21/59b	$Ph_3PAuNTf_2$	4 Å MS	25	DCM	N.R.
6 ^b	21/59c	$Ph_3PAuNTf_2$	4 Å MS	25	DCM	N.R.
7°	58/59d	$BF_3 \bullet Et_2O$	-	25	DCM	N.R
8 ^c	58/59d	TMSOTf	-	25	DCM	N.R
9°	58/59e	$BF_3 \bullet Et_2O$	-	25	DCM	N.R
10 ^c	58/59e	TMSOTf	-	25	DCM	N.R
11 ^d	21/59f	AgOTf, NIS	4 Å MS	0	DCM	N.R
12 ^e	21/59g	$SnCl_4$	4 Å MS	25	DCE	N.R.
13 ^f	21/59g	SnCl ₄ , AgOTfa	4 Å MS	25	DCE	N.R.
14 ^e	21/59h	$SnCl_4$	4 Å MS	25	DCE	N.R.

^{*a*}Conditions: **56** (1.0 equiv), **59a** (2.0 equiv), Jackiephos (0.2 equiv), Pd₂(dba)₃(0.05 equiv), CuI((3.0 equiv), KF (2.0 equiv), 110 °C, 58h. ^{*b*}Conditions: **57** (1.25 equiv), **59b** (1.0 equiv), 4 Å MS (20 wt), Ph₃PAuNTf₂ (0.02 equiv), 25 °C, 2h. ^{*c*}Conditions: **58** (2.0 equiv), glycol donor (1.0 equiv), promoter (2.0 equiv), 4 Å MS (30 wt), 25 °C, 2h. ^{*d*}Conditions: **21** (1.0 equiv), **59g** (1.5 equiv), AgOTf (0.11 equiv), NIS (1.33 equiv) 4 Å MS (20 wt), 0 °C, 30 min. ^{*e*}Conditions: **21** (3.0 equiv), **59g** (1.0 equiv), SnCl₄ (3.0 equiv), 4 Å MS (20 wt), 25 °C, 32 h. ^{*f*}Conditions: **21** (3.0 equiv), **59g** (1.0 equiv), SnCl₄ (3.0 equiv), AgOTf (1.5 equiv), 4 Å MS (20 wt), 25 °C, 32 h.

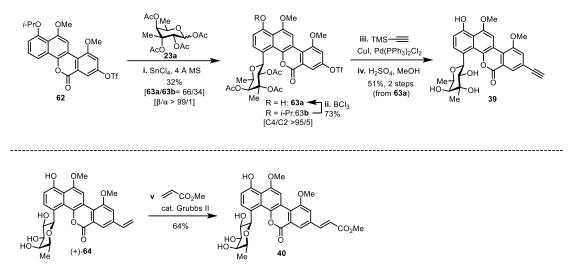
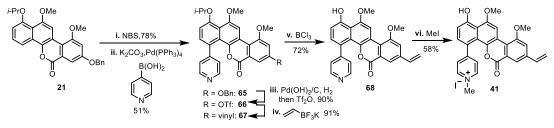
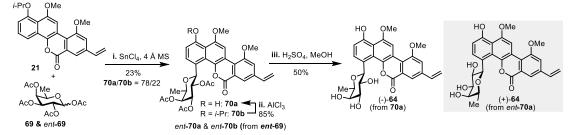

*i-*PrỌ *i*-PrC OMe ĢМе OMe OMe [conditions] entry R_1 R_2 х conditions result ,COO*n-*Bu ,COO*n-*Bu OBn V₂O₅, PCy₃, Rh₂(OAc)₄,Cu(TFA)₂, 5A Ms, 140°C,24h N.R.^a 1 2 COOn-Bu COOn-Bu N.R.^a 25 V_2O_5 , PCy_3 , $Rh_2(OAc)_4$, $Cu(TFA)_2$, 5A Ms, 140°C, 24h ېر .COOEt 3 _COOEt OBn Pd(OAc)₂, AgOAc, Ligand,CHCl₃,80°C, 24h N.R. _COOEt _COOEt Pd(OAc)₂, AgOAc, Ligand, HFIP, 80°C, 24h N.D. 4 OBn ~~~~ 5 OBn BPin HBPin [Ir(cod)OMe]₂, dtbpy, n-hexane, 80°C, 60h N.R.^a 6 OBn BPin HBPin [Ir(cod)OMe]₂, dtbpy, THF, 80°C, 60h N.R.^a 7 BPin HBPin [Ir(cod)OMe]2, dtbpy, n-hexane, 80°C, 60h N.D.^a HBPin [Ir(cod)OMe]₂, dtbpy, THF, 80°C, 60h 8 BPin N.D.^a F₃C CF_3 [a] Reaction was operated in a glove-box, Ligand: он

Table S6. Attempts of the meta functionalization

Scheme S1. Proposed reaction pathways for the C-glycosylation reaction



Scheme S2. Synthesis of C8 analogues.


Reagents and conditions: (i) SnCl₄, 4 Å MS, DCE, r.t. (ii) BlCl₃, CH₂Cl₂, 0 °C. (iii) Trimethylsilylacetylene, CuI, Pd(PPh₃)₂Cl₂, Et₃N, DMF, r.t.(iv) 1.5 M H₂SO₄ in MeOH, 70 °C. (v) Methyl acrylate, cat. Grubbs II, CH₂Cl₂, reflux.

Scheme S3. Synthesis of C4 pyridinium analogues.

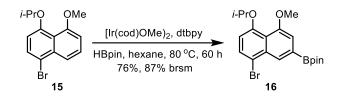
Reagents and conditions: (i) NBS, DMF, r.t. (ii) Pd(PPh₃)₄, K₂CO₃, Pyridine-4-boronic acid, DMF, r.t. (iii)Pd(OH)₂/C,H₂, MeOH, r.t.; Tf₂O, Et₃N, CH₂Cl₂, -78°C. (iv)Potassium vinyltrifluoroborate, [Pd(dppf)Cl₂]·CH₂Cl₂, Et₃N, *n*-PrOH, reflux.(v) BCl₃, CH₂Cl₂, 0°C.(vi) MeI, CH₃CN, 80°C.

Scheme S4. Synthesis of C4 analogues using direct C-glcosylation

Reagents and conditions: (i) SnCl₄, 4 Å MS, DCE, r.t. (ii) AlCl₃, CH₂Cl₂, 0 °C. (iii) 1.5 M H₂SO₄ in MeOH, 70 °C.

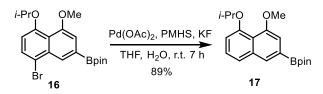
III) Detailed Experimental Procedures

Compound 15. NBS (21.85 g, 120.3 mmol) was added to a solution of **14** (20.96 g, 120.3 mmol) in 400 mL DMF at r.t. The reaction was stirred at r.t. for 1h. Then sodium hydride (60% dispersion in mineral oil, 8.67 g, 216.5 mmol) was added carefully at 0 °C. After stirring for 30 min, isopropyl iodide (24.5 mL, 240.6 mmol) was added and the reaction mixture was heated at 70 °C overnight. The reaction was cooled to r.t. and then poured into ice-cold water (1000 mL). The mixture was extracted with CH_2Cl_2 three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (PE/EtOAc = 97/3) to afford compound **15** (34.09 g, 96%) as a white solid.


Mp 66-68 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 1H), 7.46 (t, *J* = 8.2 Hz, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 6.79 (d, *J* = 8.3 Hz, 1H), 4.53 (hept, *J* = 6.1 Hz, 1H), 3.95 (s, 3H), 1.40 (d, *J* = 6.1 Hz, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 157.3, 154.9, 135.0, 130.3, 127.5, 120.6, 120.2, 114.3, 112.9, 107.3, 73.2, 56.5, 22.0;


IR (neat) v_{max} 2977, 2930, 1609, 1578, 1455, 1272, 1091 cm⁻¹;

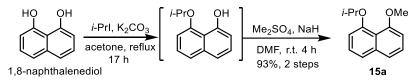
HRMS (ESI) $[M + H]^+$ calculated for C₁₄H₁₆BrO₂: 295.0328, found: 295.0326; TLC: R_f = 0.62 (PE/EtOAc = 9/1).

Compound 16. To a reaction flask charged with a stir bar were added $[Ir(cod)OMe]_2$ (887.0 mg, 1.34 mmol) and 4,4'-di-*tert*-butyl-2,2'-dipyridyl (734.0 mg, 2.68 mmol) in the glove box. Then the flask was sealed and taken out of the glove box. **15** (24.70 g, 83.67 mmol). Hexane (330 mL) and pinacolborane (31.3 mL, 184.1 mmol) were added sequentially to the reaction mixture at r.t. under argon. The resulting reaction mixture was heated to 80 °C and stirred at this temperature for 60 h. Then it was cooled to r.t. and directly loaded on a silica gel column. Flash chromatography (PE/EtOAc = 97/3) provided boronate ester **16** (26.78 g, 76%, 87% based on recovered starting material) and **15** (3.12 g) each as a white foam.

¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.65 (d, *J* = 8.3 Hz, 1H), 7.23 (s, 1H), 6.83 (d, *J* = 8.3 Hz, 1H), 4.49 (hept, *J* = 6.1 Hz, 1H), 3.99 (s, 3H), 1.40-1.37 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 154.8, 134.5, 130.2, 128.1, 122.3, 115.4, 114.7, 111.3, 84.1, 73.6, 56.5, 24.9, 22.0; IR (neat) v_{max} 2976, 2930, 1588, 1562, 1449, 1364, 1256, 1110 cm⁻¹; HRMS (ESI) [M + H]⁺ calculated for C₂₀H₂₇BBrO₄: 421.1184, found: 421.1184; TLC: R_f = 0.48 (PE/EtOAc = 9/1).

Boronate 17. A round bottom flask charged with **16** (27.50 g, 65.3 mmol), $Pd(OAc)_2$ (777.0 mg, 3.27 mmol) and anhydrous THF (323 mL) was flushed with argon. While being flushed, KF (7.67 g, 130.6 mmol) in 130 mL of degassed water was added by syringe. A balloon filled with argon was attached to the flask. Polymethylhydrosiloxane (15.65 mL, 261.2 mmol) was then added to the reaction mixture dropwise. The reaction was stirred at r.t. for 7 h and then diluted with Et₂O (500 mL). The layers were separated

and the ether layer as filtered through a short pad of Celite with EtOAc as the eluent. The filtrate was concentrated *in vacuo* and then purified by silica gel column chromatography (PE to PE/EtOAc = 95/5) to afford boronate **17** (19.89 g, 89%) as a white foam.

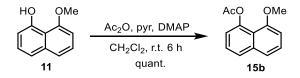

¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.16 (s, 1H), 6.99 (d, J = 7.6 Hz, 1H), 4.52 (hept, J = 6.1 Hz, 1H), 4.00 (s, 3H), 1.41-1.37 (m, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 156.2, 154.7, 137.0, 129.4, 126.1, 122.7, 121.2, 115.1, 110.1, 83.9, 73.5, 56.3, 24.9, 22.1;

IR (neat) v_{max} 2976, 2930, 1594, 1572, 1460, 1371, 1264, 1107 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₀H₂₈BO₄: 343.2079, found: 343.2080;

TLC: $R_f = 0.48$ (PE/EtOAc = 9/1).

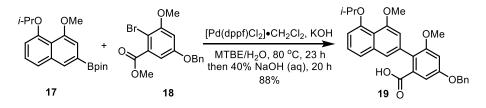

1-Isopropoxy-8-methoxynaphthalene 15a. A mixture of 1,8-naphthalenediol (1.0 g, 6.06 mmol) and K₂CO₃ (0.94 g, 6.72 mmol) in 25 mL of acetone was treated with 2-iodopropane (0.9 mL, 9.08 mmol) at r.t. The reaction mixture was heated at reflux for 17 h and cooled to r.t. It was filtered and washed with EtOAc. The filtrate was concentrated *in vacuo* to afford a crude oil, which was redissolved in 25 mL of DMF. To the solution was added portion wise NaH (60% dispersion in mineral oil, 0.33 g, 8.18 mmol) followed by dimethyl sulfate (0.77 mL, 8.18 mmol). The reaction mixture was stirred at r.t. for 4 h and then quenched by careful addition of water (50 mL). The mixture was extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (PE/EtOAc = 98/2) to afford **15a** (1.22 g, 93% for two steps) as a white solid.

Mp 54-56 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 8.2, 1.1 Hz, 1H), 7.41 (dd, J = 8.3, 1.2 Hz, 1H), 7.38 – 7.32 (m, 2H), 6.95 (dd, J = 7.6, 1.2 Hz, 1H), 6.84 (dd, J = 7.6, 1.2 Hz, 1H), 4.56 (hept, J = 6.1 Hz, 1H), 3.96 (s, 3H), 1.43 (d, J = 6.1 Hz, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 156.9, 154.8, 137.5, 126.2, 126.0, 121.6, 120.9, 119.5, 113.1, 106.4, 73.0, 56.3, 22.1;
HRMS (ESI) [M + H]⁺ calculated for C₁₄H₁₇O₂: 217.1223, found: 217.1217;

TLC: $R_f = 0.60$ (PE/EtOAc = 9/1).



1-Acetoxy-8-methoxynaphthalene 15b. To a solution of **11**¹ (20.4 mg, 0.117 mmol) in 2.3 mL of CH₂Cl₂ were added pyridine (95 μ L, 1.17 mmol), 4dimethylaminopyridine (2.9 mg, 0.023 mmol) and acetic anhydride (55 μ L, 0.586 mmol) sequentially. The reaction was stirred at r.t. for 6 h, followed by concentration *in vacuo*. The residue was dissolved in Et₂O (20 mL), and washed with water and brine. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to give a crude oil, which was purified by silica gel column chromatography (PE/EtOAc = 9/1) to afford 1-acetoxy-8-methoxynaphthalene **15b**¹ (25.3 mg, quant.) as a colorless oil.

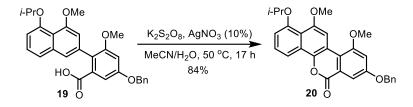
¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 1H), 7.49 – 7.36 (m, 3H), 7.08 (d, J = 7.4 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 3.93 (s, 3H), 2.39 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 170.3, 155.1, 146.4, 136.9, 126.4, 126.3, 126.0, 120.9, 119.2, 119.0, 106.0, 56.0, 21.0;

TLC: $R_f = 0.34$ (PE/EtOAc = 4/1).

Acid 19. To a mixture of 18 (17.56 g, 57.3 mmol) and 17 (13.86 g, 39.47 mmol) in methyl *tert*-butyl ether (292 mL) and water (31 mL) were added [Pd(dppf)Cl₂] CH_2Cl_2 (0.99 g, 1.18 mmol) and KOH (13.10 g 197.4 mmol) sequentially under argon. The

^{1.} Matsuzaka, H.; Hiroe, Y.; Iwasaki, M.; Ishii, Y.; Koyasu, Y.; Hidai, M. J. Org. Chem. 1988, 53, 3832.


mixture was heated to 80 °C and stirred at this temperature for 23 h, followed by addition of 40% NaOH aqueous solution (159 mL). The mixture was stirred for further 20 h. It was cooled to r.t. and acidified by 1 M HCl (aq). The mixture was extracted with EtOAc three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (PE/EtOAc = 85/15) to afford acid **19** (16.41 g, 88%) as a light yellow foam.

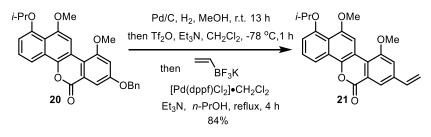
¹H NMR (400 MHz, CDCl₃) δ 7.48-7.27 (m, 7H), 7.24 (s, 1H), 7.08 (d, J = 2.2 Hz, 1H), 6.89 (d, J = 7.4 Hz, 1H), 6.76 (d, J = 2.2 Hz, 1H), 6.72 (s, 1H), 5.10 (s, 2H), 4.55 (hept, J = 6.1 Hz, 1H), 3.87 (s, 3H), 3.67 (s, 3H), 1.41 (d, J = 6.0 Hz, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 158.8, 158.3, 156.2, 154.7, 137.2, 136.4, 134.1, 132.3, 128.6, 128.2, 127.7, 126.0, 124.7, 121.9, 121.9, 118.6, 112.8, 109.5, 106.1, 103.5, 72.9, 70.4, 56.4, 56.0, 22.1;

IR (neat) v_{max} 2974, 2933, 1696, 1600, 1573, 1378, 1208 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₉H₂₉O₆: 473.1959, found: 473.1964; TLC: R_f = 0.22 (PE/EtOAc = 4/1).

Lactone 20. To a reaction flask charged with acid **19** (10.40 g, 22.01 mmol), potassium persulfate (17.94 g, 66.03 mmol) and silver nitrate (374.0 mg, 2.20 mmol) were added acetonitrile (494 mL) and water (494 mL) at r.t. under air. The reaction mixture was heated under magnetic stirring at 50 °C for 17 h. It was cooled to r.t. and quenched with saturated aqueous NaHCO₃ (1000 mL). The mixture was extracted with CH₂Cl₂ three times and the combined organic layers were dried over anhydrous Na₂SO₄. After filtration and concentration, the residue was purified by flash chromatography on silica gel (PE/EtOAc/CH₂Cl₂ = 7/2/1) to afford lactone **20** (8.70 g, 84%) as a yellow solid. Mp 164-166 °C;


¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.24 (dd, J = 8.5, 0.8 Hz, 1H), 7.70 (d, J =

2.5 Hz, 1H), 7.53-7.34 (m, 6H), 7.06 (d, *J* = 7.3 Hz, 1H), 7.01 (d, *J* = 2.5 Hz, 1H), 5.21 (s, 2H), 4.60 (hept, *J* = 6.1 Hz, 1H, 1H), 4.06 (s, 3H), 4.01 (s, 3H), 1.44 (d, *J* = 6.1 Hz, 6H);

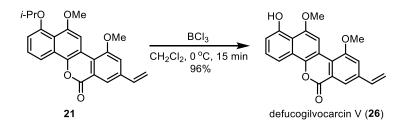
¹³C NMR (100 MHz, CDCl₃) δ 161.4, 159.3, 158.7, 154.5, 152.8, 140.0, 136.0, 128.7, 128.4, 127.8, 127.0, 126.9, 124.2, 119.2, 119.0, 115.4, 114.3, 113.4, 106.9, 104.6, 104.3, 73.1, 70.5, 56.8, 56.2, 22.1;

IR (neat) v_{max} 2974, 2931, 1715, 1605, 1585, 1451, 1343, 1130 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₉H₂₇O₆: 471.1802, found: 471.1802; TLC: R_f = 0.31 (PE/EtOAc = 4/1).

1-O-isopropyldefucogilvocarcin V (21). To a mixture of 20 (8.10 g, 17.22 mmol) and 5% Pd/C (1.62 g) was added 450 mL of MeOH. The resulting mixture was degassed at -78 °C and backfilled with H₂ three times and equipped with an H₂-filled balloon. Then the reaction was stirred at r.t. for 13 h followed by concentration in vacuo. The residue was redissolved in 324 mL of CH₂Cl₂. To the solution was added triethyl amine (13.8 mL, 100.8 mmol) at r.t. and the resulting solution was cooled to -78 °C and treated with trifluoromethanesulfonic anhydride (4.38 mL, 26.04 mmol) dropwise. The reaction mixture was allowed to stir for 1 h, quenched with saturated aqueous NaHCO₃ (150 mL) and warmed to r.t. The mixture was extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to afford crude triflate product. To a suspension of the crude product, potassium vinyltrifluoroborate (4.70 g, 34.44 mmol), [Pd(dppf)Cl₂] CH₂Cl₂ (430.8 mg, 0.52 mmol) in 420 mL of *n*-PrOH was added triethyl amine (3.78 mL, 27.54 mmol) under argon. The resulting reaction mixture was heated at reflux for 4 h. The reaction was cooled and diluted with water (450 mL). The mixture was extracted with CH₂Cl₂ three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford a crude solid which was purified by silica gel column chromatography (PE/CH₂Cl₂ = 1/1 to 1/2) to afford 1-*O*-propyldefucogilvocarcin V (**21**) (5.64 g, 84%) as a yellow solid.

Mp 204-206 °C;

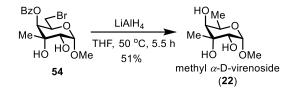

¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 8.08 (s, 1H), 7.47 (t, *J* = 8.1 Hz, 1H), 7.27 (s, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.75 (dd, *J* = 17.5, 10.8 Hz, 1H), 5.90 (d, *J* = 17.5 Hz, 1H), 5.40 (d, *J* = 10.8 Hz, 1H), 4.58 (hept, *J* = 6.0 Hz, 1H), 4.05 (s, 3H), 3.97 (s, 3H), 1.44 (d, *J* = 6.0 Hz, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 161.3, 157.4, 154.6, 152.8, 140.9, 138.4, 135.3, 127.0, 126.8, 123.8, 123.3, 120.5, 119.6, 116.2, 115.6, 114.6, 113.9, 113.2, 104.6, 73.1, 56.6, 56.1, 22.1;

IR (neat) v_{max} 2972, 2927, 1716, 1586, 1450, 1386, 1332, 1293 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₄H₂₃O₅: 391.1540, found: 391.1545;

TLC: $R_f = 0.36$ (PE/EtOAc = 4/1).



Defucogilvocarcin V (**26**). To a solution of **21** (17.3 mg, 0.044 mmol) in 2.6 mL of CH_2Cl_2 at 0 °C was added BCl₃ (1.0 M in CH_2Cl_2 , 0.21 mL, 0.21 mmol) dropwise. The resulting solution was stirred for 15 min and quenched with water (5 mL). The mixture was extracted with CH_2Cl_2 three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Flash chromatography (CH_2Cl_2) provided defucogilvocarcin V (**26**) (14.8 mg, 96%) as a yellow solid. Spectroscopic data are in accordance with the literature reported values.² Mp 245-247 °C;

^{2. (}a) James, C. A.; Snieckus, V. J. Org. Chem. 2009, 74, 4080. (b) Nandaluru, P. R.; Bodwell, G. J. J. Org. Chem. 2012, 77, 8028.

¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 8.30 (s, 1H), 8.13 (d, *J* = 1.5 Hz, 1H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 8.1 Hz, 1H), 7.32 (d, *J* = 1.3 Hz, 1H), 7.01 (d, *J* = 7.8 Hz, 1H), 6.79 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.95 (d, *J* = 17.5 Hz, 1H), 5.46 (d, *J* = 10.9 Hz, 1H), 4.11 (s, 6H);

¹³C NMR (125 MHz, CDCl₃) δ 161.1, 157.3, 154.2, 151.9, 141.7, 138.7, 135.4, 128.6, 126.2, 123.7, 123.4, 120.7, 116.5, 114.9, 114.1, 113.5, 112.8, 101.7, 56.3, 56.0; IR (neat) ν_{max} 3378, 1716, 1625, 1604, 1586, 1446, 1383, 1361, 1333, 1297, 1062 cm⁻¹; HRMS (ESI) [M + H]⁺ calculated for C₂₁H₁₇O₅: 349.1071, found: 349.1072; TLC: R_f = 0.14 (PE/EtOAc = 4/1).

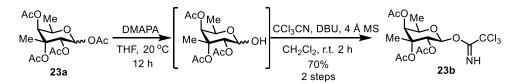
Methyl *α*-D-virenoside (22). To a solution of 54³ (352 mg, 0.94 mmol) in 4.9 mL of THF was added lithium aluminium hydride (184 mg, 4.69 mmol) in portions. After stirring at 50 °C for 5.5 h, the reaction was quenched with EtOAc (4.9 mL) at 0 °C, followed by successively addition of water (60 μ L), 15% aqueous NaOH (60 μ L), and water (180 μ L). The suspension was stirred at 50 °C for further 1 h and filtered. The filtrate was concentrated and purified by silica gel column chromatography (CH₂Cl₂/MeOH = 50/1 to 19/1) to afford methyl *α*-D-virenoside (22) (91.6 mg, 51%) as a white foam. Spectroscopic data are in accordance with literature reported values.^[4b] ¹H NMR (400 MHz, CD₃OD) δ 4.64 (d, *J* = 4.0 Hz, 1H), 4.28 (q, *J* = 6.6 Hz, 1H), 3.62 (d, *J* = 4.0 Hz, 1H), 3.42 (s, 3H), 3.18 (s, 1H), 1.28 (d, *J* = 4.9 Hz, 3H), 1.20 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 102.2, 77.3, 74.9, 69.4, 63.9, 56.1, 22.8, 16.6;

IR (neat) v_{max} 3404, 2978, 2935, 1456, 1374, 1266, 1194, 1078, 1039 cm⁻¹;

HRMS (ESI) $[M + Na]^+$ calculated for C₈H₁₆NaO₅: 215.0890, found: 215.0891; $[\alpha]_D^{27}$ +137.3 (*c* 0.34, MeOH);

^{3.} For the five-step synthesis of compound **27** from methyl α-D-galactopyranoside, see: (a) Yoshimura, J.; Hong, N.; Sato, K. *Chem. Lett.* **1980**, 1131. b) Hong, N.; Sato, K.; Yoshimura, J. *Bull. Chern. Soc. Jpn.* **1981**, *54*, 2379. c) Wang, H.; She, J.; Zhang, L.-H.; Ye, X.-S. J. Org. Chem. **2004**, *69*, 5774.

TLC: $R_f = 0.44$ (CH₂Cl₂/MeOH = 9/1).

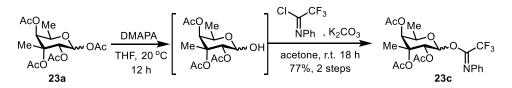


Tetraacetate 23a. To a solution of **22** (81.5 mg, 0.424 mmol) in Ac₂O/AcOH (105/45, 3.29 mL in total) was added conc. H₂SO₄ (22 μ L) dropwise at 0 °C. The resulting reaction mixture was stirred at r.t. for 24 h, and then diluted with CH₂Cl₂ (15 mL) and washed with water, saturated aqueous NaHCO₃, and brine sequentially. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Flash chromatography (PE/EtOAc = 4/1) provided a mixture of two anomers **23a** (130.7 mg, 89%, $\alpha/\beta = 1/4$) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 6.21 (d, J = 4.2 Hz, 0.2H), 5.97 (d, J = 8.4 Hz, 0.8H), 5.80 (s, 0.8H), 5.79 (s, 0.2H) 5.18-5.11 (m, 1H), 4.35 (q, J = 6.8 Hz, 1H), 4.13 (q, J = 6.8 Hz, 1H), 2.17 (s, 3H), 2.11 (s, 6H), 2.09 (s, 3H), 1.49 – 1.45 (m, 3H), 1.14 (d, J = 6.5 Hz, 2.4H), 1.09 (d, J = 6.6 Hz, 0.6H);

¹³C NMR (100 MHz, CDCl₃) δ 170.2, 169.9, 169.8, 169.7, 169.4, 169.2, 169.1, 90.4, 89.3, 81.9, 79.2, 71.3, 70.9, 70.6, 69.3, 68.9, 64.5, 22.2, 22.0, 20.9, 20.9, 20.6, 20.6, 20.5, 18.2, 18.0, 16.2, 16.1;

IR (neat) ν_{max} 2990, 1747, 1434, 1370, 1212, 1143, 1079, 1065, 1047, 1018 cm⁻¹; HRMS (ESI) [M + Na]⁺ calculated for C₁₅H₂₂NaO₉: 369.1156, found: 369.1158; TLC: R_f = 0.56 (PE/EtOAc = 2/1).


Glycosyl trichloroacetimidate 23b. A solution of **23a** (8.0 mg, 0.023 mmol) and 3-(dimethylamino)-1-propylamine (23 μ L, 0.184 mmol) in 0.5 mL of THF was stirred at 20 °C for 12 h.⁴ Then it was diluted with CH₂Cl₂ (10 mL) and washed with 1 N HCl followed by brine. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was dissolved in anhydrous CH₂Cl₂ (0.5 mL). To

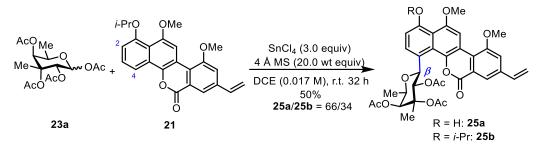
^{4.} Andersen, S. M.; Heuckendorff, M.; Jensen, H. H. Org. Lett. 2015, 17, 944.

the solution were added 4 Å molecular sieves (8.0 mg) and trichloroacetonitrile (48 μ L, 0.46 mmol). The resulting mixture was stirred at r.t. for 0.5 h, and then cooled to 0 °C. 1,8-Diazabicyclo[5.4.0]undec-7-ene (2.8 μ L, 0.018 mmol) was added. The reaction was warmed to r.t. and stirred for 2 h followed by concentration *in vacuo*. Flash chromatography (PE/EtOAc = 7/3) provided glycosyl trichloroacetimidate **23b** (7.3 mg, 70% for two steps) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 6.08 (d, *J* = 8.4 Hz, 1H), 5.85 (s, 1H), 5.30 (d, *J* = 8.2 Hz, 1H), 4.23 – 4.17 (m, 1H), 2.21 (s, 3H), 2.14 (s, 3H), 2.10 (s, 3H), 1.50 (s, 3H), 1.19 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 169.7, 169.2, 161.4, 94.6, 90.7, 82.0, 71.3, 70.4, 69.1, 22.1, 20.7, 18.0, 16.2; IR (neat) v_{max} 2952, 2924, 2854, 1753, 1728, 1679, 1465, 1378, 1220, 1066, 794 cm⁻¹; HRMS (ESI) [M - H]⁻ calculated for C₁₅H₁₉Cl₃NO₈: 446.0182, found: 446.0178; [α]¹⁹_D +13.4 (*c* 0.09, CHCl₃);

TLC: $R_f = 0.59$ (PE/EtOAc = 1/1).

Glycosyl *N*-**phenyltrifluoroacetimidate 23c.** A solution of **23a** (8.5 mg, 0.0245 mmol) and 3-(dimethylamino)-1-propylamine (23 μ L, 0.184 mmol) in 0.5 mL of THF was stirred at 20 °C for 12 h.⁵ Then it was diluted with CH₂Cl₂ (10 mL) and washed with 1 N HCl followed by brine. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was dissolved in acetone (0.5 mL). To the solution were added K₂CO₃ (6.8 mg, 0.049 mmol) and *N*-phenyltrifluoroacetimidoyl chloride (10.2 mg, 0.049 mmol). The resulting reaction mixture was stirred at r.t. for 2 h, followed by addition of K₂CO₃ (3.4 mg, 0.025 mmol) and trifluoroacetimidoyl chloride (10.2 mg, 0.049 mmol). After stirring for additional 16 h, the reaction was concentrated *in vacuo* and purified by flash chromatography on silica gel (PE/EtOAc = 9/1) to afford glycosyl *N*-phenyltrifluoroacetimidate **23c** (8.9 mg, 77%) as a colorless oil.


¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.8 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 6.88

(d, J = 6.4 Hz, 2H), 5.97 (br s, 1H), 5.79 (br s, 1H), 5.24 (br s, 1H), 4.11 (br s, 1H), 2.20 (s, 3H), 2.16 (s, 3H), 2.04 (br s, 3H), 1.48 (s, 3H), 1.13 (br s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 169.7, 169.1, 143.4, 128.7, 124.4, 119.3, 93.6, 82.0, 71.3, 70.3, 69.1, 22.1, 20.7, 20.5, 17.9, 16.1;

IR (neat) v_{max} 1755, 1726, 1597, 1377, 1320, 1213, 1146, 1082, 914 cm⁻¹;

HRMS (ESI) $[M + Na]^+$ calculated for $C_{21}H_{24}F_3NNaO_8$: 498.1346, found: 498.1341;

TLC: $R_f = 0.48$ (PE/EtOAc = 2/1).

4-Glycosylation products 25. To a round bottom flask charged with **23a** (80.5 mg, 0.232 mmol), **21** (272.0 mg, 0.697 mmol) and 4 Å molecular sieves (1.61 g) and a stir bar was added 13.7 mL of anhydrous dichloroethane under argon. The resulting mixture was stirred at r.t. for 2 h. Then it was cooled to 0 °C and SnCl₄ (1.0 M in CH₂Cl₂, 0.70 mL, 0.70 mmol) was added dropwise. After kept at 0 °C for 30 min, the reaction was warmed to r.t. and stirred for 38 h. It was then quenched with saturated aqueous NaHCO₃ (15 mL), and extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. ¹H-NMR analysis of the residue showed a ratio of >95/5 (**25/24**). Silica gel column chromatography (PE/CH₂Cl₂/EtOAc = 0/100/0 to 75/10/15 to 65/20/15) afforded **25a** (48.8 mg, 33%) and **25b** (26.2 mg, 17%) each as a yellow solid. The structure of **25a** was determined by 2D-NMR analysis.

For 1-OH-4-glycosylated product 25a:

Mp 268-270 °C;

¹H NMR (500 MHz, CDCl₃) δ 9.83 (s, 1H), 8.51 (s, 1H), 8.15 (d, J = 1.5 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 1.5 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 6.83 (dd, J = 17.5, 10.5 Hz, 1H), 6.81 (d, J = 10.0 Hz, 1H), 5.98 (d, J = 17.5 Hz, 1H), 5.98 (d, J = 0.5 Hz, 1H), 5.48 (d, J = 10.5 Hz, 1H), 5.44 (d, J = 10.0 Hz, 1H), 4.64 (q, J = 6.5 Hz,

1H), 4.15 (s, 3H), 4.14 (s, 3H), 2.31 (s, 3H), 2.23 (s, 3H), 1.57 (s, 3H), 1.53 (s, 3H), 1.17 (d, *J* = 6.5 Hz, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 170.3, 170.2, 170.0, 160.2, 157.5, 154.7, 152.2, 143.2, 139.0, 135.3, 129.7, 125.0, 123.8, 123.0, 120.3, 116.8, 116.1, 114.3, 113.9, 113.1, 102.4, 81.5, 74.5, 72.6, 72.0, 70.2, 56.4, 56.4, 22.3, 20.9, 20.4, 18.7, 16.8;

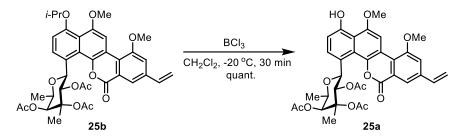
IR (neat) v_{max} 2955, 2925, 2855, 1749, 1742, 1727, 1464, 1374, 1258, 1223 cm⁻¹;

HRMS (ESI) $[M + Na]^+$ calculated for C₃₄H₃₄NaO₁₂: 657.1943, found: 657.1938; $[\alpha]_D^{20} + 75.7 (c \ 0.21, CHCl_3);$

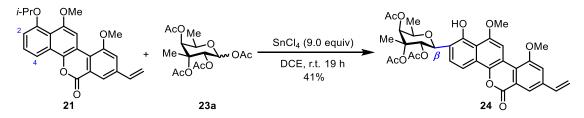
TLC: $R_f = 0.30$ (PE/EtOAc = 1/1).

For 1-O-isopropyl-4-glycosylated product 25b:

Mp 188-190 °C;


¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.15 (d, *J* = 1.6 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.40 (d, *J* = 1.5 Hz, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 6.84 (d, *J* = 10.0 Hz, 1H) 6.83 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.99 (s, 1H), 5.97 (d, *J* = 17.2 Hz, 1H), 5.46 (d, *J* = 10.8 Hz, 1H), 5.43 (d, *J* = 10.0 Hz, 1H), 4.68 (q, *J* = 6.5 Hz, 1H), 4.61 (hept, *J* = 6.0 Hz, 1H), 4.14 (s, 3H), 3.99 (s, 3H), 2.30 (s, 3H), 2.23 (s, 3H), 1.53 (s, 3H), 1.52 (s, 3H), 1.42 (d, *J* = 6.0 Hz, 3H), 1.39 (d, *J* = 6.0 Hz, 3H), 1.18 (d, *J* = 6.5 Hz, 3H);

¹³C NMR (100 Hz, CDCl₃) δ 170.4, 170.1, 170.0, 160.4, 157.7, 154.8, 153.3, 142.5, 138.8, 135.3, 128.2, 126.5, 125.7, 124.1, 123.0, 120.9, 120.1, 116.5, 114.4, 114.1, 113.5, 105.7, 81.4, 74.6, 72.8, 72.7, 72.0, 70.2, 57.2, 56.4, 22.3, 22.1, 21.8, 20.9, 20.3, 18.6, 16.8;

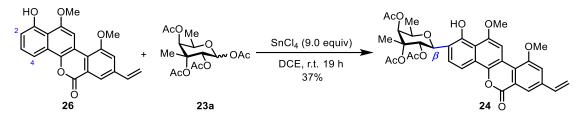

IR (neat) v_{max} 2926, 2856, 1750, 1727, 1589, 1450, 1371, 1224, 1066 cm⁻¹;

HRMS (ESI) $[M + Na]^+$ calculated for C₃₇H₄₀NaO₁₂: 699.2412, found: 699.2403; $[\alpha]_D^{20}$ +92.2 (*c* 0.58, CHCl₃);

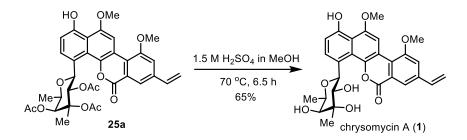
TLC: $R_f = 0.57$ (PE/EtOAc = 1/1).

Naphthol 25a. To a solution of **25b** (9.2 mg, 0.0136 mmol) in 0.8 mL of CH₂Cl₂ at - 20 °C was added BCl₃ (1.0 M in hexane, 54.4 μ L, 0.0544 mmol) dropwise. The resulting solution was stirred for 30 min and quenched with water (5 mL). The mixture was extracted with CH₂Cl₂ three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford naphthol **25a** (8.6 mg, quant.) as a yellow solid.

C2-glycosylation product 24. To a stirred solution of **21** (3.0 mg, 0.0077 mmol), and **23a** (10.1 mg, 0.029 mmol) in 0.6 mL of anhydrous dichloroethane was added SnCl₄ (1.0 M in dichloroethane, 69.2 μ L, 0.0692 mmol) at r.t. The reaction mixture was stirred at r.t. for 19 h, followed by addition of CH₂Cl₂(10 mL) and saturated aqueous NaHCO₃ (10 mL). The organic layer was separated, washed with water and then concentrated *in vacuo*. The residue was purified by preparative TLC (CH₂Cl₂/acetone = 30/1) to afford **24** (2.0 mg, 41%) as a yellow solid. The structure of **24** was determined by 2D-NMR analysis.


Mp 280-282 °C;

¹H NMR (500 MHz, CDCl₃) δ 9.79 (s, 1H), 8.36 (s, 1H), 8.14 (d, *J* = 1.5 Hz, 1H), 8.10 (d, *J* = 8.8 Hz, 1H), 7.70 (d, *J* = 8.8 Hz, 1H), 7.36 (d, *J* = 1.4 Hz, 1H), 6.80 (dd, *J* = 17.5, 10.9 Hz, 1H), 5.96 (d, *J* = 16.5 Hz, 1H), 5.94 (d, *J* = 1.2 Hz, 1H), 5.54-5.45 (m, 3H), 4.18 (q, *J* = 6.5 Hz, 1H), 4.12 (s, 3H), 4.11 (s, 3H), 2.28 (s, 3H), 2.22 (s, 3H), 1.78 (s, 3H), 1.54 (s, 3H), 1.19 (d, *J* = 6.5 Hz, 3H);


¹³C NMR (125 MHz, CDCl₃) δ 170.1, 169.8, 169.6, 161.0, 157.3, 152.0, 151.9, 141.7, 138.8, 135.3, 127.7, 126.0, 123.6, 123.5, 120.8, 116.6, 114.4, 114.1, 113.7, 113.1, 102.3, 81.4, 73.4, 73.4, 71.5, 70.5, 56.3, 56.2, 22.3, 20.9, 20.5, 18.8, 16.8; IR (neat) v_{max} 2956, 2929, 2854, 1750, 1727, 1462, 1378, 1226 cm⁻¹;

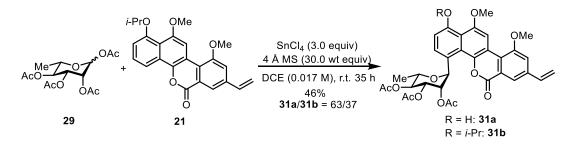
HRMS (ESI) $[M + Na]^+$ calculated for C₃₄H₃₄NaO₁₂: 657.1943, found: 657.1948; $[\alpha]_D^{20}$ -4.8 (*c* 0.13, CHCl₃);

TLC: $R_f = 0.20$ (PE/EtOAc = 1/1).

C2-glycosylation product 24. To a stirred solution of **26** (3.0 mg, 0.0086 mmol), and **23a** (11.3 mg, 0.033 mmol) in 0.67 mL of anhydrous dichloroethane was added SnCl₄ (1.0 M in dichloroethane, 77.5 μ L, 0.0775 mmol) at r.t. The reaction mixture was stirred at r.t. for 19 h, followed by addition of CH₂Cl₂ (10 mL) and saturated aqueous NaHCO₃ (10 mL). The organic layer was separated, washed with water and then concentrated *in vacuo*. The residue was purified by preparative TLC (CH₂Cl₂/acetone = 30/1) to provide **24** (2.0 mg, 37%) as a yellow solid.

Chrysomycin A (1). To a suspension of **25a** (32.6 mg, 0.051 mmol) in 5.7 mL of MeOH was added 5.7 mL of 3.0 M H₂SO₄ in MeOH. The resulting reaction solution was stirred at 70 °C for 6.5 h and then cooled to r.t. The reaction was diluted with water (20 mL), and extracted with CH₂Cl₂ three times. The organic phases were washed with saturated aqueous NaHCO₃ and then dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH = 100/1 to 30/1) to afford chrysomycin A (1) (17.0 mg, 65%) as a

yellow solid. Spectroscopic data are in accordance with the naturally obtained material. Mp 234-236 °C;


¹H NMR (400 MHz, DMSO-*d6*) δ 9.82 (s, 1H), 8.49 (s, 1H), 8.01 (s, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.76 (s, 1H), 6.97 (d, J = 8.6 Hz, 1H), 6.95 (dd, J = 17.6, 11.2 Hz, 1H), 6.16 (d, J = 17.6 Hz, 1H), 6.02 (d, J = 9.6 Hz, 1H), 5.51 (d, J = 11.0 Hz, 1H), 4.59 (d, J = 7.7 Hz, 1H), 4.52 (q, J = 6.6 Hz, 1H), 4.20 (s, 1H), 4.19 (d, J = 8.0 Hz, 1H), 4.18 (s, 3H), 4.13 (s, 3H), 3.68 (dd, J = 9.2, 8.8 Hz, 1H), 3.14 (d, J = 7.9 Hz, 1H), 1.25 (s, 3H), 1.02 (d, J = 6.5 Hz, 3H);

¹³C NMR (100 MHz, DMSO-*d*6) δ 159.8, 157.4, 153.2, 151.9, 142.5, 138.8, 135.2, 129.4, 128.1, 125.2, 123.0, 122.1, 119.1, 117.3, 115.2, 114.8, 113.2, 112.2, 101.5, 75.8, 74.6, 73.2, 72.5, 70.7, 56.8, 56.3, 23.9, 17.1;

IR (neat) v_{max} 3362, 3334, 2955, 2924, 2855, 1716, 1698, 1456, 1372, 1259, 1062 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₈H₂₉O₉: 509.1806, found: 509.1806; $[\alpha]_D^{22}$ -13.3 (*c* 0.06, CHCl₃);

TLC: $R_f = 0.32$ (CH₂Cl₂/MeOH = 19/1).

Compound 31a and 31b. To a round bottom flask charged with **29** (10 mg, 0.03 mmol), **21** (35.2 mg, 0.09 mmol) and 4 Å molecular sieves (300 mg) and a stir bar was added 1.75 mL of anhydrous dichloroethane under argon. The resulting mixture was stirred at r.t. for 2 h. Then it was cooled to 0 °C and SnCl₄ (1.0 M in CH₂Cl₂, 90 μ L, 0.09 mmol) was added dropwise. After kept at 0 °C for 30 min, the reaction was warmed to r.t. and stirred for 35 h. It was then quenched with saturated aqueous NaHCO₃ (5 mL), and extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Silica gel column chromatography (PE/CH₂Cl₂/EtOAc = 0/100/0 to 75/10/15 to 65/20/15) afforded compound **31a** (5.3 mg, 29%) and compound **31b** (3.4 mg, 17%) each as a yellow solid. For 1-OH-4-glycosylated product 31a:

Mp 270-272 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 8.44 (s, 1H), 8.20 (d, *J* = 1.5 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.36 (d, *J* = 1.4 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.80 (dd, *J* = 17.6, 10.9 Hz, 1H), 6.32 (s, 1H), 5.94 (d, *J* = 17.6 Hz, 1H), 5.93 (d, *J* = 3.2 Hz, 1H), 5.71 (dd, *J* = 9.9, 3.4 Hz, 1H), 5.46 (d, *J* = 10.9 Hz, 1H), 5.22 (t, *J* = 9.8 Hz, 1H), 4.11 (s, 3H), 4.11 (s, 3H), 3.91 (dd, *J* = 9.6, 6.1 Hz, 1H), 2.10 (s, 3H), 1.95 (s, 3H), 1.88 (s, 3H), 1.38 (d, *J* = 6.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.0, 169.8, 159.8, 157.4, 154.2, 152.2, 142.5, 138.9, 135.3, 129.2, 124.0, 123.7, 123.1, 122.7, 120.6, 116.6, 115.6, 114.3, 114.0, 112.2, 102.5, 74.7, 72.5, 72.1, 71.5, 56.4, 56.3, 21.0, 20.7, 20.6, 18.1;

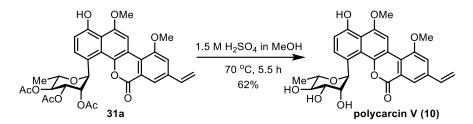
IR (neat) v_{max} 3375, 2926, 2853, 1741, 1622, 1589, 1450, 1369, 1228, 1129, 1054 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₃₃H₃₃O₁₂: 621.1967, found: 621.1951;

 $[\alpha]_{D}^{20}$ -94.3 (*c* 0.14, CHCl₃);

TLC: $R_f = 0.34$ (PE/EtOAc = 1/1).

For 1-O-isopropyl-4-glycosylated product **31b**:


Mp 106-108 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 8.20 (d, *J* = 1.5 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.37 (d, *J* = 1.5 Hz, 1H), 7.04 (d, *J* = 8.5 Hz, 1H), 6.81 (dd, *J* = 17.6, 10.9 Hz, 1H), 6.36 (s, 1H), 5.97 (d, *J* = 2.8 Hz, 1H), 5.95 (d, *J* = 17.2 Hz, 1H), 5.73 (dd, *J* = 9.9, 3.4 Hz, 1H), 5.44 (d, *J* = 10.9 Hz, 1H), 5.22 (t, *J* = 9.8 Hz, 1H), 4.57 (hept, *J* = 6.0 Hz, 1H), 4.11 (s, 3H), 3.98 (s, 3H), 3.92 (dd, *J* = 9.8, 6.3 Hz, 1H), 2.10 (s, 3H), 1.95 (s, 3H), 1.86 (s, 3H), 1.42 (d, *J* = 6.0 Hz, 3H), 1.39 (d, *J* = 6.0 Hz, 3H), 1.37 (d, *J* = 5.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 169.9, 169.8, 160.1, 157.6, 154.3, 153.3, 141.8, 138.7, 135.4, 127.8, 126.0, 123.9, 122.7, 120.5, 116.4, 114.6, 114.4, 113.6, 108.0, 105.8, 74.6, 72.9, 72.5, 72.1, 71.5, 57.1, 56.4, 22.1, 21.9, 21.0, 20.7, 20.6, 18.0; IR (neat) v_{max} 2922, 2851, 1745, 1729, 1589, 1370, 1240, 1135, 1053 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₃₆H₃₉O₁₂: 663.2436, found: 663.2463;

$[\alpha]_{D}^{24}$ -87.1 (*c* 0.27, CHCl₃);

TLC: $R_f = 0.52$ (PE/EtOAc = 1/1).

Polycarcin V (10). To a suspension of **31a** (5.3 mg, 0.0085 mmol) in 0.8 mL of MeOH was added 0.8 mL of 3.0 M H₂SO₄ in MeOH. The resulting reaction solution was stirred at 70 °C for 5.5 h and then cooled to r.t. The reaction was diluted with water (5 mL), and extracted with CHCl₃/*i*-PrOH (3/1) three times. The organic phases were washed with saturated aqueous NaHCO₃ and then dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH = 9/1) to afford polycarcin V (**10**) (2.6 mg, 62%) as a yellow solid. Mp >330 °C;


¹H NMR (500 MHz, DMSO-*d*6) δ 9.73 (s, 1H), 8.45 (s, 1H), 7.97 (d, *J* = 1.2 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 1.2 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 1H), 6.94 (dd, *J* = 17.6, 11.0 Hz, 1H), 6.14 (d, *J* = 17.6 Hz, 1H), 5.84 (s, 1H), 5.50 (d, *J* = 11.0 Hz, 1H), 4.81 (d, *J* = 5.1 Hz, 1H), 4.47 (d, *J* = 5.3 Hz, 1H), 4.16 (s, 3H), 4.11 (s, 3H), 4.07 (dd, *J* = 5.6, 3.1 Hz, 1H), 4.01 (m, 1H), 3.78 (m, 1H), 3.36 (m, 1H) 3.31 (m, 1H), 1.29 (d, *J* = 5.9 Hz, 3H);

¹³C NMR (125 MHz, DMSO-*d*6) δ 159.4, 157.5, 152.8, 152.1, 141.8, 138.9, 135.2, 130.0, 126.7, 122.9, 122.5, 121.9, 119.2, 117.3, 114.9, 114.7, 113.3, 112.1, 101.4, 77.5, 76.4, 74.7, 72.8, 71.6, 56.8, 56.3, 18.5;

IR (neat) v_{max} 3375, 2923, 2852, 1712, 1619, 1606, 1589, 1450, 1371, 1246, 1131, 1085 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₇H₂₇O₉: 495.1650, found: 495.1646; $[\alpha]_{D}^{22}$ -83.6 (*c* 0.2, MeOH);

TLC: $R_f = 0.21$ (CH₂Cl₂/MeOH = 19/1).

Compound 32a and 32b. To a round bottom flask charged with **30** (25.3 mg, 0.0762 mmol), **21** (89.4 mg, 0.229 mmol) and 4 Å molecular sieves (759 mg) and a stir bar was added 4.4 mL of anhydrous dichloroethane under argon. The resulting mixture was stirred at r.t. for 2 h. Then it was cooled to 0 °C and SnCl₄ (1.0 M in CH₂Cl₂, 0.31mL, 0.305 mmol) was added dropwise. After kept at 0 °C for 30 min, the reaction was warmed to r.t. and stirred for 44 h. It was then quenched with saturated aqueous NaHCO₃ (5 mL), and extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Silica gel column chromatography (PE/CH₂Cl₂/EtOAc = 0/100/0 to 75/10/15 to 65/20/15) afforded compound **32a** (7.8 mg, 16%) and compound **32b** (6.8 mg, 14%) each as a yellow solid.

For 1-OH-4-glycosylated product **32a**:

Mp 141-143 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1H), 8.42 (s, 1H), 8.09 (d, J = 1.3 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 1.2 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 6.80 (dd, J = 17.6, 10.9 Hz, 1H), 6.46 (d, J = 3.0 Hz, 1H), 6.08 (d, J = 3.1 Hz, 1H), 5.94 (d, J = 17.6 Hz, 1H), 5.45 (d, J = 10.9 Hz, 1H), 5.40 – 5.35 (m, 1H), 5.19 (d, J = 3.7 Hz, 1H), 4.18 (dd, J = 6.3, 3.8 Hz, 1H), 4.11 (s, 3H), 4.09 (s, 3H), 2.32 (s, 3H), 2.15 (s, 5H), 1.57 (s, 3H), 1.43 (d, J = 6.5 Hz, 3H)

¹³C NMR (125 MHz, CDCl₃) δ 170.7, 170.5, 168.6, 160.1, 157.4, 154.1, 151.9, 142.8, 138.8, 135.3, 129.2, 124.1, 123.8, 122.7, 122.1, 120.4, 116.5, 115.4, 114.0, 113.6, 112.1, 102.4, 83.3, 81.5, 78.9, 77.9, 69.8, 56.3, 56.2, 21.3, 21.1, 20.3, 16.4.

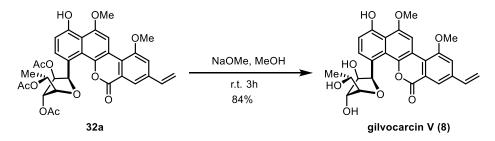
IR (neat) v_{max} 3357, 2987, 2936, 1740, 1589, 1449, 1371, 1236, 1129, 1069, 1043, 783 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for $C_{33}H_{33}O_{12}$: 621.1967, found: 621.1961;

 $[\alpha]_{D}^{26}$ -90.5 (*c* 0.25, CHCl₃);

TLC: $R_f = 0.34$ (PE/EtOAc = 1/1).

For 1-O-isopropyl-4-glycosylated product **32b**:


Mp 90-92 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 8.12 (d, J = 1.6 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 1.6 Hz, 1H), 7.06 (d, J = 8.5 Hz, 1H), 6.82 (dd, J = 17.5, 10.9 Hz, 1H), 6.54 (d, J = 3.2 Hz, 1H), 6.17 (dd, J = 3.3, 0.9 Hz, 1H), 5.95 (d, J = 17.5 Hz, 1H), 5.44 (d, J = 10.9 Hz, 1H), 5.38 (t, J = 6.5 Hz, 1H), 5.20 (dd, J = 3.9, 0.8 Hz, 1H), 4.61 – 4.58 (hept, J = 6.0 Hz, 1H), 4.18 (dd, J = 6.5, 3.9 Hz, 1H), 4.11 (s, 3H), 3.99 (s, 3H), 2.32 (s, 3H), 2.15 (s, 3H), 1.54 (s, 3H), 1.44 – 1.37 (m, 9H)

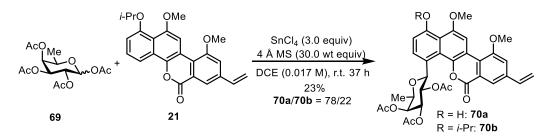
¹³C NMR (125 MHz, CDCl₃) δ 170.6, 170.5, 168.5, 160.4, 157.7, 154.2, 153.1, 142.2, 138.7, 135.4, 127.9, 124.9, 124.2, 124.2, 122.8, 120.4, 120.3, 116.4, 114.2, 114.1, 113.9, 105.7, 83.3, 81.7, 78.9, 78.0, 73.0, 69.9, 57.0, 56.4, 22.1, 21.9, 21.4, 21.1, 20.2, 16.4. IR(neat) v_{max} 2978, 2921, 2850, 1741, 1589, 1451, 1370, 1335, 1301, 1235, 1135, 1044, 925, 783 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₃₆H₃₉O₁₂: 663.2436, found: 663.2451; $[\alpha]_D^{26}$ -86.7 (*c* 0.25, CHCl₃);

TLC: $R_f = 0.45$ (PE/EtOAc = 1/1).

Gilvocarcin V (8). To a suspension of **32a** (4.7 mg, 0.00757 mmol) in MeOH (0.5 mL) was added a 1.0 M solution of NaOMe in MeOH (15 μ L) at room temperature. Stirring was continued for 3 h, The suspension was treated with AcOH (0.2 mL) and concentrated in vacuo. The residue was purified by PTLC (/CH₂C1₂/MeOH = 90/10) to afford **gilvocarcin V (8)** (3.1 mg, 84%) as a yellow crystalline solid. Spectroscopic data are in accordance with the naturally obtained material.

¹H NMR (400 MHz, DMSO-d6) δ 9.71 (s, 1H), 8.48 (s, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.99 (s, 1H), 7.76 (s, 1H), 6.96 (dd, J = 17.6, 10.9 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.20 (d, J = 5.5 Hz, 1H), 6.16 (d, J = 17.6 Hz, 1H), 5.51 (d, J = 11.0 Hz, 1H), 5.10 (d, J = 4.8 Hz, 1H), 4.83 (d, J = 4.8 Hz, 1H), 4.66-4.71 (m, 1H), 4.51 (d, J = 6.6 Hz, 1H), 4.18 (s, 3H), 4.13 (s, 3H), 3.82-3.90(m, 2H), 3.51(dd, J = 5.9, 4.4 Hz, 1H), 1.24 (d, J = 6.5 Hz, 3H)


¹³C NMR (125 MHz, DMSO-d6) δ 159.6, 157.3, 152.6, 151.8, 142.3, 138.7, 135.2, 129.1, 126.2, 123.6, 122.9, 122.2, 119.0, 117.0, 114.8, 114.4, 112.5, 112.0, 101.4, 85.7, 80.7, 78.9, 78.6, 66.4, 56.7, 56.2, 20.0.

IR (neat) v_{max} 3361, 2981, 2944, 1720, 1589, 1449, 1365, 1236, 1129, 1069, 1043, 743 cm⁻¹;

HRMS (ESI) [M + H]⁺ calculated for C₂₇H₂₇O₉: 495.1649, found: 495.1641;

 $[\alpha]_{D}^{25}$ -221.0 (*c* 0.22, DMSO);

TLC: $R_f = 0.39$ (DCM/MeOH = 19/1).

Compound 70a and 70b. To a round bottom flask charged with **69** (50 mg, 0.15 mmol), **21** (175.9 mg, 0.45 mmol) and 4 Å molecular sieves (1.5 g) and a stir bar was added 8.8 mL of anhydrous dichloroethane under argon. The resulting mixture was stirred at r.t. for 2 h. Then it was cooled to 0 °C and SnCl₄ (1.0 M in CH₂Cl₂, 0.45 mL, 0.45 mmol) was added dropwise. After kept at 0 °C for 30 min, the reaction was warmed to r.t. and stirred for 37 h. It was then quenched with saturated aqueous NaHCO₃ (25 mL), and extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Silica gel column chromatography (PE/CH₂Cl₂/EtOAc = 0/100/0 to 75/10/15 to 60/25/15) afforded compound **70a** (4.2 mg, 18%) and compound **70b** (3.4 mg, 5%) each as a yellow solid.

For 1-OH-4-glycosylated product **70a**: Mp 306-308 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 8.53 (s, 1H), 8.16 (d, *J* = 1.5 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.40 (d, *J* = 1.5 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.83 (dd, *J* = 17.5, 10.9 Hz, 1H), 6.21 (d, *J* = 10.1 Hz, 1H), 5.98 (d, *J* = 17.5 Hz, 1H), 5.78 (t, *J* = 9.8 Hz, 1H), 5.49 (d, *J* = 10.8 Hz, 1H), 5.47 (d, *J* = 4.4 Hz, 1H), 5.41 (dd, *J* = 9.6, 3.4 Hz, 1H), 4.64 (q, *J* = 6.6 Hz, 1H), 4.15 (s, 3H), 4.14 (s, 3H), 2.23 (s, 3H), 2.01 (s, 3H), 1.65 (s, 3H), 1.23 (d, *J* = 6.4 Hz, 3H);

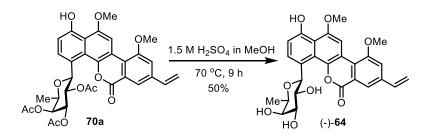
¹³C NMR (125 MHz, CDCl₃) δ 171.0, 170.3, 169.6, 160.3, 157.5, 155.0, 152.2, 142.9, 139.1, 135.2, 129.4, 125.2, 123.6, 123.1, 122.8, 120.3, 116.8, 116.3, 114.3, 114.2, 112.7, 102.6, 76.9, 74.0, 73.1, 71.8, 69.3, 56.4, 56.4, 20.9, 20.8, 20.6, 16.5; IR (neat) v_{max} 2917, 1849, 1749, 1719, 1464, 1371, 1221, 1137 cm⁻¹;

HRMS (ESI) $[M + Na]^+$ calculated for C₃₃H₃₂NaO₁₂: 643.1786, found: 643.1795; $[\alpha]_D^{26}$ +68.6 (*c* 0.2, CHCl₃);

TLC: $R_f = 0.33$ (PE/EtOAc = 1/1).

For 1-*O*-isopropyl-4-glycosylated product **70b**: Mp 84-86 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.17 (d, *J* = 1.5 Hz, 1H), 7.77 (d, *J* = 8.5 Hz, 1H), 7.41 (d, *J* = 1.2 Hz, 1H), 7.04 (d, *J* = 8.4 Hz, 1H), 6.84 (dd, *J* = 17.6, 10.9 Hz, 1H), 6.22 (d, *J* = 10.1 Hz, 1H), 5.98 (d, *J* = 17.5 Hz, 1H), 5.80 (t, *J* = 9.8 Hz, 1H), 5.47 (d, *J* = 10.8 Hz, 1H), 5.47 (d, *J* = 4.0 Hz, 1H), 5.40 (dd, *J* = 9.6, 3.2 Hz, 1H), 4.68 (q, *J* = 6.4 Hz, 1H), 4.62 (hept, *J* = 6.1 Hz, 1H), 4.14 (s, 3H), 3.99 (s, 3H), 2.23 (s, 3H), 2.01 (s, 3H), 1.64 (s, 3H), 1.43 (d, *J* = 6.0 Hz, 3H), 1.40 (d, *J* = 6.0 Hz, 3H), 1.24 (d, *J* = 6.4 Hz, 3H);


¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.2, 169.7, 160.6, 157.7, 155.2, 153.4, 142.2, 138.9, 135.3, 128.0, 125.9, 124.4, 124.0, 122.8, 121.0, 120.2, 116.6, 114.8, 114.2, 112.7, 106.1, 77.1, 74.0, 73.1, 72.5, 71.8, 69.3, 57.2, 56.4, 29.7, 22.2, 21.8, 20.9, 20.8, 20.6, 16.6;

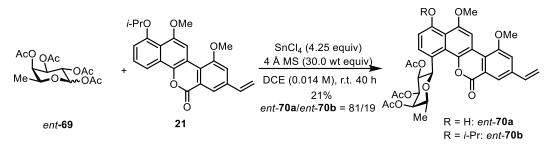
IR (neat) v_{max} 2922, 2852, 1741, 1589, 1463, 1376, 1260, 1091, 803 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for $C_{33}H_{33}O_{12}$: 621.1967, found: 621.1951;

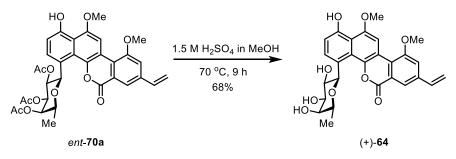
 $[\alpha]_{D}^{26}$ +38.7 (*c* 0.25, CHCl₃);

TLC: $R_f = 0.52$ (PE/EtOAc = 1/1).

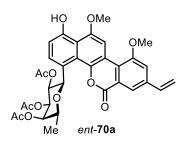
Compound (-)-64. To a suspension of 70a (6.8 mg, 0.011 mmol) in 1.2 mL of MeOH was added 1.2 mL of 3.0 M H₂SO₄ in MeOH. The resulting reaction solution was stirred at 70 °C for 9 h and then cooled to r.t. The reaction was diluted with water (5 mL), and extracted with CHCl₃/*i*-PrOH (3/1) three times. The organic phases were washed with saturated aqueous NaHCO₃ and then dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH = 50/1 to 20/1) to afford (-)-70 (2.7 mg, 50%) as a yellow solid. Mp >330 °C;


¹H NMR (500 MHz, DMSO-*d6*) δ 9.86 (s, 1H), 8.50 (s, 1H), 8.00 (d, J = 1.5 Hz, 1H), 7.76 (s, 1H), 7.75 (d, J = 8.5 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.94 (dd, J = 17.5, 11.0 Hz, 1H), 6.16 (d, J = 17.6 Hz, 1H), 5.63 (d, J = 9.4 Hz, 1H), 5.50 (d, J = 11.0 Hz, 1H), 4.84 (s, 1H), 4.55 (d, J = 5.3 Hz, 1H), 4.41 (d, J = 4.7 Hz, 1H), 4.17 (s, 3H), 4.12 (s, 3H), 4.06 (q, J = 6.5 Hz, 1H), 3.85 – 3.83 (m, 1H), 3.62 (t, J = 3.5 Hz, 1H), 3.57 – 3.54 (m, 1H), 1.05 (d, J = 6.4 Hz, 3H);

¹³C NMR (125 MHz, DMSO-*d*6) δ 159.7, 157.5, 153.5, 152.0, 142.4, 138.9, 135.2, 129.5, 126.6, 125.1, 122.9, 122.1, 119.1, 117.4, 115.4, 114.9, 113.4, 112.1, 101.7, 77.9, 76.1, 74.0, 71.9, 70.4, 56.8, 56.4, 17.13;

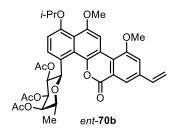

HRMS (ESI) $[M + Na]^+$ calculated for C₂₇H₂₇O₉: 495.1650, found: 495.1667; $[\alpha]_D^{22}$ -15.7 (*c* 0.17, MeOH);

TLC: $R_f = 0.20$ (CH₂Cl₂/MeOH = 19/1).


Large scale preparation of (+)-64

Compound *ent*-**70a** and *ent*-**70b**. To a round bottom flask charged with *ent*-**69** (1.36 g, 4.10 mmol), **21** (4.80 g, 12.30 mmol) and 4 Å molecular sieves (40.8 g) and a stir bar was added 300 mL of anhydrous dichloroethane under argon. The resulting mixture was stirred at r.t. for 2 h. Then it was cooled to 0 °C and SnCl₄ (1.0 M in CH₂Cl₂, 17.4 mL, 17.4 mmol) was added dropwise. After kept at 0 °C for 30 min, the reaction was warmed to r.t. and stirred for 40 h. It was then quenched with saturated aqueous NaHCO₃ (300 mL), and extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Silica gel column chromatography (PE/CH₂Cl₂/EtOAc = 0/100/0 to 75/10/15 to 60/25/15) afforded compound *ent*-**70a** (432.1 mg, 17%) and compound *ent*-**70b** (108.6 mg, 4%) each as a yellow solid, as well as the recovered **21** (2.18 g).

Compound (+)-64. To a suspension of *ent*-70a (432.1 mg, 0.70 mmol) in 76 mL of MeOH was added 76 mL of 3.0 M H₂SO₄ in MeOH. The resulting reaction solution was stirred at 70 °C for 9 h and then cooled to r.t. The reaction was diluted with water (250 mL), and extracted with CHCl₃/*i*-PrOH (3/1) three times. The organic phases were washed with saturated aqueous NaHCO₃ and then dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH = 50/1 to 20/1) to afford (+)-64 (235.1 mg, 68%) as a yellow solid.

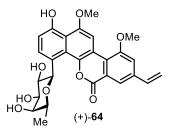


Mp 285-287 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 8.52 (s, 1H), 8.15 (d, *J* = 1.5 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.39 (d, *J* = 1.5 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.83 (dd, *J* = 17.5, 10.9 Hz, 1H), 6.21 (d, *J* = 10.1 Hz, 1H), 5.97 (d, *J* = 17.5 Hz, 1H), 5.76 (t, *J* = 9.8 Hz, 1H), 5.47 (d, *J* = 10.8 Hz, 1H), 5.45 (d, *J* = 4.4 Hz, 1H), 5.41 (dd, *J* = 9.6, 3.4 Hz, 1H), 4.64 (q, *J* = 6.6 Hz, 1H), 4.15 (s, 3H), 4.14 (s, 3H), 2.23 (s, 3H), 2.01 (s, 3H), 1.65 (s, 3H), 1.23 (d, *J* = 6.4 Hz, 3H);

¹³C NMR (125 MHz, CDCl₃) δ 171.0, 170.3, 169.6, 160.3, 157.5, 155.0, 152.2, 142.9, 139.1, 135.2, 129.4, 125.2, 123.6, 123.1, 122.8, 120.3, 116.8, 116.3, 114.3, 114.2, 112.7, 102.6, 76.9, 74.0, 73.1, 71.8, 69.3, 56.4, 56.4, 20.9, 20.8, 20.6, 16.5;

HRMS (ESI) $[M + Na]^+$ calculated for C₃₃H₃₂NaO₁₂: 643.1786, found: 643.1801; $[\alpha]_D^{24}$ -66.0 (*c* 0.2, CHCl₃).

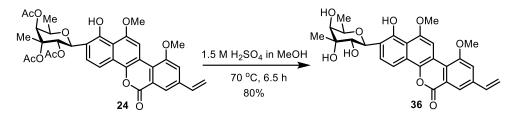

Mp 90-92 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.17 (d, *J* = 1.5 Hz, 1H), 7.76 (d, *J* = 8.5 Hz, 1H), 7.40 (d, *J* = 1.2 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 1H), 6.84 (dd, *J* = 17.6, 10.9 Hz, 1H), 6.22 (d, *J* = 10.1 Hz, 1H), 5.98 (d, *J* = 17.5 Hz, 1H), 5.80 (t, *J* = 9.8 Hz, 1H), 5.47 (d, *J* = 10.8 Hz, 1H), 5.48 (d, *J* = 4.0 Hz, 1H), 5.41 (dd, *J* = 9.6, 3.2 Hz, 1H), 4.69 (q, *J* = 6.4 Hz, 1H), 4.62 (hept, *J* = 6.1 Hz, 1H), 4.14 (s, 3H), 3.99 (s, 3H), 2.24 (s, 3H), 2.01

(s, 3H), 1.64 (s, 3H), 1.43 (d, *J* = 6.0 Hz, 3H), 1.40 (d, *J* = 6.0 Hz, 3H), 1.24 (d, *J* = 6.4 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.2, 169.7, 160.6, 157.7, 155.2, 153.4, 142.2, 138.9, 135.3, 128.0, 125.9, 124.4, 124.0, 122.8, 121.0, 120.2, 116.6, 114.8, 114.2, 112.7, 106.1, 77.1, 74.0, 73.1, 72.5, 71.8, 69.3, 57.2, 56.4, 29.7, 22.2, 21.8, 20.9, 20.8, 20.6, 16.6;

HRMS (ESI) $[M + H]^+$ calculated for C₃₆H₃₉O₁₂: 663.2436, found: 663.2455; $[\alpha]_D^{25}$ -39.8 (*c* 0.25, CHCl₃).


Mp >330 °C;

¹H NMR (500 MHz, DMSO-*d6*) δ 9.85 (s, 1H), 8.50 (s, 1H), 8.00 (d, J = 1.5 Hz, 1H), 7.76 (s, 1H), 7.75 (d, J = 8.5 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.93 (dd, J = 17.5, 11.0 Hz, 1H), 6.16 (d, J = 17.6 Hz, 1H), 5.63 (d, J = 9.4 Hz, 1H), 5.50 (d, J = 11.0 Hz, 1H), 4.84 (s, 1H), 4.55 (d, J = 5.3 Hz, 1H), 4.41 (d, J = 4.7 Hz, 1H), 4.17 (s, 3H), 4.12 (s, 3H), 4.06 (q, J = 6.5 Hz, 1H), 3.85 – 3.83 (m, 1H), 3.62 (t, J = 3.5 Hz, 1H), 3.57 – 3.54 (m, 1H), 1.05 (d, J = 6.4 Hz, 3H);

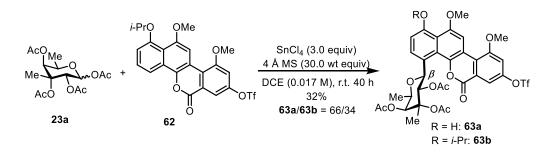
¹³C NMR (125 MHz, DMSO-*d*6) δ 159.7, 157.5, 153.5, 152.0, 142.4, 138.9, 135.2, 129.5, 126.6, 125.1, 122.9, 122.1, 119.1, 117.4, 115.4, 114.9, 113.4, 112.1, 101.7, 77.9, 76.1, 74.0, 71.9, 70.4, 56.8, 56.4, 17.13;

IR (neat) v_{max} 3368, 2918, 2850, 1724, 1606, 1589, 1451, 1370, 1245, 1131, 1059 cm⁻¹;

HRMS (ESI) $[M + Na]^+$ calculated for C₂₇H₂₆NaO₉: 517.1469, found: 517.1485; $[\alpha]_D^{22}$ +15.4 (*c* 0.14, MeOH).

C2-glycosyl isomer of chrysomycin A (36). To a suspension of **24** (2.2 mg, 0.0035 mmol) in 0.38 mL of MeOH was added 0.38 mL of 3.0 M H₂SO₄ in MeOH. The resulting reaction solution was stirred at 70 °C for 6.5 h and then cooled to r.t. The reaction was diluted with water (5 mL), and extracted with CHCl₃/*i*-PrOH (3/1) three times. The organic phases were washed with saturated aqueous NaHCO₃ and then dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH = 80/1 to 20/1) to afford C2-glycosyl isomer of chrysomycin A (**36**) (1.4 mg, 80%) as a yellow solid.

Mp 245-247 °C;


¹H NMR (500 MHz, CDCl₃) δ 9.89 (s, 1H), 8.29 (s, 1H), 8.11 (s, 1H), 8.08 (d, J = 8.7 Hz, 1H), 7.67 (d, J = 8.7 Hz, 1H), 7.33 (s, 1H), 6.79 (dd, J = 17.6, 10.9 Hz, 1H), 5.95 (d, J = 17.5 Hz, 1H), 5.46 (d, J = 10.9 Hz, 1H), 5.09 (d, J = 9.8 Hz, 1H), 4.44 (q, J = 6.4 Hz, 1H), 4.11 (s, 3H), 4.08 (s, 3H), 3.87 (d, J = 9.4 Hz, 1H), 3.44 (d, J = 4.2 Hz, 1H), 2.74 (s, 1H), 2.45 (s, 1H), 2.13 (s, 1H), 1.49 (s, 3H), 1.33 (d, J = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.0, 157.3, 151.7, 151.0, 141.5, 138.9, 135.3, 127.3, 125.6, 123.4, 123.0, 120.7, 116.6, 114.6, 114.5, 114.2, 114.1, 102.3, 76.0, 73.9, 73.5, 72.8, 71.5, 56.3, 56.2, 23.8, 16.7;

IR (neat) v_{max} 3410, 3375, 2925, 2854, 1726, 1712, 1591, 1461, 1380 cm⁻¹;

HRMS (ESI) [M + H]⁺ calculated for C₂₈H₂₉O₉: 509.1806, found: 509.1812;

 $[\alpha]_{D}^{20}$ +5.0 (*c* 0.1, CHCl₃);

TLC: $R_f = 0.35$ (CH₂Cl₂/MeOH = 19/1).

Compound 63a and 63b. To a round bottom flask charged with **23a** (110 mg, 0.318 mmol), **62** (488.4 mg, 0.953 mmol) and 4 Å molecular sieves (3.3 g) and a stir bar was added 18.3 mL of anhydrous dichloroethane under argon. The resulting mixture was stirred at r.t. for 2 h. Then it was cooled to 0 °C and SnCl₄ (1.0 M in CH₂Cl₂, 0.96 mL, 0.96 mmol) was added dropwise. After kept at 0 °C for 30 min, the reaction was warmed to r.t. and stirred for 40 h. It was then quenched with saturated aqueous NaHCO₃ (40 mL), and extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Silica gel column chromatography (PE/CH₂Cl₂/EtOAc = 0/100/0 to 75/10/15 to 60/25/15) afforded **63a** (50.5 mg, 21%) and **63b** (26.9 mg, 11%) each as a yellow solid.

For 1-OH-4-glycosylated product **63a**: Mp 323-325 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.40 (s, 1H), 8.01 (d, J = 2.5 Hz, 1H), 7.87 (d, J = 8.5 Hz, 1H), 7.25 (d, J = 2.5 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 10.0 Hz, 1H), 5.99 (s, 1H), 5.44 (d, J = 10.0 Hz, 1H), 4.60 (q, J = 6.4 Hz, 1H), 4.16 (s, 3H), 4.14 (s, 3H), 2.29 (s, 3H), 2.24 (s, 3H), 1.58 (s, 3H), 1.53 (s, 3H), 1.17 (d, J = 6.5 Hz, 3H).

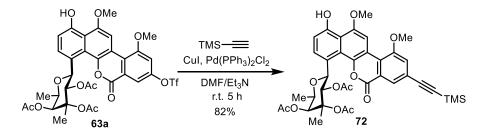
¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.1, 169.9, 158.8, 158.7, 154.7, 152.5, 148.9, 143.5, 130.0, 125.1, 125.0, 124.8, 123.9, 118.7 (q, J = 319 Hz), 116.4, 114.1, 113.7, 112.7, 110.4, 101.5, 81.4, 74.4, 72.5, 71.8, 70.2, 57.1, 56.3, 22.3, 20.9, 20.4, 18.6, 16.8. IR (neat) ν_{max} 3375, 2925, 2853, 1736, 1594, 1428, 1370, 1219, 1140, 981 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for $C_{33}H_{32}F_3O_{15}S$: 757.1409, found: 757.1410;

 $[\alpha]_{D}^{18}$ +71.6 (*c* 1.0, CHCl₃);

TLC: $R_f = 0.40$ (PE/EtOAc = 1/1).

For 1-*O*-isopropyl-4-glycosylated product **63b**: Mp 103-105 °C;


¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.01 (d, *J* = 2.5 Hz, 1H), 7.87 (d, *J* = 8.5 Hz, 1H), 7.25 (d, *J* = 2.6 Hz, 1H), 7.10 (d, *J* = 8.5 Hz, 1H), 6.77 (d, *J* = 10.0 Hz, 1H), 5.99 (d, *J* = 0.7 Hz, 1H), 5.44 (d, *J* = 10.0 Hz, 1H), 4.68 – 4.59 (m, 2H), 4.16 (s, 3H),

3.99 (s, 3H), 2.29 (s, 3H), 2.24 (s, 3H), 1.54 (s, 3H), 1.53 (s, 3H), 1.44 (d, *J* = 6.0 Hz, 3H), 1.40 (d, *J* = 6.0 Hz, 3H), 1.18 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.1, 169.9, 159.0, 158.9, 154.9, 153.7, 148.8, 142.7, 128.6, 126.5, 125.6, 125.2, 123.9, 121.2, 118.7 (q, *J* = 319 Hz), 113.9, 113.5, 113.3, 110.2, 104.9, 81.3, 74.5, 72.7, 72.6, 71.8, 70.2, 57.1, 57.0, 22.2, 22.1, 21.8, 20.9, 20.3, 18.6, 16.8; IR (neat) v_{max} 2924, 2854, 1750, 1731, 1593, 1370, 1218, 1052, 798 cm⁻¹;

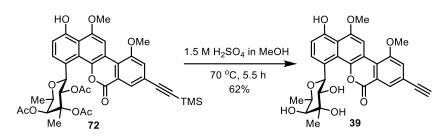
HRMS (ESI) $[M + H]^+$ calculated for $C_{36}H_{38}F_3O_{15}S$: 799.1878, found: 799.1882;

 $[\alpha]_{D}^{18}$ +89.9 (*c* 0.34, CHCl₃);

TLC: $R_f = 0.58$ (PE/EtOAc = 1/1).

Compound 72. To a mixture of **63a** (27 mg, 0.0357 mmol), CuI (0.7 mg, 0.00357 mmol), and Pd(PPh₃)₂Cl₂ (2.5 mg, 0.0357 mmol) was added DMF (4 mL) under argon. The resulting mixture was cooled to 0 °C, and then degassed and refilled with argon three times. It was treated with trimethylamine (49.6 μ L, 0.357 mmol), followed by trimethylsilylacetylene (20 μ L, 0.143 mmol). The reaction was warmed to r.t. and stirred for 5 h. The reaction was diluted with 20 mL of CH₂Cl₂/EtOAc (1/1) and filtered through a short pad of Celite. The filtrated was concentrated *in vacuo* and purified by silica gel chromatography (CH₂Cl₂/acetone = 50/1) to afford compound **72** (20.5 mg, 82%) as a yellow solid.

Mp 316-318 °C;


¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 8.49 (s, 1H), 8.23 (s, 1H), 7.84 (d, *J* = 8.5 Hz, 1H), 7.41 (s, 1H), 7.04 (d, *J* = 8.4 Hz, 1H), 6.79 (d, *J* = 10.0 Hz, 1H), 5.99 (s, 1H), 5.43 (d, *J* = 9.9 Hz, 1H), 4.63 (q, *J* = 6.0 Hz, 1H), 4.15 (s, 3H), 4.13 (s, 3H), 2.30 (s, 3H), 2.24 (s, 3H), 1.57 (s, 3H), 1.53 (s, 3H), 1.16 (d, *J* = 6.4 Hz, 3H), 0.30 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.1, 169.9, 159.3, 156.9, 154.6, 152.1, 143.4, 129.7, 126.1, 125.0, 124.8, 124.4, 124.4, 122.7, 119.2, 116.1, 113.5, 113.3, 103.1, 102.1, 97.7, 81.4, 74.5, 72.5, 71.9, 70.1, 56.5, 56.3, 29.7, 22.2, 20.9, 20.4, 18.6, 16.8, -0.2; IR (neat) ν_{max} 3376, 2925, 2853, 1751, 1729, 1625, 1451, 1370, 1220, 1053, 857 cm⁻¹;

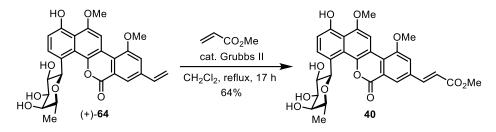
HRMS (ESI) $[M + H]^+$ calculated for C₃₇H₄₁O₁₂Si: 705.2362, found: 705.2357;

 $[\alpha]_{D}^{17}$ +100.3 (*c* 0.2, CHCl₃);

TLC: $R_f = 0.63$ (PE/EtOAc = 1/1).

Compound 39. To a suspension of **72** (2.7 mg, 0.0038 mmol) in 0.5 mL of MeOH was added 0.5 mL of 3.0 M H₂SO₄ in MeOH. The resulting reaction solution was stirred at 70 °C for 5.5 h and then cooled to r.t. The reaction was diluted with water (5 mL), and extracted with CHCl₃/*i*-PrOH (3/1) three times. The organic phases were washed with saturated aqueous NaHCO₃ and then dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH = 80/1 to 20/1) to afford **39** (1.2 mg, 62%) as a yellow solid. Mp 150-152 °C;

¹H NMR (500 MHz, CDCl₃) δ 9.76 (s, 1H), 8.40 (s, 1H), 8.19 (d, *J* = 1.2 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.41 (d, *J* = 1.4 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 6.26 (d, *J* = 9.7 Hz, 1H), 4.65 (q, *J* = 6.4 Hz, 1H), 4.13 (s, 3H), 4.11 (s, 3H), 3.89 (dd, *J* = 9.1, 5.0 Hz, 1H), 3.48 (d, *J* = 7.1 Hz, 1H), 3.27 (s, 1H), 3.17 (s, 1H), 2.18 (d, *J* = 5.4 Hz, 1H), 1.93 (d, *J* = 8.1 Hz, 1H), 1.54 (s, 3H), 1.25 (d, *J* = 6.5 Hz, 3H);


¹³C NMR (125 MHz, CDCl₃) δ 160.1, 157.0, 154.4, 152.4, 143.1, 129.3, 127.1, 126.2, 125.1, 125.0, 123.4, 122.5, 119.7, 116.0, 113.5, 113.5, 102.1, 81.9, 80.0, 76.9, 75.7, 75.7, 73.8, 72.2, 56.6, 56.4, 23.5, 16.7;

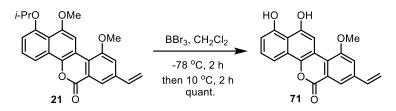
IR (neat) v_{max} 3381, 3301, 2925, 2852, 1713, 1624, 1588, 1452, 1359, 1245, 1128, 1052 cm⁻¹;

HRMS (ESI) [M + H]⁺ calculated for C₂₈H₂₇O₉: 507.1650, found: 507.1642;

 $[\alpha]_{D}^{17}$ -8.9(*c* 0.2, CHCl₃);

TLC: $R_f = 0.24$ (CH₂Cl₂/MeOH = 19/1).

Compound 40. To a sealed tube were added (+)-**64** (2.8 mg, 0.0057 mmol), Grubbs's second-generation Ru-alkylidene catalyst (0.2 mg, 0.00024 mmol) and 0.2 mL of CH₂Cl₂ sequentially under argon. Then a solution of methyl acrylate (0.8 μ L, 0.0085 mmol) in CH₂Cl₂ (0.1 mL) was added. The tube was then sealed and stirred at 40 °C for 13 h. A second batch of Grubbs's second-generation Ru-alkylidene catalyst (0.2 mg, 0.00024 mmol) and methyl acrylate (0.8 μ L, 0.0085 mmol) were added. The reaction mixture was further stirred at 40 °C for 4 h. The mixture was concentrated *in vacuo* and the residue was purified by preparative TLC (CH₂Cl₂/MeOH = 93/7) to afford **40** (2.0 mg, 64%) as a yellow solid. Mp >280 °C (decomposed);


¹H NMR (400 MHz, DMSO-*d*6) δ 9.86 (s, 1H), 8.52 (s, 1H), 8.23 (s, 1H), 8.00 (s, 1H), 7.85 (d, *J* = 16.1 Hz, 1H), 7.77 (d, *J* = 8.5 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.98 (d, *J* = 16.0 Hz, 1H), 5.64 (d, *J* = 9.4 Hz, 1H), 4.75 (d, *J* = 5.2 Hz, 1H), 4.51 (d, *J* = 5.4 Hz, 1H), 4.39 (d, *J* = 4.7 Hz, 1H), 4.20 (s, 3H), 4.13 (s, 3H), 4.06 (q, *J* = 6.3 Hz, 1H), 3.85 - 3.79 (m, 1H), 3.78 (s, 3H), 3.64 - 3.59 (m, 1H), 3.59 - 3.52 (m, 1H), 1.06 (d, *J* = 6.5 Hz, 3H);

¹³C NMR (200 MHz, DMSO-*d*6) δ 166.5, 159.4, 157.5, 153.5, 152.0, 143.0, 142.6, 135.6, 129.5, 126.8, 125.0, 122.2, 122.0, 120.4, 116.0, 115.7, 113.1, 112.4, 101.6, 77.9, 76.0, 74.1, 72.0, 70.5, 57.1, 56.4, 51.7, 17.1;

IR (neat) v_{max} 3369, 2923, 2851, 1721, 1637, 1589, 1436, 1372, 1275, 1170, 1130; HRMS (ESI) [M + H]⁺ calculated for C₂₉H₂₉O₁₁: 553.1704, found: 553.1721;

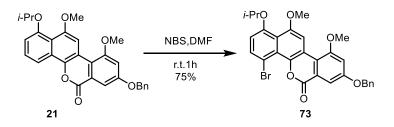
$[\alpha]_{D}^{17}$ +18.4 (*c* 0.05, CHCl₃);

TLC: $R_f = 0.19$ (CH₂Cl₂/MeOH = 19/1).

Compound 71. To a stirred solution of **21** (5.0 mg, 0.0128 mmol) in 0.7 mL of CH₂Cl₂ at -78 °C was added BBr₃ (1.0 M in CH₂Cl₂, 64 μ L, 0.064 mmol) dropwise. The resulting solution was stirred -78 °C for 2 h and then warmed to 10 °C over 2 h. The reaction was quenched with water (5 mL). The mixture was extracted with EtOAc three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to provide compound **71** (4.3 mg, quant.) as a yellow solid. The structure of **71** was determined by 2D-NMR analysis.

Mp >330 °C;

¹H NMR (400 MHz, Pyr) δ 8.38 (s, 1H), 8.16 (d, *J* = 1.4 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.27 (t, *J* = 8.0 Hz, 1H), 7.21 (s, 1H), 6.94 (d, *J* = 7.7 Hz, 1H), 6.60 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.74 (d, *J* = 17.6 Hz, 1H), 5.13 (d, *J* = 10.9 Hz, 1H), 3.46 (s, 3H);


¹³C NMR (100 MHz, Pyr) δ 161.6, 158.5, 156.4, 152.0, 141.0, 139.5, 128.9, 127.2,

121.0, 117.0, 116.5, 115.1, 115.0, 114.0, 112.0, 106.7, 56.4;

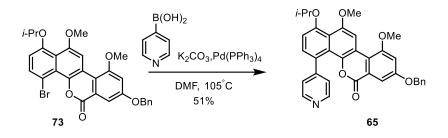
IR (neat) v_{max} 3347, 3134, 2924, 2852, 1723, 1672, 1585, 1458, 1391, 1368, 1300, 1249, 1067 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₀H₁₅O₅: 335.0914, found: 335.0913;

TLC: $R_f = 0.31$ (PE/EtOAc = 2/1).

Compound 73. A solution of NBS (105mg,0,459mmol) in DMF (4.6 mL) was added to a solution of **21** (200mg,0,425mmol) in DMF at r.t. The reaction was stirred at r.t.

for 1h and then quenched with saturated aqueous NaHCO₃. The mixture was extracted with CH_2Cl_2 three times and the combined organic layers were dried over anhydrous Na₂SO₄. After filtration and concentration, the residue was purified by flash chromatography on silica gel (PE/EtOAc = 85/15) to afford **73** (175.1mg, 75%) as a yellow solid.


Mp 80-82 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.68 (d, J = 4.5 Hz, 1H), 7.50 (d, J = 7.2 Hz, 2H), 7.46 – 7.33 (m, 3H), 7.00 (d, J = 2.5 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 5.21 (s, 2H), 4.55 (hept, J = 6.1 Hz, 1H), 4.05 (s, 3H), 3.98 (s, 3H), 1.41 (d, J = 6.1 Hz, 6H);

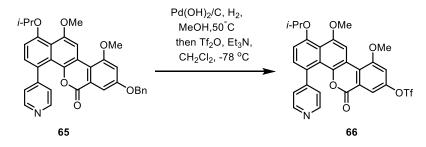
¹³C NMR (125 MHz, CDCl₃) δ 160.2, 159.6, 158.8, 154.3, 152.8, 139.5, 135.9, 134.9, 128.73, 128.4, 127.9, 124.2, 121.4, 118.6, 115.1, 114.1, 107.9, 106.9, 106.4, 104.1, 99.9, 73.2, 70.6, 57.2, 56.3, 22.0.

IR (neat) v_{max} 2977, 2837, 1718, 1605, 1586, 1368, 1351, 1314,1134,1029 cm⁻¹; HRMS (ESI) [M + H]⁺ calculated for C₂₉H₂₆BrO₆: 549.0907, found: 549.0910;

TLC: $R_f = 0.41$ (PE/EtOAc = 3/1)

Compound 65. K₂CO₃ (26.7 mg, 0.193 mmol), Pyridine-4-boronic acid (18mg, 0.145mmol) were dried in a tube, then **73** (53 mg, 0.0965 mmol) and Pd(PPh)₄ (22.3mg,0.0193mmol) was added. The mixture were evacuated and backfilled with argon 3 times, then DMF (0.9ml) was added. The reaction was stirred at 103 °C for 12h and then diluted with EtOAc, after filtration and concentration, the residue was purified by flash chromatography on silica gel (Acetone/CH₂Cl₂ = 4/96 to 8/92) to afford **65** (53.9 mg, 51%) as a yellow solid.

Mp 185-187 °C;


¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 2H), 8.47 (s, 1H), 7.51 – 7.22 (m, 9H), 7.03 (d, J = 8.1 Hz, 1H), 6.96 (d, J = 1.6 Hz, 1H), 5.11 (s, 2H), 4.66 (hept, J = 6.0 Hz, 1H), 4.04 (s, 3H), 4.02 (s, 3H), 1.48 (d, J = 6.0 Hz, 6H).

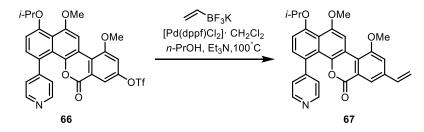
¹³C NMR (125 MHz, CDCl₃) δ 159.5, 159.4, 158.8, 155.1, 153.3, 148.8, 140.2, 135.9, 130.7, 128.7, 128.4, 127.8, 124.2 – 122.9 (m), 119.9, 118.5, 114.7, 112.2, 106.9, 106.3, 104.1, 72.9, 70.5, 57.3, 56.3, 22.1.

IR(neat)v_{max} 3360, 3170 2921, 2850, 1721, 1604, 1585, 1438, 1381, 1351, 1305, 1133, 1119 cm⁻¹;

HRMS (ESI) [M + H]⁺ calculated for C₃₄H₃₀NO₆: 548.2068, found: 548.2062;

TLC: $R_f = 0.55$ (DCM/MeOH = 9/1)

Compound 66. To a mixture of **65** (36.3mg, 0.0663 mmol) and 5% Pd(OH)₂/C (7.3 mg) was added 6 mL of MeOH. The resulting mixture was degassed at -78 °C and backfilled with H₂ three times and equipped with an H₂-filled balloon. Then the reaction was stirred at 50 ° C for 6 h followed by concentration *in vacuo*. The residue was redissolved in 1.3 mL of CH₂Cl₂. To the solution was added triethyl amine (54 μ L, 0.391 mmol) at r.t. and the resulting solution was cooled to -78 °C and treated with trifluoromethanesulfonic anhydride (20 μ L, 0.119 mmol) dropwise. The whole was allowed to stir for 1 h, quenched with saturated aqueous NaHCO₃ (5 mL) and warmed to r.t. The mixture was extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (Acetone/CH₂Cl₂ = 10/90) to afford compound **66** (35.3mg) as a yellow solid.

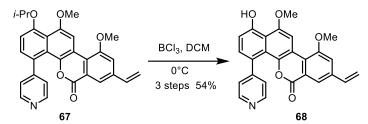

Mp 120-122 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 4.7 Hz, 2H), 8.44 (s, 1H), 7.81 (d, J = 2.5 Hz, 1H), 7.34 – 7.28 (m, 3H), 7.20 (d, J = 2.5 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 4.69 (hept, J = 6.0 Hz, 1H), 4.15 (s, 3H), 4.03 (s, 3H), 1.49 (d, J = 6.0 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 158.9, 157.9, 155.3, 153.7, 148.9, 148.2, 141.5, 135.7, 131.1, 128.5, 127.8, 124.8, 124.3, 123.8, 120.7, 119.9, 117.4, 114.1, 113.4, 112.5, 110.3, 105.7, 72.8, 57.3, 56.9, 22.0.

IR(neat)v_{max} 3362, 3193, 2923, 2850, 1735, 1646, 1593, 1470, 1377, 1247, 1216, 1141 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for $C_{28}H_{23}F_3NO_8S$: 590.1091, found: 590.1094; TLC: $R_f = 0.55$ (DCM/MeOH = 9/1)


Compound 67. To a suspension of **66** (35.3mg, 0.0599 mmol), potassium vinyltrifluoroborate (12.5 mg, 0.0899 mmol), $[Pd(dppf)Cl_2] CH_2Cl_2$ (1.5 mg, 0.0018mmol) in 2.5 mL of *n*-PrOH was added triethyl amine (13.3 µL, 0.0958 mmol) under argon. The resulting reaction mixture was heated at reflux for 4 h. The reaction was cooled and diluted with water (5 mL). The mixture was extracted with CH₂Cl₂ three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford a crude solid which was purified by silica gel column chromatography (Acetone/CH₂Cl₂ = 10/90) to afford **67** (24.4 mg) as a yellow solid.

Mp 67-69 °C;

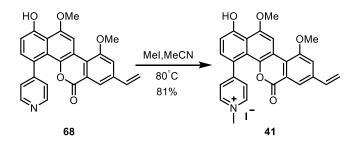
¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 2H), 8.53 (s, 1H), 7.97 (s, 1H), 7.35 (s, 3H), 7.28 (s, 1H), 7.06 (d, J = 8.1 Hz, 1H), 6.76 (dd, J = 17.5, 10.8 Hz, 1H), 5.90 (d, J = 17.5 Hz, 1H), 5.42 (d, J = 10.9 Hz, 1H), 4.68 (hept, J = 6.1 Hz, 1H), 4.12 (s, 3H), 4.04 (s, 3H), 1.48 (d, J = 6.0 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 159.4, 157.6, 155.3, 153.3, 141.1, 138.9, 135.3, 130.8, 124.0, 123.4, 120.4, 116.5, 114.6, 114.0, 112.4, 106.5, 99.9, 72.9, 57.3, 56.4, 22.1. IR (neat) ν_{max} 3360, 2919, 2850, 1726, 1659, 1633, 1470,1377,1261, 1119 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₉H₂₆NO₅: 468.1805, found: 468.1803; TLC: R_f = 0.57 (DCM/MeOH = 9/1)

Compound 68. To a solution of **67** (24.4 mg, mmol) in 1 mL of CH_2Cl_2 at 0 °C was added BCl₃ (1.0 M in CH_2Cl_2 , 0.26 mL, 0.26 mmol) dropwise. The resulting solution was stirred for 15 min and quenched with water (5 mL). The mixture was extracted with CH_2Cl_2 three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Flash chromatography (Acetone/CH₂Cl₂ = 10/90) provided **68** (15.2 mg, 54% from **65**) as a yellow solid.

Mp 85-87 °C;


¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 8.64 (d, J = 4.5, 1.5 Hz, 2H), 8.49 (s, 1H), 7.96 (s, 1H), 7.32 (s, 1H), 7.28 (m, 3H), 7.04 (d, J = 8.1 Hz, 1H), 6.75 (dd, J = 17.5, 10.9 Hz, 1H), 5.89 (d, J = 17.5 Hz, 1H), 5.42 (d, J = 10.9 Hz, 1H), 4.18 (s, 3H), 4.11 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 159.2, 157.3, 154.7, 152.0, 148.9, 141.9, 138.9, 135.2, 132.20 127.4, 123.9, 123.3, 123.2, 123.1, 120.4, 116.6, 115.6, 113.9, 113.8, 112.2, 102.9, 56.4, 56.3.

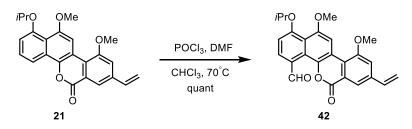
IR (neat) v_{max} 3363, 2920, 2851, 1728, 1646, 1633, 1470, 1377, 1334, 1245, 1170, 1130 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₆H₂₀NO₅: 426.1336, found: 426.1341;

TLC: $R_f = 0.55$ (DCM/MeOH = 9/1)

Compound 41.68 (1.5 mg, 0.00352 mmol) was taken in dry acetonitrile (0.5 mL) and

methyl iodide (1.1 µl, 0.0176 mmol) was added to it and then refluxed for 8 h. Then the reaction was allowed to come to room temperature and the solvent was evaporated. The crude product was purified by PTLC (CH₂C1₂/MeOH = 90/10) to afford **41** (1.6mg, 81%) as a yellow crystalline solid.


Mp 172-174 °C;

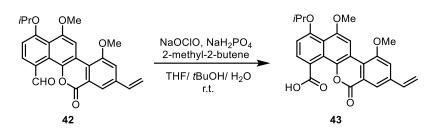
¹H NMR (400 MHz, CD₃OD) δ 8.79 (d, J = 6.3 Hz, 2H), 8.49 (s, 1H), 7.98 (d, J = 6.1 Hz, 2H), 7.83 (s, 1H), 7.52 (s, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.83 (dd, J = 17.5, 10.9 Hz, 1H), 6.00 (d, J = 17.6 Hz, 1H), 5.48 (d, J = 10.9 Hz, 1H), 4.46 (s, 3H), 4.15 (s, 3H), 4.11 (s, 3H).

¹³C NMR (125 MHz, CD₃OD) δ 163.1, 161.1, 159.3, 158.4, 153.8, 145.0, 141.6, 141.3, 136.4, 134.4, 128.8, 123.9, 123.9, 123.8, 123.6, 120.5, 117.6, 116.7, 116.4, 115.8, 113.2, 104.5, 57.1, 57.1, 48.0.

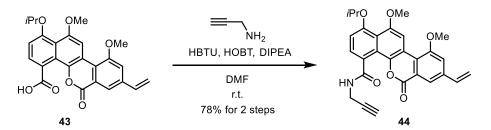
IR (neat) v_{max} 3405, 1717, 1615, 1578, 1428, 1379, 1333,1308,1226, 1137 cm⁻¹; HRMS (ESI) [M + H]⁺ calculated for C₂₇H₂₂NO₅: 440.1492, found: 440.1492;

TLC: $R_f = 0.29$ (DCM/MeOH = 9/1)

Compound 42. 21 (150mg, 0.384mmol) was dissolved in CHCl₃ (7.5ml) and treated with DMF(0.6ml), to this mixture POCl₃ (0.7ml) was added dropwise at 0 °C. The reaction was refluxed at 70 °C under argon for 6h. The reaction mixture was then cooled to 0 °C and diluted with CH₂Cl₂. 1N aqueous sodium hydroxide solution was slowly added until the aqueous layer became basic. The organic layer was separated, dried over Na₂SO₄, and concentrated in vacuo. purified by silica gel column chromatography (PE/EtOAc=20/80) to afford **42** (160.6 mg, quant) as a yellow solid.


Mp 226-229 °C;

¹H NMR (400 MHz, CDCl₃) δ 11.16 (s, 1H), 8.48 (s, 1H), 8.12 (d, J = 1.5 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.36 (d, J = 1.5 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.79 (dd, J = 17.5, 10.9 Hz, 1H), 5.96 (d, J = 17.6 Hz, 1H), 5.46 (d, J = 10.9 Hz, 1H), 4.81 - 4.73 (m, 1H),


4.13 (s, 3H), 4.00 (s, 3H), 1.49 (d, J = 6.0 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 193.1, 160.4, 159.5, 157.8, 154.1, 141.5, 139.4, 135.4, 131.6, 127.2, 125.4, 123.4, 123.3, 120.6, 119.2, 116.9, 115.9, 114.4, 110.0, 106.4, 72.3, 57.3, 56.5, 22.1.

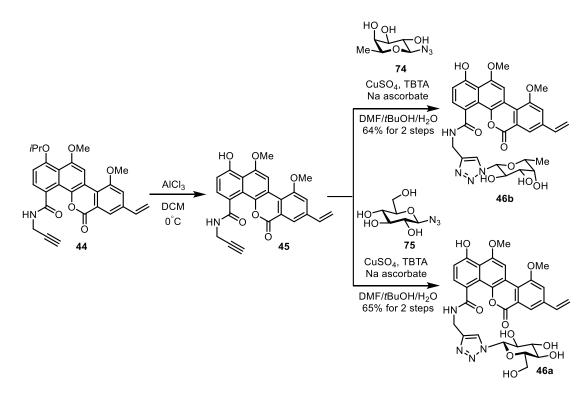
IR (neat) v_{max} 2928, 1724, 1673, 1581, 1452, 1318, 1133, 995 cm⁻¹; HRMS (ESI) [M + H]⁺ calculated for C₂₅H₂₂O₆: 419.1489, found: 419.1494; TLC: R_f = 0.31 (PE/EtOAc = 3/1)

Compound 43. To a solution of **42** (200 mg, 0.478 mmol), NaH₂PO₄ (745.7 mg, 4.78 mmol), and 2-methyl-2-butene (1.52 mL, 14.34 mmol) in THF, tBuOH and water (4:4:1, 0.04M) at room temperature was added sodium chlorite (432.3 mg, 4.78 mmol), and the mixture was allowed to stir for 12 h, A saturated aqueous Na₂CO₃ solution (200 mL) was added. After 5min, the crude was extracted with EtOAc (100 mL). The organic layer was then dried with Na₂SO₄ and concentrated in vacuo to afford a yellow solid which was used directly in the next step.

Compound 44. To a stirring solution of crude **43** and propargylamine (153 μ L, 2.39 mmol) in dry DMF (5 mL) was successively added N-hydroxybenzotriazole monohydrate (64.6 mg, 0.478mmol), diisopropylethylamine (395 μ L, 2.39 mmol), and HBTU (217.5 mg, 0.574 mmol). The mixture was stirred at room temperature under nitrogen for 12 h. then concentrated under reduced pressure to yield a crude yellow solid which was purified by silica gel column chromatography (PE/EtOAc = 1/1) to

afford 44 (162.0 mg, 78% for 2 steps) as a yellow solid.

Mp 308-311 °C;


¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 8.00 (s, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.03 (s, 1H), 6.97 (s, 1H), 6.76 (dd, J = 17.6, 10.9 Hz, 1H), 6.70 (d, J = 8.0 Hz, 1H), 5.91 (d, J = 17.5 Hz, 1H), 5.46 (d, J = 10.9 Hz, 1H), 4.57 (m, 3H), 4.02 (s, 3H), 3.91 (s, 3H), 2.36 (t, J = 2.5 Hz, 1H), 1.49 (d, J = 6.0 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 171.7, 159.9, 157.2, 155.3, 152.7, 140.0, 138.4, 135.6, 127.2, 125.7, 123.4, 123.3, 122.8, 120.0, 119.2, 116.5, 114.0, 113.2, 111.8, 105.3, 80.6, 73.2, 71.9, 56.9, 55.9, 30.6, 22.3.

IR (neat) v_{max} 3361, 3234, 1713, 1656, 1527, 1387, 1339, 1322, 1251cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₈H₂₆NO₆: 472.1760, found: 472.1761;

TLC: $R_f = 0.67$ (DCM / MeOH = 19/1)

Compound 45. To a solution of **44** (18.7 mg, 0.0396 mmol) in 2mL of CH_2Cl_2 at 0 °C was added AlCl₃ (26.4 mg, 0.198 mmol) dropwise. The resulting solution was stirred for 30 min and quenched with water (5 mL). The mixture was extracted with CH_2Cl_2 three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated to afford a yellow solid which was used directly in the next

step.

Compound 46a/46b Azido glycan **75/74** (2.0 eq.) and CuSO₄ (2.0 mg, 0.0125 mmol) were dissolved in water (200 μ L). To the mixture were added sodium ascorbate (14.0 mg, 0.0707 mmol), TBTA (Tris[(1-benzyl-1,2,3-triazol-4-yl)methyl]amine (4 mg, 0.0755mmol), DMF (200 μ L), t-BuOH (200 μ L) and the mixture was kept at room temperature. Crude **45** was added to the reaction mixture and stirred at room temperature for 3h and the reaction was lyophilized. The residues were purified by prepare HPLC to afford **46b** (15.7 mg, 64% for 2 steps) / **46a** (16.3 mg, 65% for 2 steps) as a yellow solid.

For **46b**

Mp >330 °C;

¹H NMR (400 MHz, DMSO) δ 8.58 (t, J = 5.4 Hz, 1H), 8.51 (s, 1H), 8.15 (s, 1H), 8.05 (d, J = 1.4 Hz, 1H), 7.78 (s, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.01 – 6.91 (m, 2H), 6.18 (d, J = 17.6 Hz, 1H), 5.52 (d, J = 11.1 Hz, 1H), 5.44 (d, J = 9.2 Hz, 1H), 5.19 (d, J = 6.0 Hz, 1H), 4.98 (d, J = 5.4 Hz, 1H), 4.65 (d, J = 5.6 Hz, 1H), 4.19 (s, 3H), 4.14 (s, 3H), 4.00 (d, J = 7.1 Hz, 2H), 3.87 (d, J = 6.5 Hz, 1H), 3.54 (d, J = 4.3 Hz, 2H), 3.17 (d, J = 5.2 Hz, 1H), 1.12 (d, J = 6.4 Hz, 3H).

¹³C NMR (150 MHz, DMSO) δ 170.6, 159.3, 157.6, 154.5, 152.0, 145.1, 140.3, 139.2, 135.3, 129.0, 125.4, 122.7, 122.5, 122.1, 121.6, 119.6, 117.6, 114.9, 114.6, 113.6, 111.8, 102.2, 88.0, 73.9, 73.2, 71.2, 68.9, 56.8, 56.4, 54.9, 16.4.

IR (neat) v_{max} 3010, 2673, 1677, 1595, 1376, 1317, 1281, 1023 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for $C_{31}H_{31}N_4O_{10}$: 619.2035, found: 619.2037;

TLC: $R_f = 0.40$ (DCM / MeOH = 19/1)

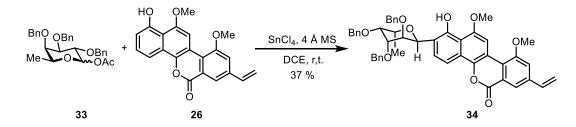
 $[\alpha]_{D}^{25}$ -15.99 (*c* 0.05, DMSO);

For **46a**

Mp >330 °C;

¹H NMR (400 MHz, DMSO) δ 9.84 (s, 1H), 8.59 (s, 1H), 8.50 (s, 1H), 8.26 (s, 1H),

8.03 (s, 1H), 7.77 (s, 1H), 7.46 (d, J = 7.9 Hz, 1H), 6.95 (m, 2H), 6.17 (d, J = 17.6 Hz, 1H), 5.53 (s, 1H), 5.51 (d, J = 3.2 Hz, 1H), 5.35 (d, J = 6.0 Hz, 1H), 5.27 (d, J = 4.9 Hz, 1H), 5.14 (d, J = 5.5 Hz, 1H), 4.64 (d, J = 5.6 Hz, 1H), 4.18 (s, 3H), 4.13 (s, 3H), 3.80 (d, J = 6.1 Hz, 1H), 3.68 (dd, J = 9.8, 5.7 Hz, 1H), 3.48 – 3.35 (m, 4H), 3.23 (d, J = 5.5 Hz, 1H).


¹³C NMR (125 MHz, DMSO) δ 170.9, 159.7, 158.0, 154.9, 152.4, 140.7, 139.6, 135.7, 129.6, 125.8, 123.1, 122.9, 122.5, 119.9, 118.0, 115.4, 115.0, 114.0, 112.2, 102.6, 87.9, 80.4, 77.5, 72.5, 70.1, 61.2, 60.2, 57.3, 56.8, 55.4, 40.6, 40.5, 40.4, 40.35, 40.3, 40.2, 40.0, 39.8, 39.7, 39.5, 36.01, 21.2, 14.6.

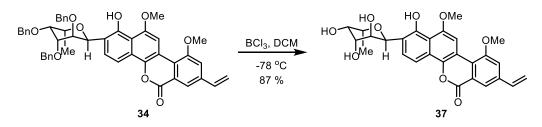
IR (neat) v_{max} 3001, 2513, 1659, 1437, 1407, 1317, 1023 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for $C_{31}H_{31}N_4O_{11}$: 635.1989, found: 635.1987;

TLC: $R_f = 0.36$ (DCM / MeOH = 19/1)

 $[\alpha]_{D}^{25}$ 2.9 (*c* 0.19, DMSO);

Compound 34. To a round bottom flask charged with **33** (49.8 mg, 0.105 mmol), **26** (43.7 mg, 0.125 mmol), 4 Å molecular sieves (1.00 g) and a stir bar was added 4.8 mL of anhydrous dichloroethane under argon. Then SnCl_4 (1.0 M in CH₂Cl₂, 0.31mL, 0.305 mmol) was added to the mixture dropwise. The reaction was stirred for 18 h. It was then quenched with saturated aqueous NaHCO₃ (10 mL), and extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Silica gel column chromatography (CH₂Cl₂/EtOAc = 100/0 to 98/2) afforded compound **34** (29.7 mg, 37%) as a yellow solid.


For **34**: Mp 103-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 8.22 (s, 1H), 8.11 – 8.01 (m, 2H), 7.75 (d, J = 8.8 Hz, 1H), 7.47 (d, J = 7.2 Hz, 2H), 7.42 (d, J = 7.3 Hz, 2H), 7.34 (ddd, J = 17.0, 9.4, 4.2 Hz, 7H), 7.03 (t, J = 7.3 Hz, 1H), 6.96 (t, J = 7.3 Hz, 2H), 6.84 (d, J = 7.1 Hz, 2H), 6.76 (dd, J = 17.5, 11.0 Hz, 1H), 5.93 (d, J = 17.5 Hz, 1H), 5.44 (d, J = 10.8 Hz, 1H), 5.12 (d, J = 11.8 Hz, 1H), 5.04 (d, J = 9.5 Hz, 1H), 4.87 (d, J = 11.8 Hz, 1H), 4.82 (d, J = 4.9 Hz, 1H), 4.79 (d, J = 4.9 Hz, 1H), 4.55 (d, J = 10.7 Hz, 1H), 4.14 (t, J = 9.5 Hz, 1H), 4.09 (s, 3H), 4.05 – 4.01 (m, 1H), 3.99 (s, 3H), 3.83 (dd, J = 9.5, 2.6 Hz, 1H), 3.77 – 3.72 (m, 2H), 1.28 (d, J = 6.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl3) δ 161.3, 157.3, 152.1, 151.9, 141.6, 140.8, 139.2, 139.0, 138.7, 138.2, 135.4, 128.5, 128.4, 128.2, 127.9, 127.7, 127.6, 127.3, 125.7, 123.6, 123.4, 123.2, 120.7, 116.6, 114.6, 114.0, 113.6, 112.9, 102.0, 100.1, 85.2, 80.5, 77.74, 77.4, 75.3, 75.1, 74.7, 73.2, 56.3, 56.2, 17.7.

IR (neat) v_{max} 2924, 1727, 1582, 1454, 1380, 1300, 1133, 1068 cm⁻¹;

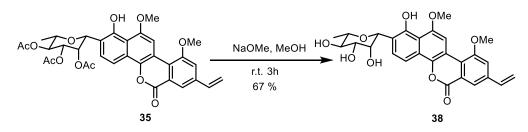
HRMS (ESI) $[M + Na]^+$ calculated for C₄₈H₄₄NaO₉: 787.2877, found 787.2882;

 $[\alpha]_{D}^{26}$ +2.445 (*c* 0.11, CHCl₃);

Compound 37. To a solution of **34** (5.0 mg, 0.00654 mmol) in 0.8 mL of CH₂Cl₂ at - 78 °C was added BCl₃ (1.0 M in hexane, 39.0 μ L, 0.0392 mmol) dropwise. The resulting solution was stirred for 2 hours and quenched with water. The mixture was warmed to room temperature and extracted with CH₂Cl₂ three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Flash chromatography (CH₂Cl₂/MeOH = 100/0 to 97/3) provided compound **37** (2.8 mg, 87%) as a yellow solid.

For **37**: Mp 280-284 °C; ¹H NMR (600 MHz, DMSO) δ 9.75 (s, 1H), 8.40 (d, *J* = 5.7 Hz, 1H), 8.02 (s, 1H), 7.86 (d, *J* = 8.7 Hz, 1H), 7.74 (s, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 6.94 (dd, *J* = 17.6, 11.0 Hz, 1H), 6.16 (d, *J* = 17.6 Hz, 1H), 5.50 (d, *J* = 11.0 Hz, 1H), 4.68 (d, *J* = 3.4 Hz, 1H), 4.67 (s, 1H), 4.53 (d, J = 5.4 Hz, 1H), 4.47 (d, J = 5.2 Hz, 1H), 4.17 (s, 3H), 4.13 (s, 3H), 3.76 (td, J = 9.3, 5.3 Hz, 1H), 3.68 (q, J = 6.3 Hz, 1H), 3.59 – 3.56 (t, 1H), 3.49 (m, J = 9.1, 5.8, 3.4 Hz, 1H), 1.15 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, DMSO) δ 160.2, 157.5, 151.9, 151.7, 140.5, 138.8, 135.3, 128.4, 124.6, 123.8, 122.8, 122.7, 119.7, 117.3, 114.8, 114.1, 112.6, 111.9, 101.6, 75.4, 74.5, 74.4, 71.8, 70.4, 56.7, 56.3, 17.1. IR (neat) v_{max} 2960, 2922, 2852, 1723, 1632, 1456, 1379, 1259, 1088 cm⁻¹; HRMS (ESI) [M + Na]⁺ calculated for C₂₇H₂₆NaO₉: 517.1469, found 517.1471; [α]²⁶₀ +0.288 (*c* 0.05, CHCl₃);

Compound 35. To a round bottom flask charged with **26** (400 mg, 1.204 mmol), **29** (105.0 mg, 0.301 mmol) and a stir bar was added 17.7 mL of anhydrous dichloroethane under argon. Then SnCl₄ (1.0 M in CH₂Cl₂, 2.7 mL, 2.709 mmol) was added to the mixture dropwise. The reaction was stirred for 46 h. It was then quenched with saturated aqueous NaHCO₃ (30 mL), and extracted with CH₂Cl₂ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Silica gel column chromatography (CH₂Cl₂/EtOAc = 100/0 to 98/2) afforded compound **35** (15.1 mg, 8%) as a yellow solid.


For **35**:

Mp 292-294 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 8.01 – 7.95 (m, 3H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.15 (s, 1H), 6.68 (dd, *J* = 17.5, 10.9 Hz, 1H), 5.88 (d, *J* = 17.5 Hz, 1H), 5.70 (d, *J* = 2.5 Hz, 1H), 5.40 (d, *J* = 10.8 Hz, 1H), 5.33 (dd, *J* = 10.1, 3.2 Hz, 1H), 5.23 (d, *J* = 7.1 Hz, 2H), 3.98 (s, 3H), 3.93 (s, 3H), 3.80 (dd, *J* = 9.3, 6.2 Hz, 1H), 2.11 (s, 3H), 1.99 (s, 3H), 1.87 (s, 3H), 1.41 (d, *J* = 6.1 Hz, 3H).

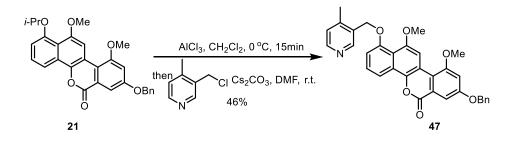
¹³C NMR (126 MHz, CDCl₃) δ 170.3, 170.1, 170.1, 161.1, 157.0, 151.7, 149.6, 141.2, 138.5, 135.2, 126.8, 125.2, 123.2, 123.0, 120.3, 120.1, 116.3, 113.8, 113.8, 112.7, 112.5, 101.4, 74.8, 73.2, 72.4, 71.3, 69.6, 56.0, 55.7, 20.9, 20.7, 20.6, 17.9.

IR (neat) v_{max} 2962, 1746, 1591, 1382, 1259, 1226, 1093, 1016 cm⁻¹; HRMS (ESI) [M + Na]⁺ calculated for C₃₃H₃₂NaO₁₂: 643.1786, found 643.1792; $[\alpha]_{0}^{26}$ +9.678 (*c* 0.2, CHCl₃);

Compound 38. To a suspension of **35** (9.5 mg, 0.0153 mmol) in MeOH (0.5 mL) was added a 1.0 M solution of NaOMe in MeOH (34 μ L) at room temperature. Stirring was continued for 3 h, The suspension was treated with AcOH (0.2 mL) and concentrated in vacuo. The residue was purified by PTLC (CH₂Cl₂/MeOH = 90/10) to afford compound **38** (5.1 mg, 67%) as a yellow crystalline solid.

For **38**:

Mp > 330 °C;


¹H NMR (500 MHz, DMSO) δ 9.73 (s, 1H), 8.30 (s, 1H), 7.97 (d, J = 1.4 Hz, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.71 (d, J = 8.7 Hz, 1H), 7.67 (d, J = 1.3 Hz, 1H), 6.90 (dd, J = 17.6, 11.0 Hz, 1H), 6.13 (d, J = 17.6 Hz, 1H), 5.48 (d, J = 11.0 Hz, 1H), 4.87 (s, 1H), 4.83 (br, 1H), 4.68 (br, 1H), 4.27 (d, J = 4.9 Hz, 1H), 4.13 (s, 3H), 4.09 (s, 3H), 3.96 (br, 1H), 3.45 (br, 1H), 1.30 (d, J = 5.4 Hz, 3H).

¹³C NMR (126 MHz, DMSO) δ 160.1, 157.3, 151.6, 148.7, 140.5, 138.6, 135.2, 128.7, 124.2, 123.7, 122.7, 122.6, 119.6, 117.1, 114.6, 113.5, 112.0, 111.2, 101.1, 76.4, 74.9, 74.5, 72.1, 69.9, 56.6, 56.1, 18.4.

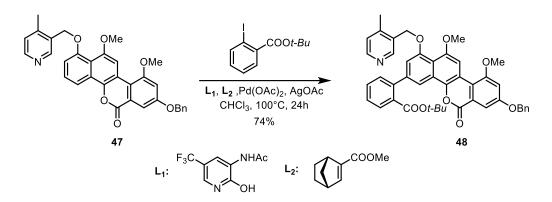
IR (neat) v_{max} 2927, 2850, 1727, 1645, 1469, 1261, 1096 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₂₇H₂₇O₉: 495.1649, found: 495.1649;

 $[\alpha]_{p}^{26}$ -1.166 (*c* 0.21, DMSO);

Compound 47. To a solution of **21** (175 mg, 0.372 mmol) in 35 mL of CH₂Cl₂ at 0 °C was added AlCl₃ (245 mg, 1.83 mmol). The resulting solution was monitored by TLC and stirred for 15 min at 0 °C and quenched with water (5 mL). The mixture was extracted with CH₂Cl₂ three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude product was dissolved in DMF (30ml) with Cs₂CO₃ (606 mg, 1.86 mmol), then the pyridine (158 mg, 1.12 mmol) part was added to the solution at 0 °C. The mixture was allowed to stirred at r.t. for 8h. Then the mixture was diluted with EA (60 ml), and washed by statured NaHCO₃ solution (30 ml) for two times, and then washed by brine (30 mL). Then the combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*, The crude product was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 200/1) to afford **47** (91.4 mg, 46%) as a yellow solid.

Mp 245-247 °C;


¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 4.2 Hz, 1H), 8.32 (s, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 2.0 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.43 (ddd, J = 30.7, 16.4, 7.3 Hz, 6H), 7.25 – 7.14 (m, 2H), 6.97 (d, J = 1.9 Hz, 1H), 5.40 (s, 2H), 5.18 (s, 2H), 4.02 (s, 3H), 3.90 (s, 3H), 2.55 (s, 3H).

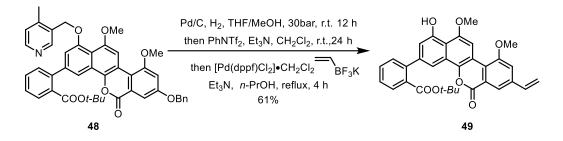
¹³C NMR (125 MHz, CDCl₃) δ 161.5, 159.5, 158.9, 155.6, 154.6, 153.0, 146.2, 140.0, 138.7, 136.2, 134.0, 128.9, 128.5, 128.0, 127.3, 126.9, 124.4, 123.6, 119.1, 117.9, 115.3, 113.8, 110.6, 107.1, 104.5, 104.2, 72.6, 70.7, 56.6, 56.4, 18.2.

IR (neat) v_{max} 2936, 2360, 1722, 1446, 1375, 1300 cm⁻¹;

HRMS (ESI) [M + H]⁺ calculated for C₃₃H₂₈NO₆: 534.1911, found: 534.1912;

TLC: $R_f = 0.14$ (PE/EtOAc = 4/1).

Compound 48. 47 (90 mg, 0.169 mmol), Ar-I (205 mg, 0.676 mmol), Pd(OAc)₂ (7.6 mg, 20 mol%), L₁ (7.5 mg, 20 mol%), AgOAc (112.0 mg, 0.676 mmol), NBE-COOMe (51 μ L, 0.34 mmol) and CHCl₃ (5.0 mL) were added to a 45 mL sealed tube. The tube was capped and closed tightly. The reaction mixture was then stirred at 100 °C for 18 hours. After cooling to room temperature, the mixture was passed through a pad of Celite with EtOAc as the eluent to remove the insoluble precipitate. The resulting solution was concentrated and then purified by silica gel column chromatography (CH₂Cl₂/MeOH = 200/1) to afford **48** (89 mg, 74%) as a yellow solid.


Mp 115-119 °C;

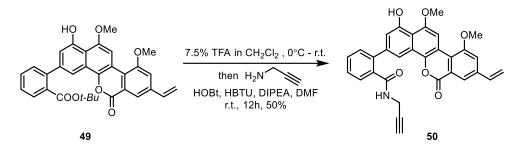
¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 8.29 (s, 1H), 8.12 (s, 1H), 8.06 (s, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.49 (qd, J = 14.8, 7.2 Hz, 3H), 7.31 (s, 1H), 7.02 (s, 1H), 6.77 (dd, J = 17.5, 10.9 Hz, 1H), 5.93 (d, J = 17.5 Hz, 1H), 5.44 (d, J = 10.8 Hz, 1H), 4.11 (s, 3H), 4.10 (s, 3H), 1.30 (s, 9H).

¹³C NMR (101 MHz, CDCl3) δ 167.6, 161.2, 159.4, 158.8, 155.2, 154.4, 152.9, 146.3, 141.9, 141.2, 140.0, 138.4, 136.0, 133.8, 132.8, 130.9, 130.8, 129.9, 128.8, 128.8, 128.4, 127.9, 127.8, 127.5, 127.5, 126.4, 124.4, 123.5, 118.9, 116.7, 114.9, 114.0, 111.9, 107.0, 104.4, 104.1, 81.3, 77.4, 77.0, 76.7, 72.8, 70.6, 56.5, 56.3, 27.7, 18.1.

IR (neat) v_{max} 2925, 2854, 2375, 2397, 1720, 1605, 1588, 1432, 1347 cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₄₄H₄₀NO₈: 710.2748, found: 710.2744; TLC: R_f = 0.72 (DCM/MeOH = 20/1).

Compound 49. To a mixture of **48** (33 mg, 0.047 mmol) and 10% Pd/C (66 mg) was added 4 mL of MeOH and 4ml THF. The resulting mixture was degassed in a high pressure reactor and backfilled with H₂ under 30 bar. Then the reaction was stirred at r.t. for 12 h followed by filtration and filtrate was concentrated *in vacuo*. The residue was redissolved in 10 mL of CH₂Cl₂. Triethyl amine (32 μ L, 0.225 mmol) and PhNTf₂ (18 mg, 0.05 mmol) was added to the solution and at r.t. The resulting solution was allowed to stir for 24 h, quenched with saturated NH₄Cl solution (10 mL). The mixture was extracted with CH₂Cl₂ for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*.

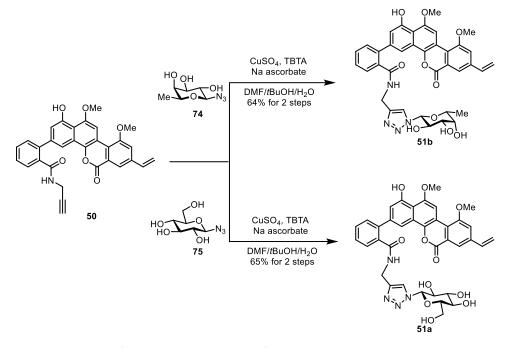

To a suspension of the mixture, potassium vinyltrifluoroborate (9.3 mg, 0.070 mmol), $[Pd(dppf)Cl_2] CH_2Cl_2$ (2.3 mg, 0.0028 mmol) in 2mL of n-PrOH was added triethyl amine (12 µL, 0.084 mmol) under argon. The resulting reaction mixture was heated at reflux for 4 h. The reaction was cooled and diluted with water (4 mL). The mixture was extracted with CH₂Cl₂ three times, and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give a crude solid which was purified by silica gel column chromatography (PE/EA/CH₂Cl₂ = 5/1/1) to afford **49** (15 mg, 61% for 3 steps) as a yellow solid.

Mp 216-219 °C;

¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 8.29 (s, 1H), 8.09 (d, J = 24.2 Hz, 2H), 7.84 (d, J = 7.6 Hz, 1H), 7.49 (qd, J = 14.8, 7.2 Hz, 3H), 7.31 (s, 1H), 7.02 (s, 1H), 6.77 (dd, J = 17.5, 10.9 Hz, 1H), 5.93 (d, J = 17.5 Hz, 1H), 5.44 (d, J = 10.8 Hz, 1H), 4.10 (d, J = 6.9 Hz, 6H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 161.0, 157.3, 153.7, 151.9, 142.4, 141.8, 141.6, 138.7, 135.3, 132.9, 130.8, 130.7, 129.8, 127.5, 125.9, 123.6, 123.4, 120.7, 116.5, 114.2, 114.1, 113.7, 113.1, 101.6, 81.4, 56.3, 56.1, 27.7.

IR (neat) v_{max} 2934, 2923, 2852, 1722, 1459, 1378, 1300 cm⁻¹; HRMS (ESI) [M + H]⁺ calculated for C₃₂H₂₉O₇: 525.1910, found: 525.1913; TLC: R_f = 0.62 (PE/EtOAc = 2/1).



Compound 50. To a suspension of **49** (12.0 mg, 0.023 mmol) in 6 mL of CH₂Cl₂ was added 0.45 mL TFA at 0 °C. The resulting reaction solution was slowly warmed to r.t. and stirred for 6h. The solution was concentrated *in vacuo* to yield the acid and was directly used for next step. The mixture of crude acid, HOBt (3.1 mg, 0.023 mmol) and HBTU (10.6 mg, 0.028 mmol) were added DMF (2 ml) followed by the addition of the propargyl amine (7.5 μ L, 0.115 mmol) under argon, DIPEA (19.5 μ L, 0.115 mmol) was added after 10 minutes and the reaction was allowed to stirred for 12h at r.t. The mixture was diluted with EA (20 ml) and washed by brime (10 ml) for three times. Then combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*, The crude product was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 200/1) to afford **50** (6.8 mg, 50%) as a yellow solid. Mp >330 °C;

¹H NMR (400 MHz, DMSO-*d*6) δ 9.55 (s, 1H), 8.75 (t, J = 5.6 Hz, 1H), 8.37 (s, 1H), 8.00 (d, J = 1.4 Hz, 1H), 7.86 (d, J = 1.6 Hz, 1H), 7.72 (d, J = 1.4 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.51 – 7.45 (m, 2H), 6.97 (d, J = 1.6 Hz, 1H), 6.92 (dd, J = 17.6, 11.0 Hz, 1H), 6.14 (d, J = 17.6 Hz, 1H), 5.49 (d, J = 11.1 Hz, 1H), 4.16 (s, 3H), 4.10 (s, 3H), 3.87 (dd, J = 5.5, 2.4 Hz, 2H), 2.89 (t, J = 2.5 Hz, 1H). ¹³C NMR (126 MHz, DMSO) δ 168.7, 160.0, 157.5, 153.7, 151.8, 140.6, 140.4, 138.9,

138.6, 136.6, 135.2, 123.0, 129.8, 129.6, 127.8, 127.6, 125.4, 122.9, 122.7, 119.7, 117.3, 114.9, 113.6, 113.1, 113.1, 112.1, 101.6, 80.6, 72.7, 56.8, 56.2, 35.1. IR (neat) v_{max} 2986, 1813, 1739, 1691, 1261, 1136, 753cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for $C_{31}H_{24}NO_6$: 506.1598, found: 506.1597; TLC: $R_f = 0.61$ (CH₂Cl₂/MeOH = 19/1).

Compound 51a/51b. Azido glycan **75/74** (2.0 eq.) and CuSO₄ (2.0 mg, 0.0125 mmol) were dissolved in water (200 μ l). To the mixture were added sodium ascorbate (12.3 mg, 0.0623 mmol), TBTA (Tris[(1-benzyl-1,2,3-triazol-4-yl)methyl]amine (5 mg, 0.089mmol), DMF (200 μ l), t-BuOH (200 μ l) and the mixture was kept at room temperature. **50** (4.2mg, 0.0083 mmol) was added to the reaction mixture and stirred at room temperature for 3h and the reaction was lyophilized. The residues were purified by HPLC to afford the desired product **51b** (3.6 mg, 64%)/ **51a** (3.8 mg, 65%)

For **51b**

Mp >330 °C;

¹H NMR (600 MHz, DMSO) δ 9.61 (s, 1H), 8.92 (t, *J* = 5.5 Hz, 1H), 8.43 (s, 1H), 8.04 (s, 1H), 7.93 (s, 1H), 7.78 (d, *J* = 15.1 Hz, 2H), 7.57 (s, 2H), 7.54 – 7.47 (m, 2H), 7.04 (s, 1H), 6.94 (dd, *J* = 17.5, 11.0 Hz, 1H), 6.17 (d, *J* = 17.6 Hz, 1H), 5.50 (d, *J* = 10.9 Hz, 1H), 5.23 (d, *J* = 9.1 Hz, 1H), 5.14 (d, *J* = 5.6 Hz, 1H), 4.96 (d, *J* = 4.8 Hz, 1H), 4.70 (d, *J* = 5.2 Hz, 1H), 4.43 – 4.36 (m, 2H), 4.19 (s, 3H), 4.14 (s, 3H), 4.03 – 3.98 (m, 1H), 3.77 (dd, *J* = 12.5, 6.1 Hz, 1H), 3.54 – 3.47 (m, 2H), 1.08 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (151 MHz, DMSO) δ 169.1, 160.0, 157.5, 153.7, 151.9, 144.7, 140.7,

140.5, 138.9, 138.6, 136.9, 135.2, 129.9, 129.6, 127.9, 127.6, 125.4, 122.9, 122.6,

117.4, 114.9, 113.6, 113.2, 112.0, 88.0, 73.9, 73.1, 71.1, 68.7, 56.8, 56.2, 34.8, 16.4.

IR (neat) v_{max} 2919, 1663, 1436, 1410, 1312, 1015, 953cm⁻¹;

HRMS (ESI) $[M + H]^+$ calculated for C₃₇H₃₅N₄O₁₀: 695.2349, found: 695.2348; $[\alpha]_{p}^{25}$ -2.222 (*c* 0.15, DMSO);

For **51a**

Mp >330 °C;

¹H NMR (400 MHz, DMSO) δ 9.61 (s, 1H), 8.94 (s, 1H), 8.44 (s, 1H), 8.04 (s, 1H), 7.94 (s, 1H), 7.83 (s, 1H), 7.77 (s, 1H), 7.58 – 7.49 (m, 4H), 7.04 (s, 1H), 6.95 (dd, *J* = 17.2, 10.8 Hz, 1H), 6.17 (d, *J* = 17.6 Hz, 1H), 5.51 (d, *J* = 11.1 Hz, 1H), 5.33 (d, *J* = 5.7 Hz, 4H), 5.24 (d, *J* = 4.6 Hz, 1H), 5.13 (d, *J* = 5.2 Hz, 1H), 4.61 (s, 1H), 4.40 (d, *J* = 5.6 Hz, 2H), 4.19 (s, 3H), 4.14 (s, 3H), 3.76 (d, *J* = 6.4 Hz, 1H), 3.61 (d, *J* = 4.6 Hz, 1H), 3.40 (s, 1H), 3.21 (d, *J* = 5.0 Hz, 1H).

¹³C NMR (126 MHz, Acetone) δ161.3, 158.8, 154.9, 153.2, 140.1, 136.4, 136.0, 130.6, 130.2, 129.9, 128.8, 126.3, 124.6, 123.6, 120.3, 117.1, 116.3, 115.5, 115.2, 114.5, 113.3, 113.2, 105.5, 102.8, 100.9, 77.5, 76.3, 76.2, 74.6, 72.6, 57.1, 56.9, 36.2. IR (neat) ν_{max} 2920, 2857, 1754, 1662, 1470, 1275, 1047, 764 cm⁻¹; HRMS (ESI) [M + H]⁺ calculated for C₃₇H₃₅N₄O₁₁: 711.2287, found: 711.2297;

[α]_D²⁵ 9.512 (*c* 0.2, DMSO);

IV) Comparison of Natural and Synthetic Chrysomycin A

Natural (500 MHz)	Synthetic + Natural (400 MHz)	Synthetic (400 MHz)
9.80 (s, 1H)	9.82 (s, 1H)	9.82 (s, 1H)
8.43 (s, 1H)	8.50 (s, 1H)	8.49 (s, 1H)
7.97 (d, 1.5, 1H)	8.02 (s, 1H)	8.01 (s, 1H)
7.84 (d, 8.5, 1H)	7.84 (d, 8.4, 1H)	7.84 (d, 8.4, 1H)
7.69 (d,1.5, 1H)	7.77 (s, 1H)	7.76 (s, 1H)
6.97 (d, 8.5, 1H)	6.97 (d, 8.5, 1H)	6.97 (d, 8.6, 1H)
6.91(dd,17.5, 11.0, 1H)	6.96 (dd, 17.5, 11.2, 1H)	6.95 (dd, 17.6, 11.2, 1H)
6.13 (d, 17.5, 1H)	6.16 (d, 17.5, 1H)	6.16 (d, 17.6, 1H)
6.03 (d, 9.5, 1H)	6.02 (d, 9.5, 1H)	6.02 (d, 9.6, 1H)
5.49 (d, 11.0, 1H)	5.51 (d, 11.0, 1H)	5.51 (d, 11.0, 1H)
4.59 (d, 7.5, 1H)	4.59 (d, 7.7, 1H)	4.59 (d, 7.7, 1H)
4.53 (q, 6.5, 1H)	4.52 (q, 6.5, 1H)	4.52 (q, 6.6, 1H)
4.20 (s, 1H)	4.20 (s, 1H)	4.20 (s, 1H)
4.19 (d, 8.5, 1H)	4.19 (d, 8.4, 1H)	4.19 (d, 8.0, 1H)
4.14(s, 3H)	4.18 (s, 3H)	4.18 (s, 3H)
4.09 (s, 3H)	4.13 (s, 3H)	4.13 (s, 3H)
3.69 (dd, 9.5, 8.5, 1H)	3.68 (dd, 9.2, 8.8, 1H)	3.68 (dd, 9.2, 8.8, 1H)
3.16 (d, 7.5, 1H)	3.15 (d, 7.6, 1H)	3.14 (d, 7.9, 1H)
1.26 (s, 3H	1.25 (s, 3H)	1.25 (s, 3H),
1.03 (d, 6.5, 3H)	1.02 (d, 6.5, 3H)	1.02 (d, 6.5, 3H)

¹H NMR (Hz) data (in DMSO-*d*6) comparison of natural and synthetic chrysomycin A:

(in Diviso uo) comparison	or natural and synthetic emy
Natural (125 MHz)	Synthetic (100 MHz)
159.8	159.8
157.4	157.4
153.2	153.2
151.8	151.9
142.4	142.5
138.7	138.8
135.2	135.2
129.3	129.4
128.1	128.1
125.2	125.2
122.9	123.0
122.0	122.1
119.1	119.1
117.2	117.3
115.2	115.2
114.6	114.8
113.2	113.2
112.1	112.2
101.4	101.5
75.8	75.8
74.6	74.6
73.2	73.2
72.6	72.5
70.7	70.7
56.7	56.8
56.2	56.3
23.9	23.9
17.1	17.1

¹³C NMR data (in DMSO-*d*6) comparison of natural and synthetic chrysomycin A:

$[\alpha]_{D}$ Comparison of natural and synthetic chrysomycin A:

Natural chrysomycin A	Synthetic chrysomycin A	
$[\alpha]_{D}^{22}$ -12.0 (<i>c</i> 0.06, CHCl ₃)	$[\alpha]_{\rm D}^{22}$ -13.3 (<i>c</i> 0.06, CHCl ₃)	

V) Comparison of Natural and Synthetic Polycarcin V

¹ H NMR (Hz)		¹³ C NM	¹³ C NMR (Hz)	
Natural (500 MHz)	Synthetic (500 MHz)	Natural (125 MHz)	Synthetic (125 MHz)	
9.72 (s, 1H)	9.73 (s, 1H)	159.4	159.4	
8.45 (s, 1H)	8.45 (s, 1H)	157.4	157.5	
7.97 (d, 1.5, 1H)	7.97 (d, 1.2, 1H)	152.8	152.8	
7.78 (d, 8.4, 1H)	7.81 (d, 8.4, 1H)	152.0	152.1	
7.73 (d, 1.5, 1H)	7.73 (d, 1.2, 1H)	141.8	141.8	
6.96 (d, 8.4, 1H)	6.96 (d, 8.5, 1H)	138.8	138.9	
6.94 (dd, 17.6, 11.0, 1H)	6.94 (dd, 17.6, 11.0, 1H)	135.2	135.2	
6.13 (d, 17.6, 1H)	6.14 (d, 17.6, 1H)	129.9	130.0	
5.84 (br s, 1H)	5.84 (s, 1H)	126.7	126.7	
5.50 (d, 11.0, 1H)	5.50 (d, 11.0, 1H)	122.8	122.9	
4.77 (d, 5.1, 1H) ^[a]	4.81 (d, 5.1, 1H) ^[a]	122.4	122.5	
4.42 (d, 5.9, 1H) ^[a]	4.47 (d, 5.3, 1H) ^[a]	121.8	121.9	
4.16 (s, 3H)	4.16 (s, 3H)	119.1	119.2	
4.11 (s, 3H)	4.11 (s, 3H)	117.3	117.3	
4.06 (dd, 5.9, 3.7, 1H)	4.07 (dd, 5.6, 3.1, 1H)	114.9	114.9	
3.98 (d, 5.9, 1H) ^[a]	4.01 (m, 1H) ^[a]	114.6	114.7	
3.78 (m, 1H)	3.78 (m, 1H)	113.2	113.3	
3.36 (m, 1H)	3.36 (m, ,1H)	112.0	112.1	
3.31 (m, 1H)	3.31 (m, 1H)	101.4	101.4	
1.28 (d, 6.4, 3H)	1.29 (d, 5.9, 3H)	77.5	77.5	
		76.4	76.4	
		74.7	74.7	
		72.8	72.8	
		71.6	71.6	
		56.7	56.8	
		56.5	56.3	
		18.5	18.5	

NMR data (in DMSO-*d*₆) comparison of natural and synthetic polycarcin V:

[a] Protons of the hydroxyl groups on the sugar moiety

$[\alpha]_D$ Comparison of natural and synthetic polycarcin V:

Natural polycarcin V	Synthetic polycarcin V	
$[\alpha]_{\rm D}^{22}$ -79 (<i>c</i> 0.4, MeOH)	$[\alpha]_{\rm D}^{22}$ -83.6 (<i>c</i> 0.2, MeOH)	

v I) Comparison of I	aturar and Synthetic G		
NMR data (in DMSO- <i>d</i> ₆)	comparison of natural and sy	nthetic gilvocard	cin V:
¹ H	I NMR (Hz)	¹³ C NN	IR (Hz)
Natural (400 MHz)	Synthetic (400 MHz)	Natural (125 MHz)	Synthet (125 MI
0.72 (- 111)	0.71 (~ 111)	150 5	150 (

VI) Comparison of Natural and Synthetic Gilvocarcin V

	× /		
Natural (400 MHz)	Synthetic (400 MHz)	Natural (125 MHz)	Synthetic (125 MHz)
9.72 (s, 1H)	9.71 (s, 1H)	159.5	159.6
8.48 (s, 1H)	8.48 (s, 1H)	157.3	157.3
8.07 (d, 8.4, 1H)	8.07 (d, 8.2, 1H)	152.6	152.6
7.99 (s, 1H)	7.99 (s, 1H)	151.8	151.8
7.76 (s, 1H)	7.76 (s, 1H)	142.3	142.3
6.96 (dd, 17.6, 11.0, 1H)	6.96 (dd, 17.6, 10.9, 1H)	138.6	138.7
6.95 (d, 8.4, 1H)	6.95 (d, 8.2, 1H)	135.2	135.2
6.20 (d, 5.5, 1H)	6.20 (d, 5.5, 1H)	129.0	129.1
6.16 (d, 17.6, 1H)	6.16 (d, 17.6, 1H)	126.1	126.2
5.51 (d, 11.0, 1H)	5.51 (d, 11.0, 1H)	123.6	123.6
5.10 (d, 4.8, 1H)	5.10 (d, 4.8, 1H)	122.9	122.9
4.83 (d, 4.8, 1H)	4.83 (d, 4.8, 1H)	122.2	122.2
4.66 – 4.71 (m, 1H)	4.66 – 4.71 (m, 1H)	119.0	119.0
4.51 (d, 6.6, 1H)	4.51 (d, 6.6, 1H)	117.0	117.0
4.18 (s, 3H)	4.18 (s, 3H)	114.8	114.8
4.13 (s, 3H)	4.13 (s, 3H)	114.5	114.4
3.82 – 3.90 (m, 2H)	3.82 – 3.90 (m, 2H)	112.8	112.5
3.51 (dd, 5.9, 4.4, 1H)	3.51 (dd, 5.9, 4.4, 1H)	112.0	112.0
1.24 (d, 6.6, 3H)	1.24 (d, 6.5, 3H)	101.4	101.4
		85.7	85.7
		80.7	80.7
		78.8	78.9
		78.6	78.6
		66.4	66.4
		56.7	56.7
	_	56.3	56.2
	_	20.1	20.0

$[\alpha]_D$ Comparison of natural and synthetic gilvocarcin V:

Natural gilvocarcin V	Synthetic gilvocarcin V	
$[\alpha]_{D}^{22}$ -220.0 (<i>c</i> 0.22, DMSO)	$[\alpha]_{\rm D}^{22}$ -221.0 (<i>c</i> 0.22, DMSO)	

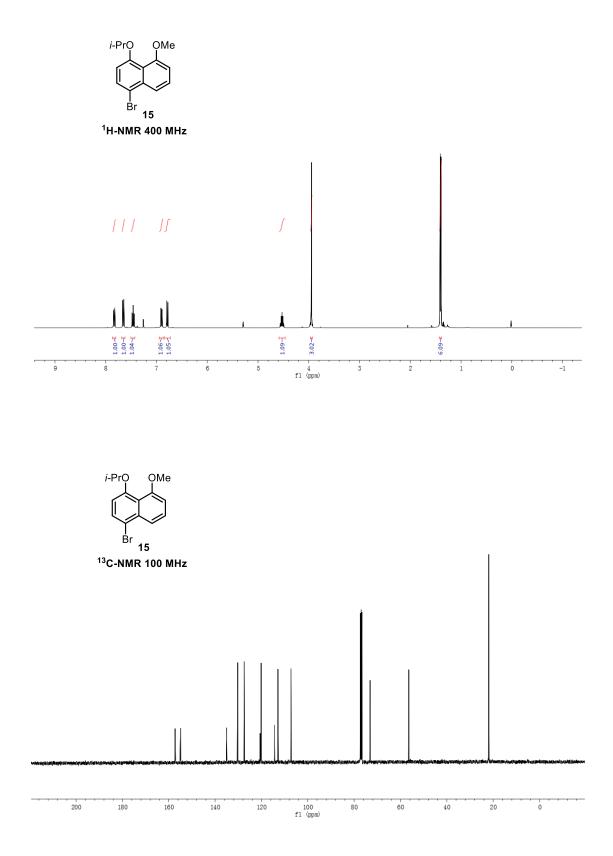
VI) Biological Evaluation

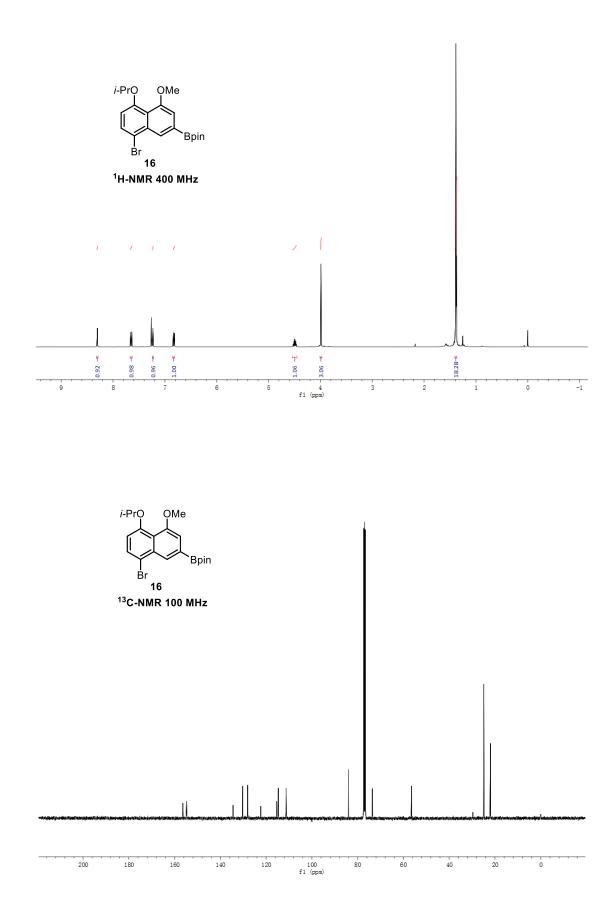
Anti- BCG and MTB assays

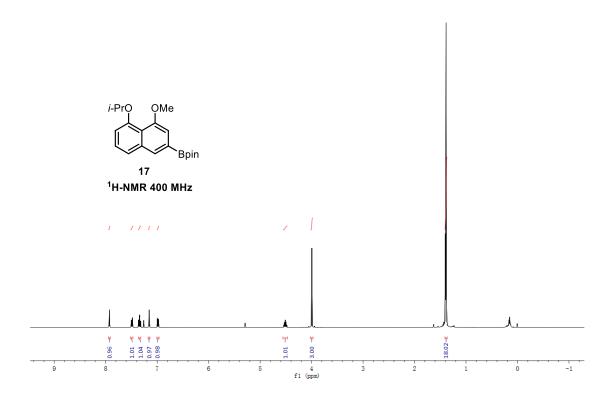
BCG Antimicrobial Assay

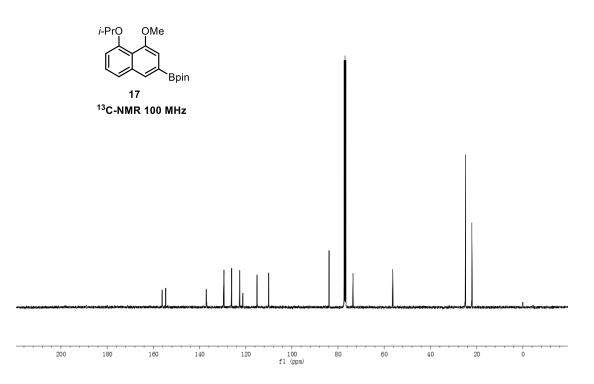
The Anti-BCG assay was carried out in 96-well microplates by using a strain with constitutive GFP expression (pUV3583c-GFP) through direct readout of fluorescence as a measure of bacterial growth⁵.

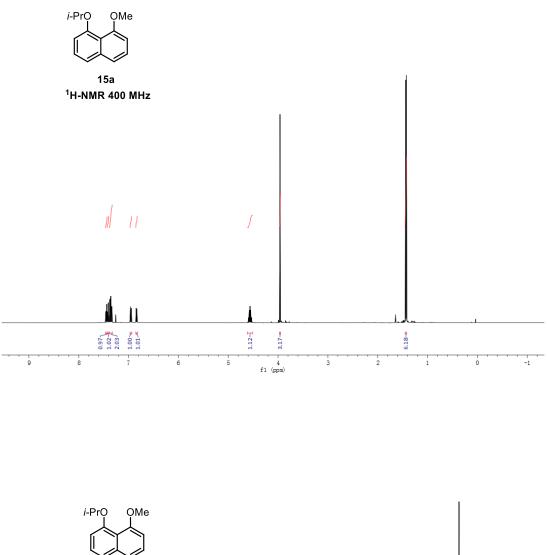
Anti- MTB and NTM (nontuberculous mycobacteria) assays

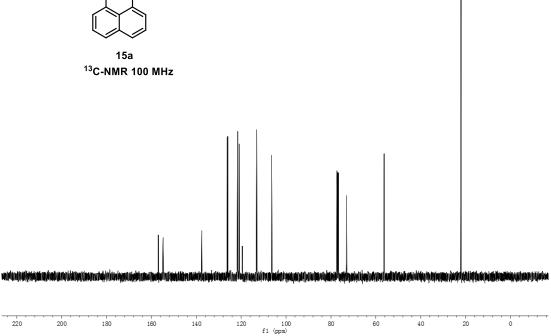

MICs were determined by the Microplate Alamar Blue Assay (MABA) by using a wild type strain H37Rv and clinic isolates (Hr1, Hr2, Hr3, Hr4, Hr5). Rifampicin and bedaquiline were included as positive controls.

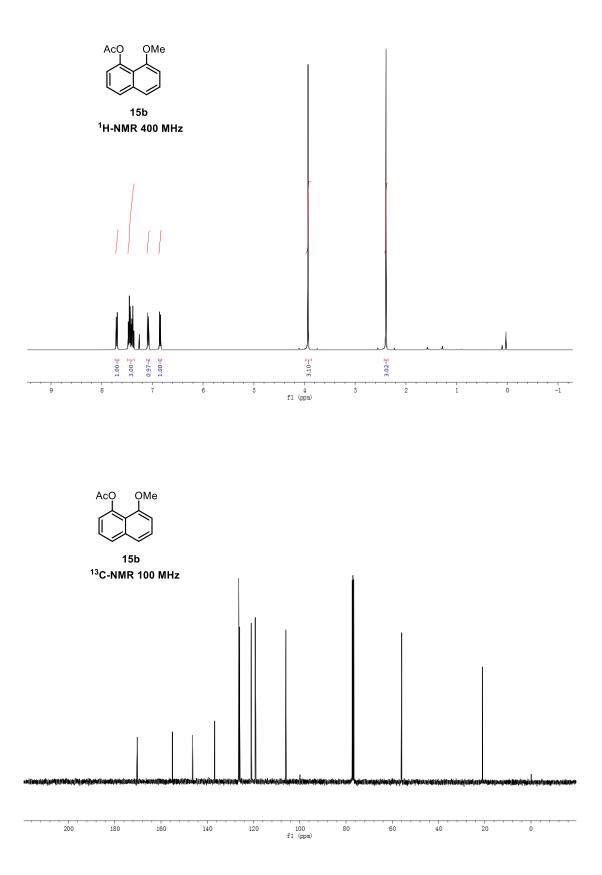

The test strain *M. tuberculosis* was inoculated on a Lowenstein-Jensen medium plate and incubated at 37 °C for about 21 days until the colonies was visible. Then the colonies were picked into by 2 ml 0.05% Tween-80/physiological saline solution by an inoculating loop and vortex 2 min into suspension, keeping stationary about 5-10 min. The supernatant was taken out and diluted into 1 MCF by physiological saline solution. Then this solution were diluted by fresh medium (7H9+10%OADC) to final bacterial titers of 1.0×10^6 . The wells of 96 well plates were filled by using 198 µl bacterial solution, then 2 µl 2-fold diluted test compounds, positive controls, and negative control (DMSO) were added into the wells, respectively.

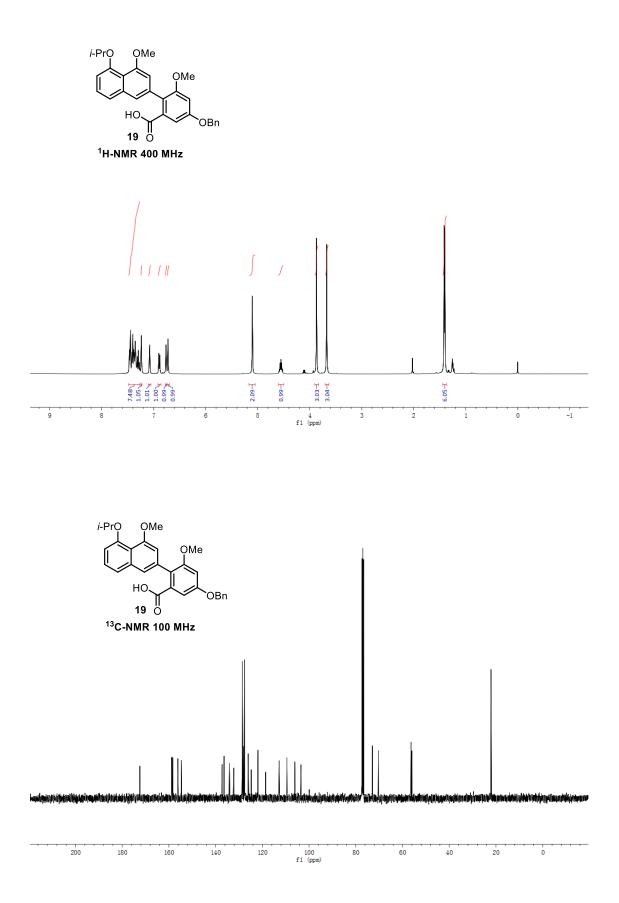

The plates were incubated at 37 °C; on day 7 of incubation, 50 μ L of 20% Tween 80 and 20 μ L of Alamar blue were added to all wells. After incubation at 37 °C for 16-24 h, the MICs were identified as the concentrations of the wells which the colors do not change.

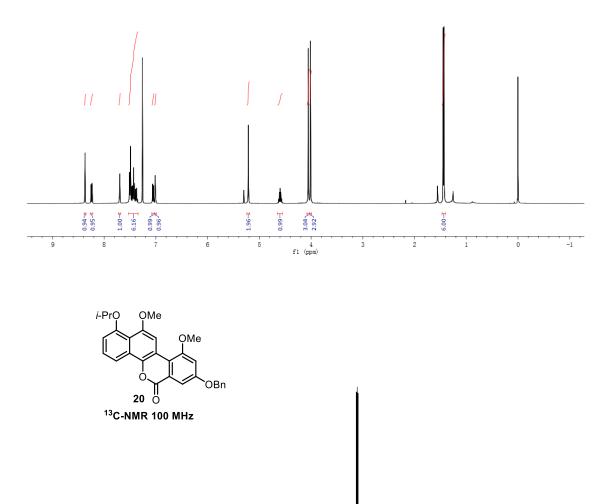

^{5.} Song, F.; Liu, X.; Guo, H.; Ren, B.; Chen, C.; Piggott, A. M. Org. Lett. 2012, 14, 4770.

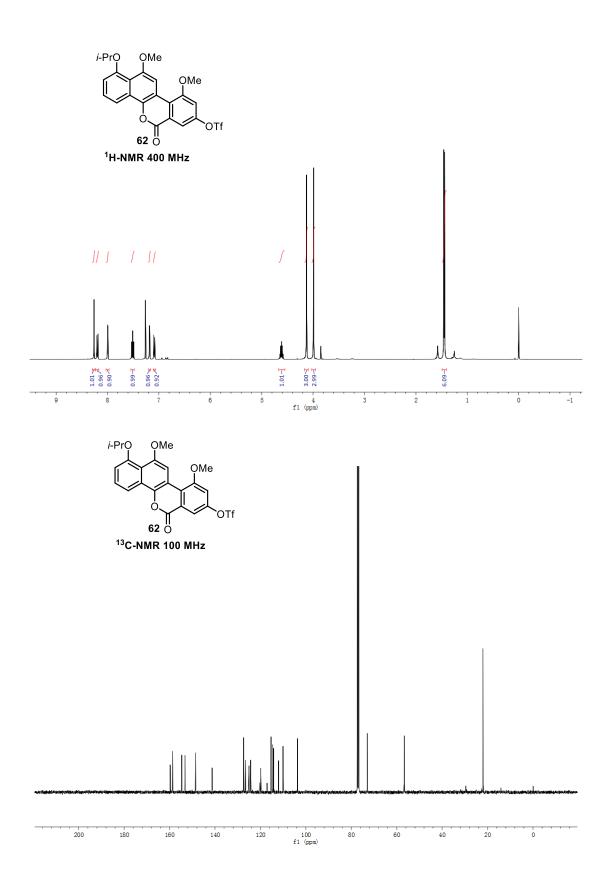

VII) NMR Spectra

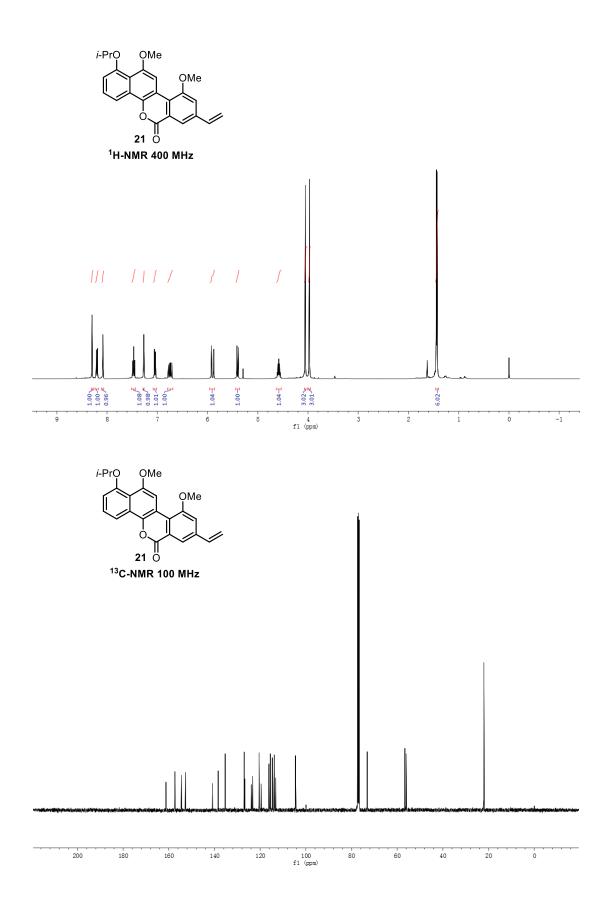


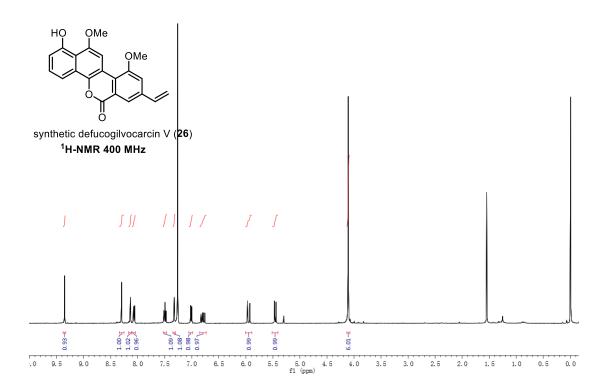


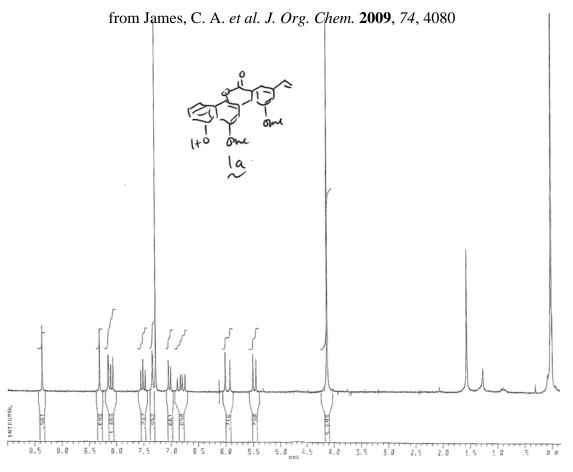


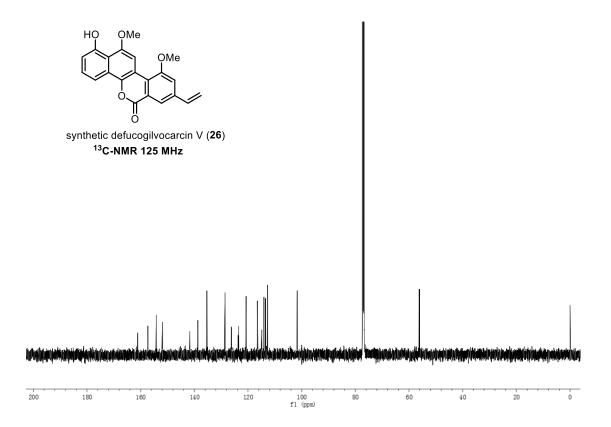


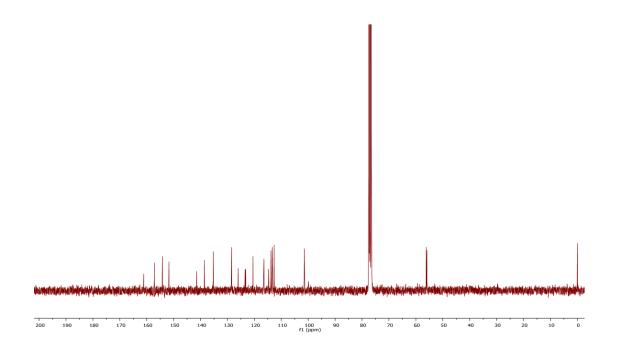




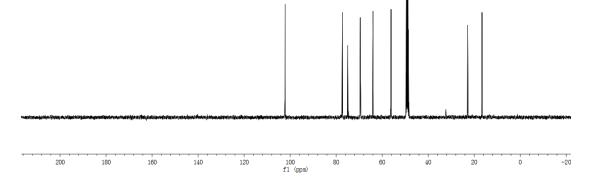


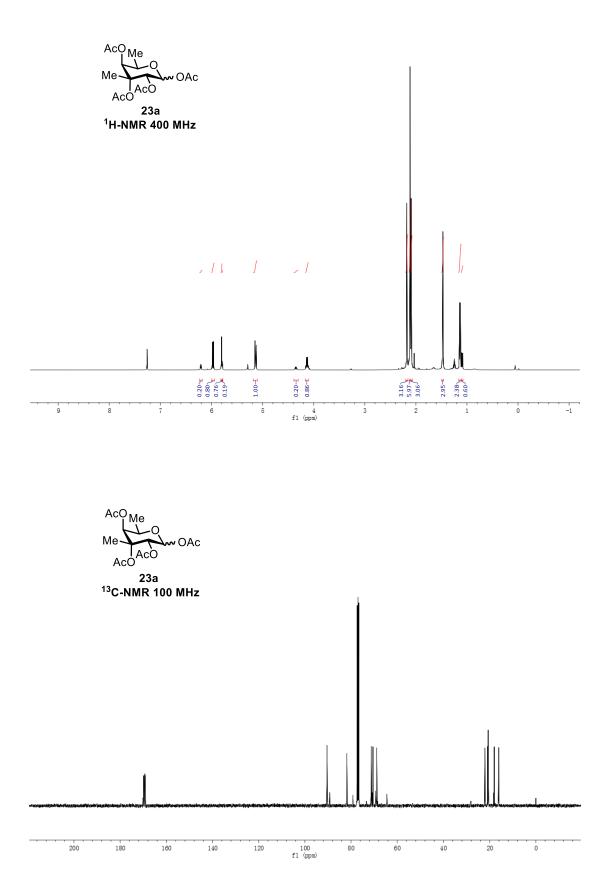


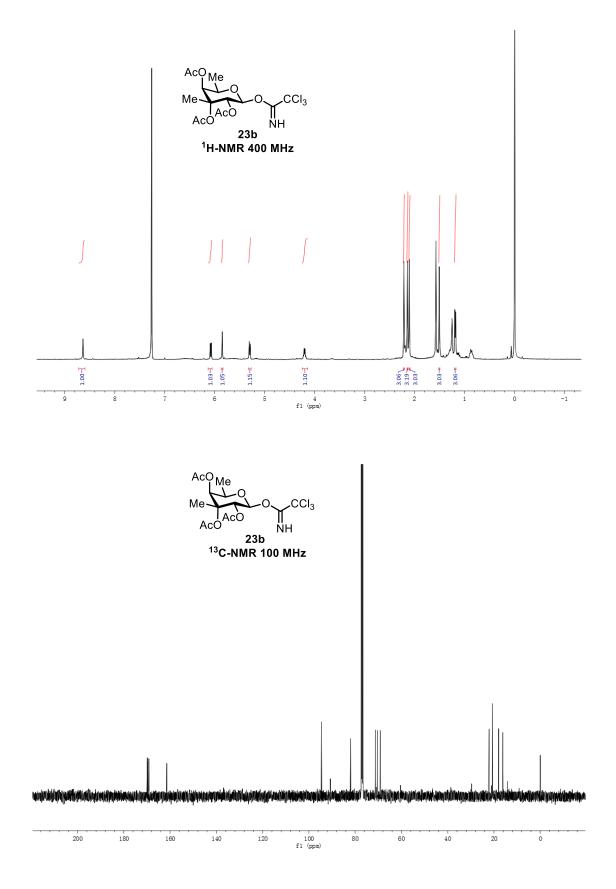

f1 (ppm)

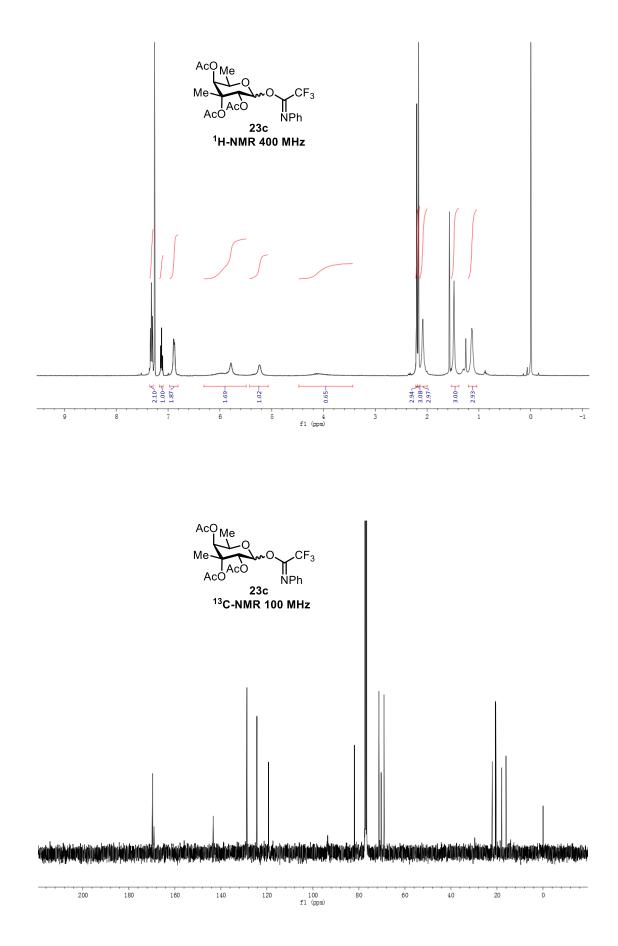

¹H-NMR of Synthetic Defucogilvocarcin V

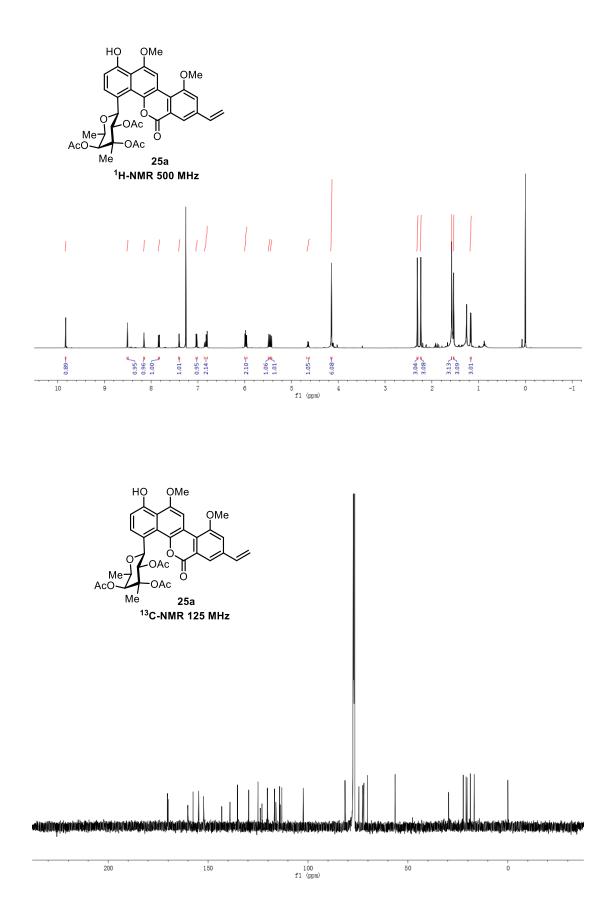


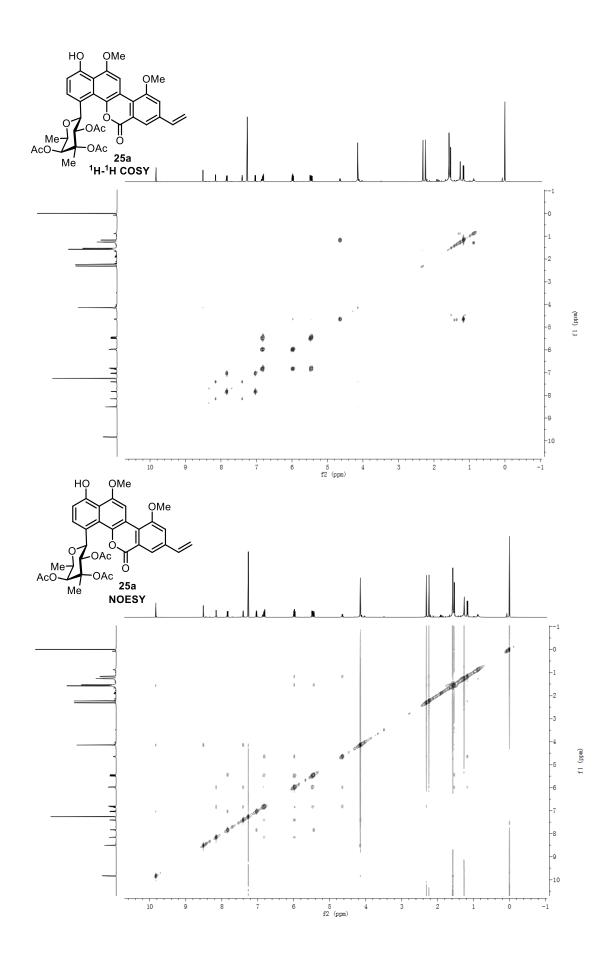


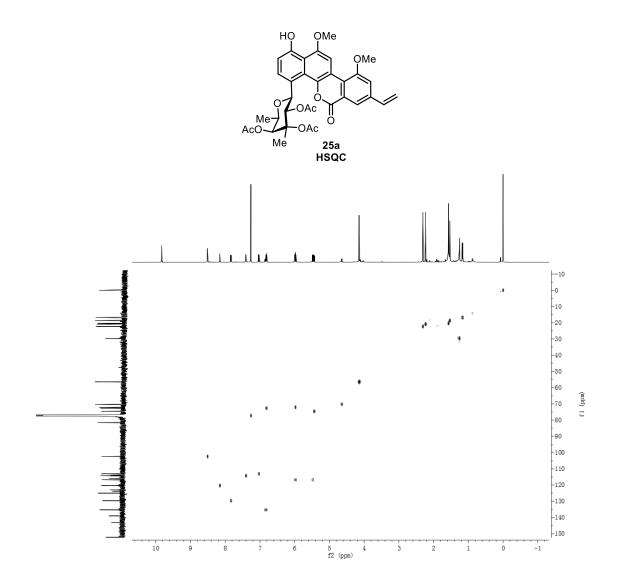

¹H-NMR of Synthetic Defucogilvocarcin V

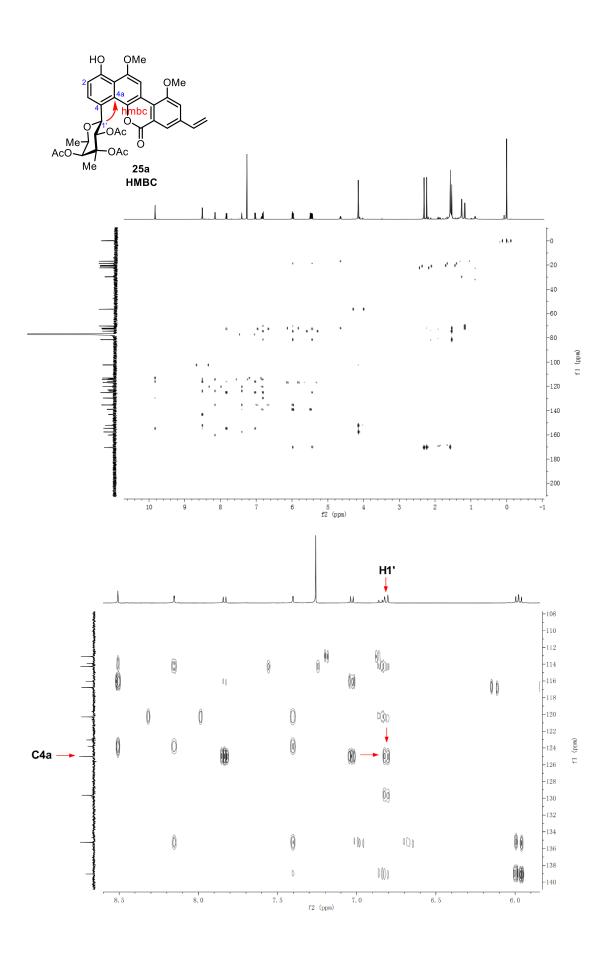

from Nandaluru, P. R. et al. J. Org. Chem. 2012, 77, 8028

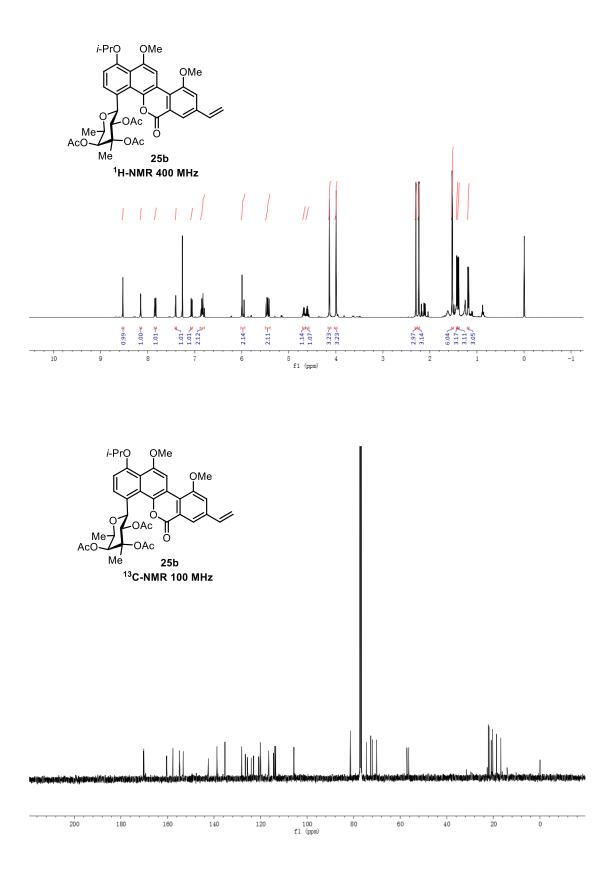


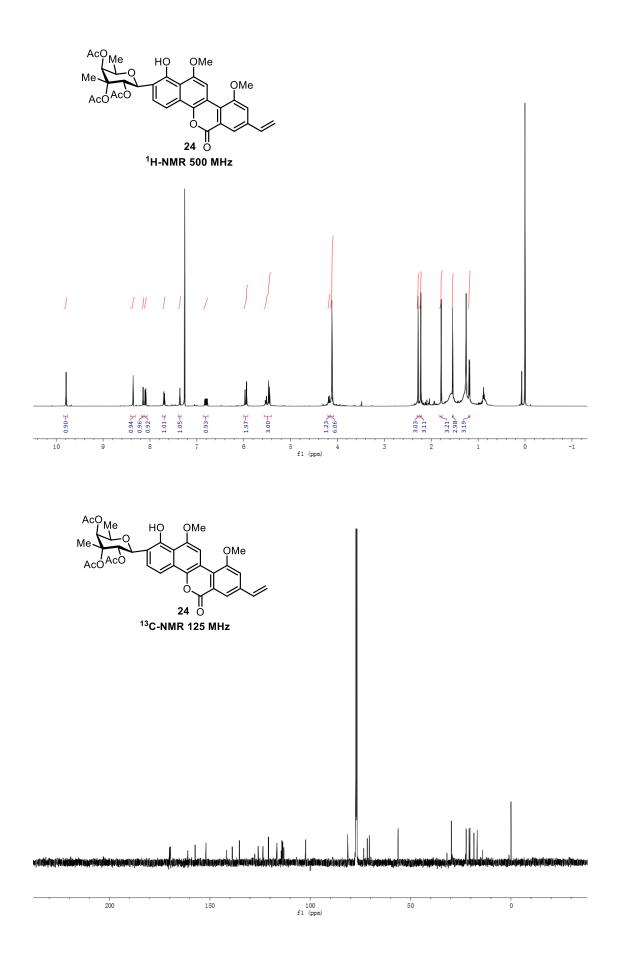


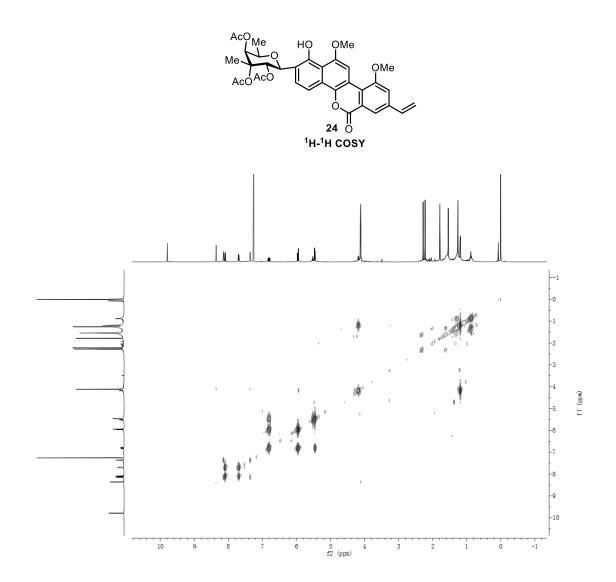


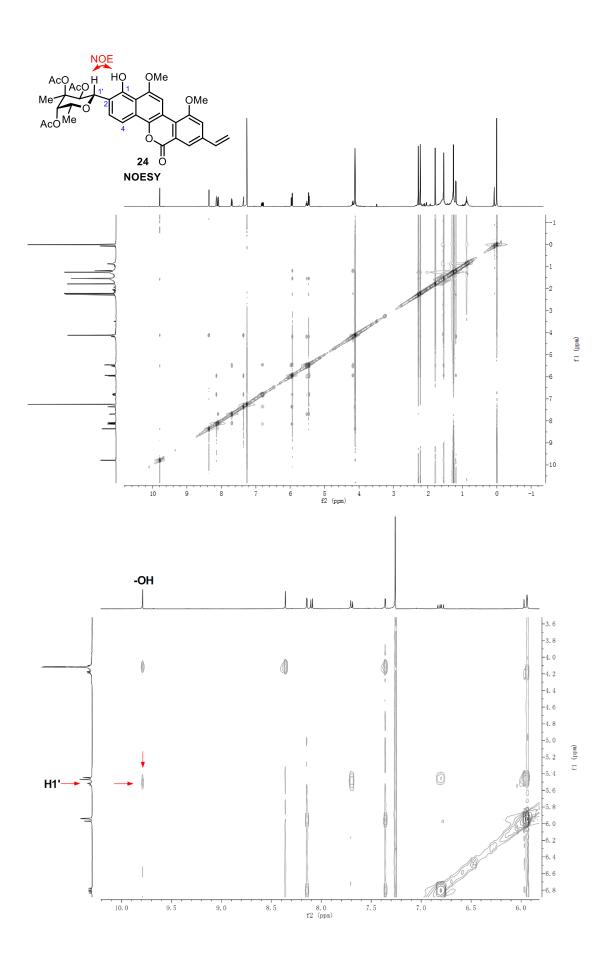


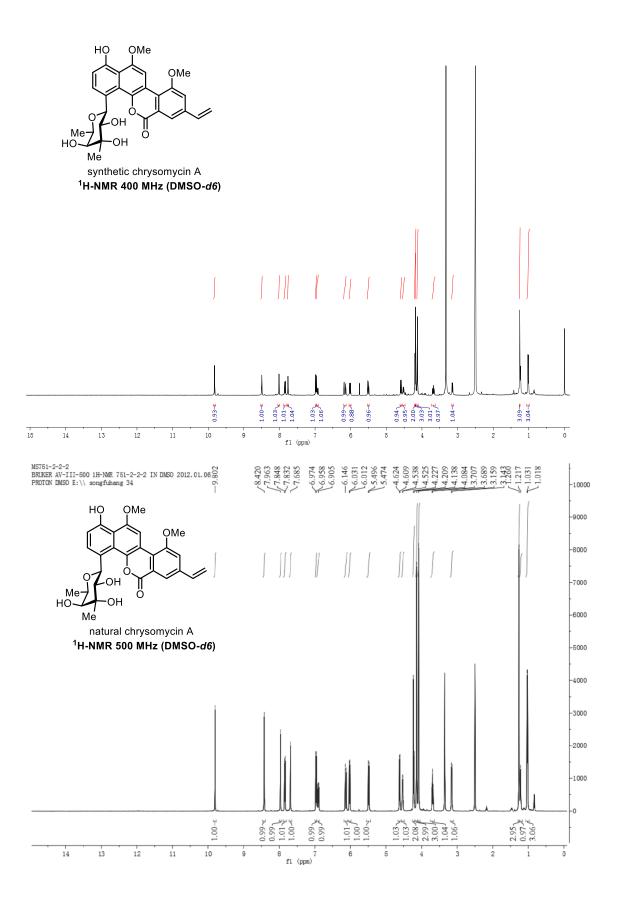


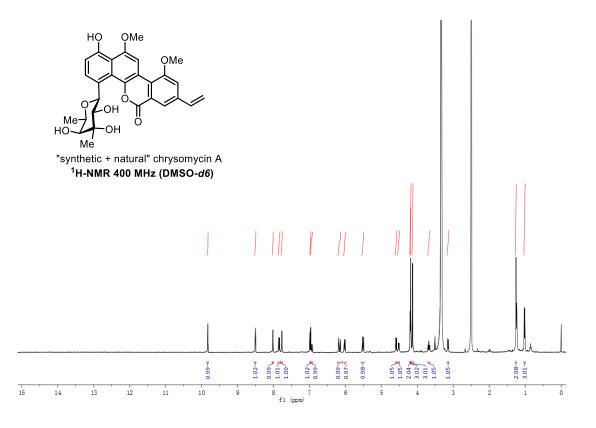


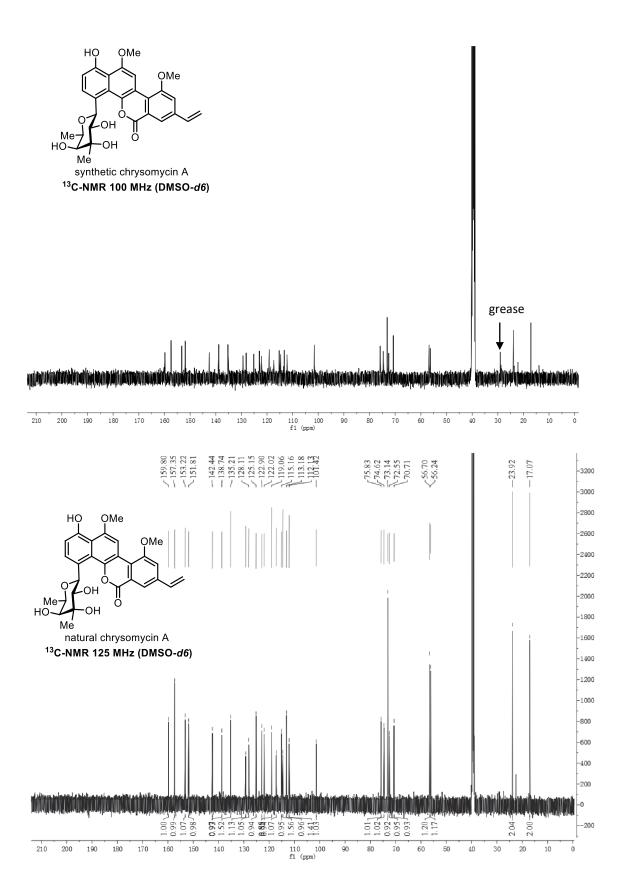

S82

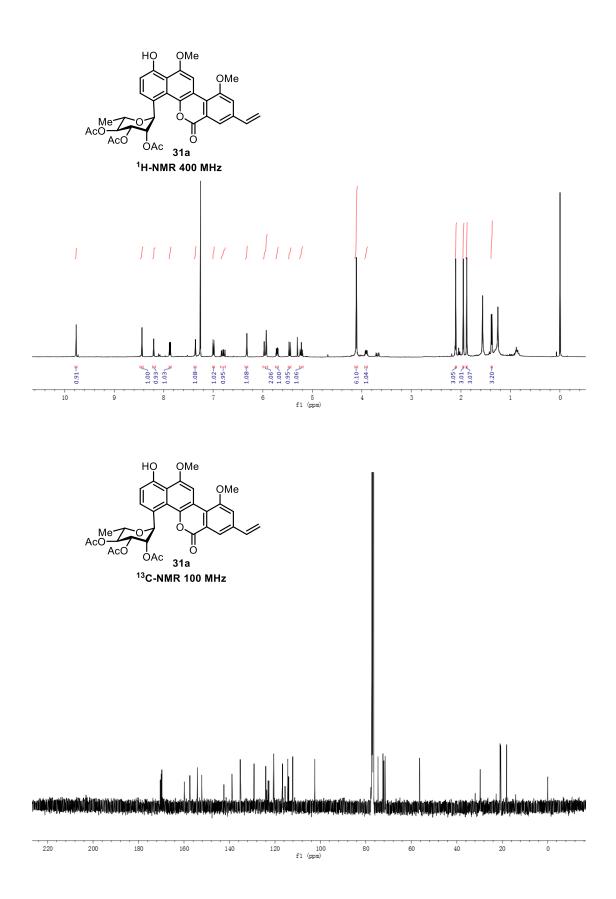


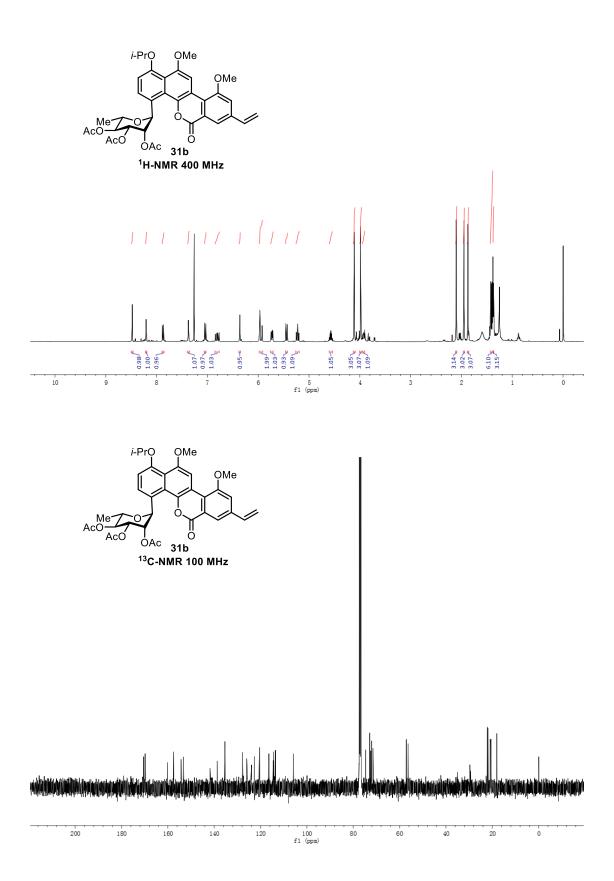


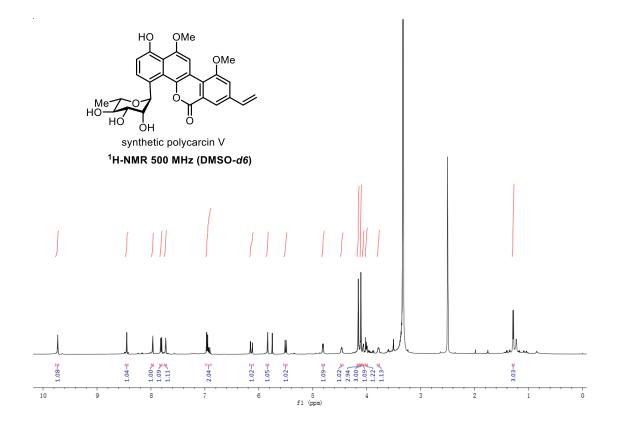

S84

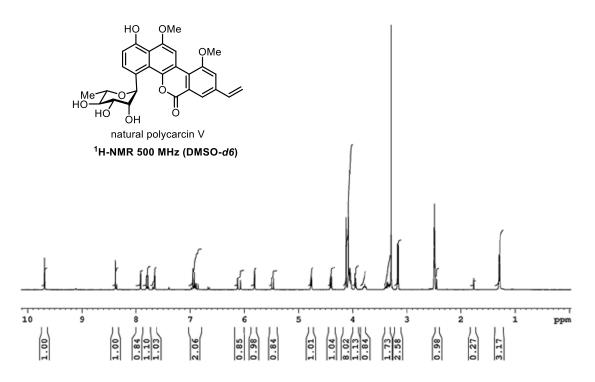


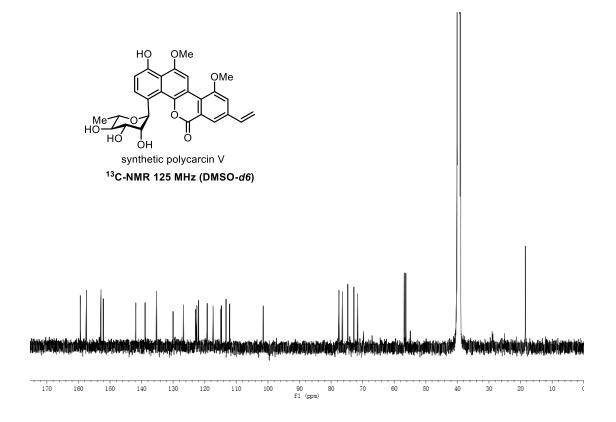


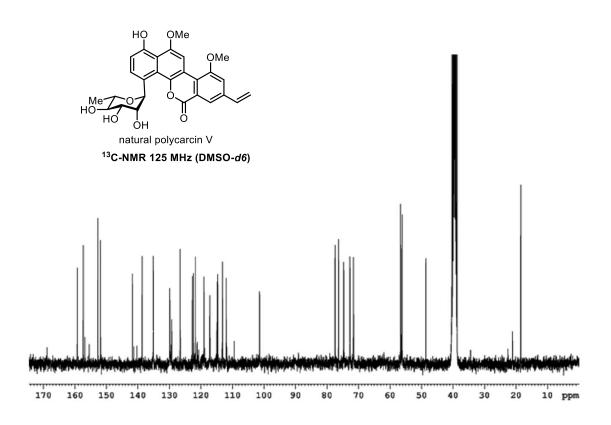


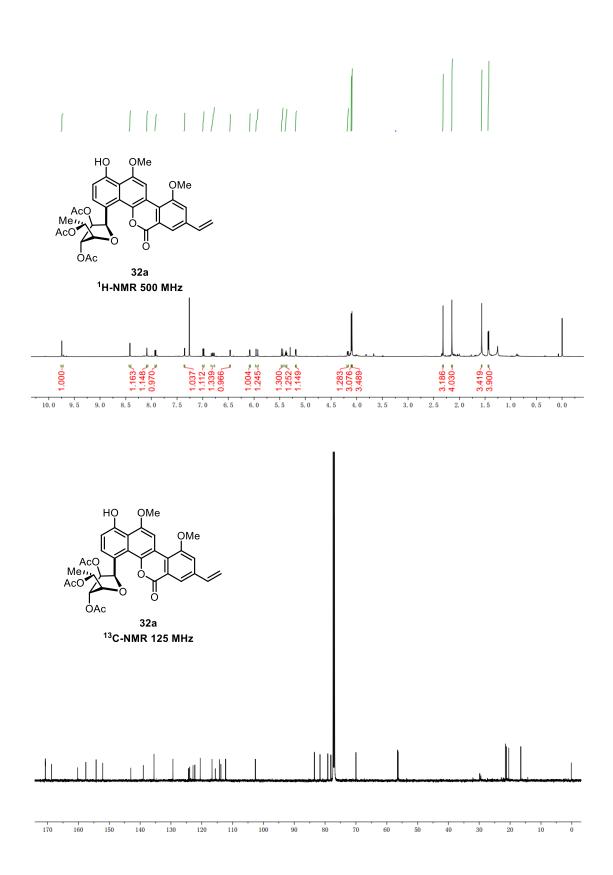


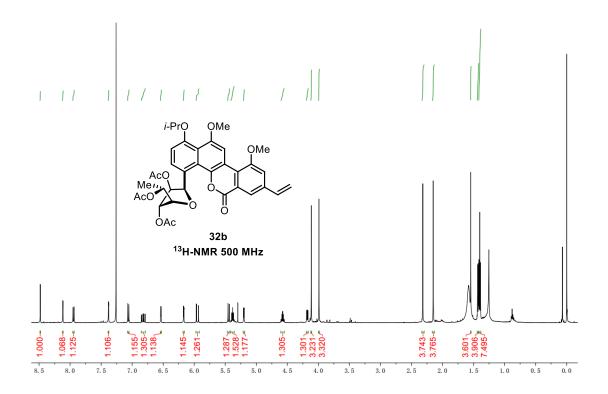


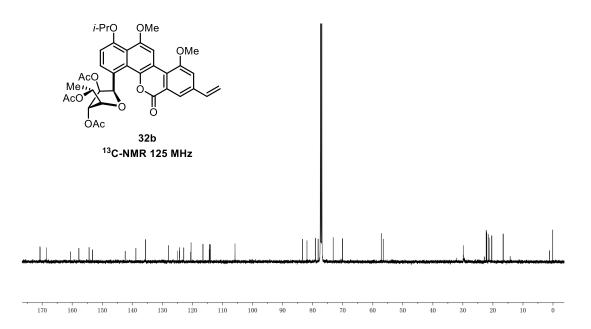


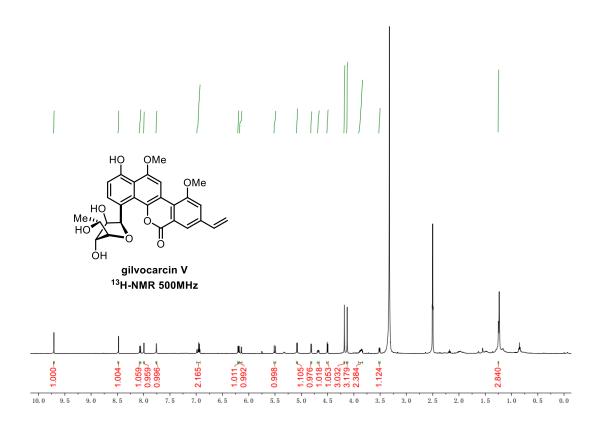


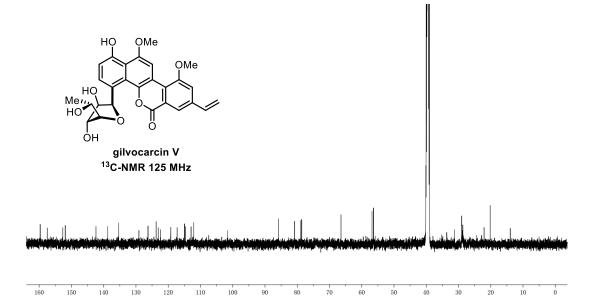

¹H NMR of Natural Polycarcin V

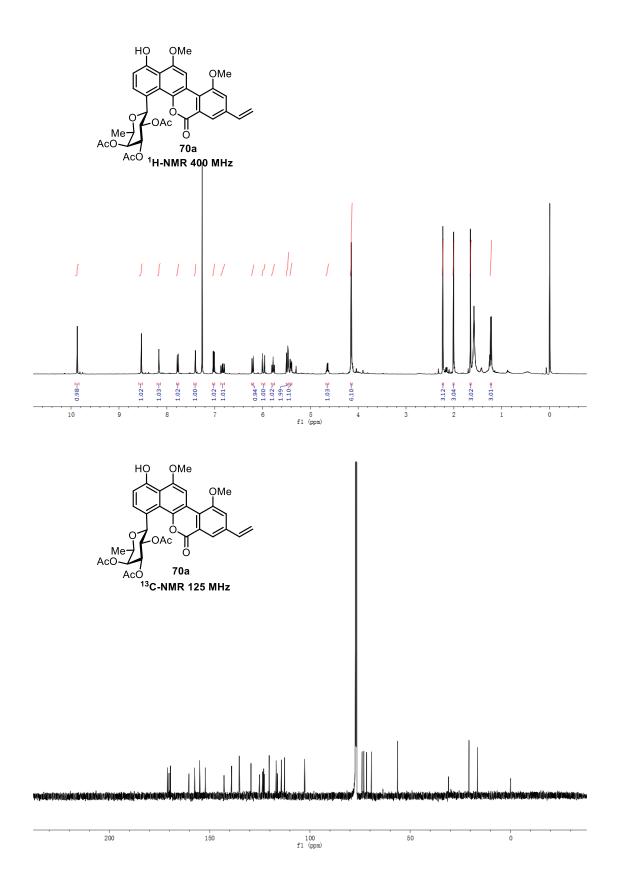

from Li, Y. et al. Org. & Biomol. Chem. 2008, 6, 3601

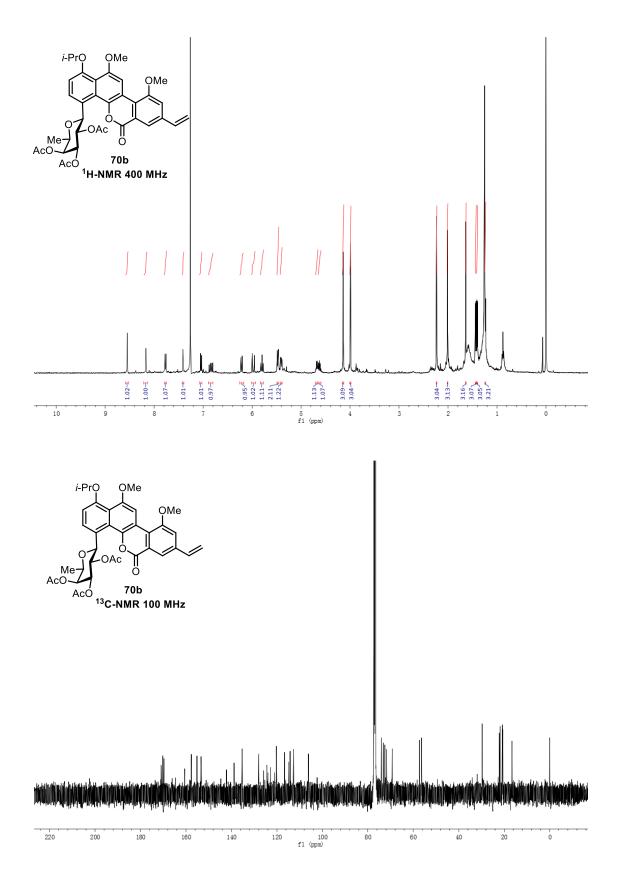


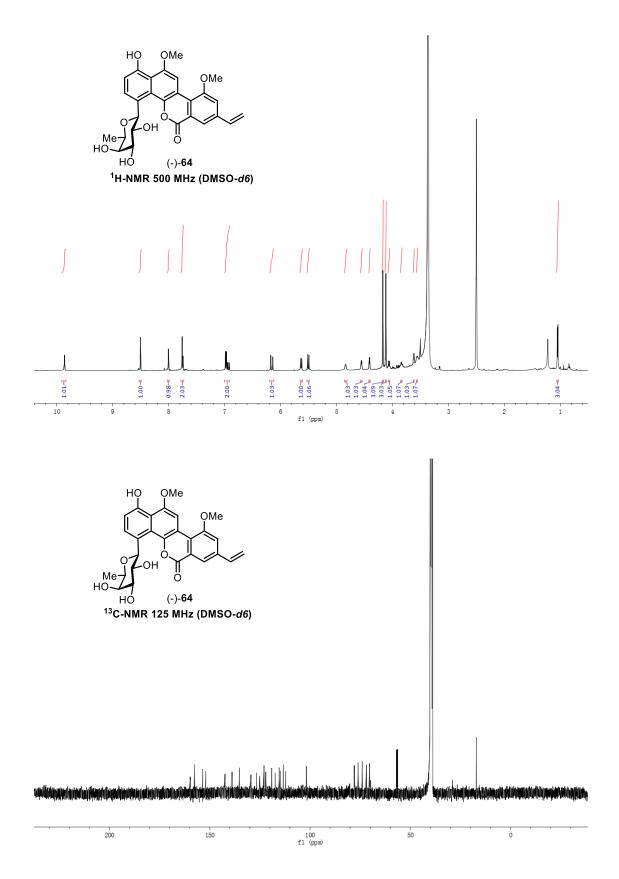


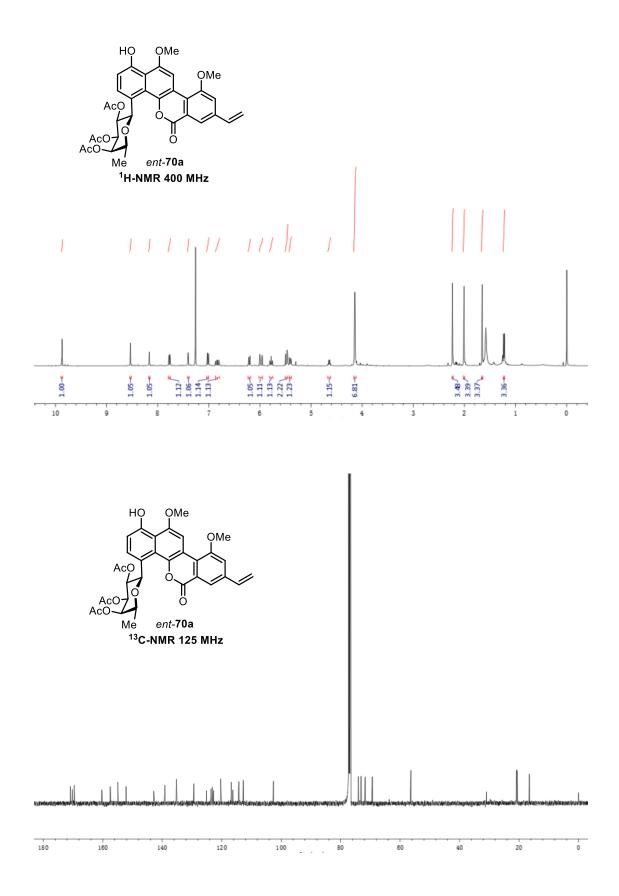

¹³C NMR of Natural Polycarcin V from Li, Y. et al. Org. & Biomol. Chem. 2008, 6, 3601

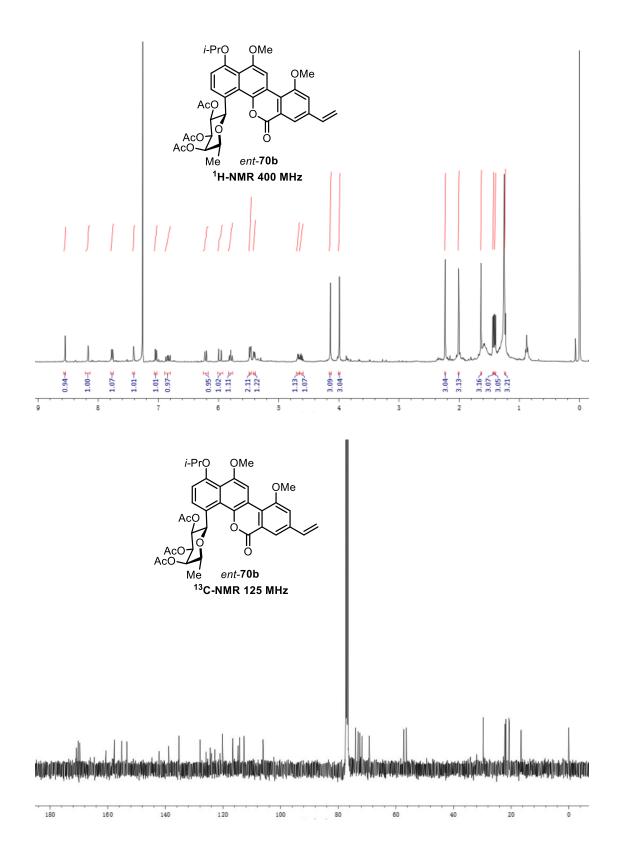


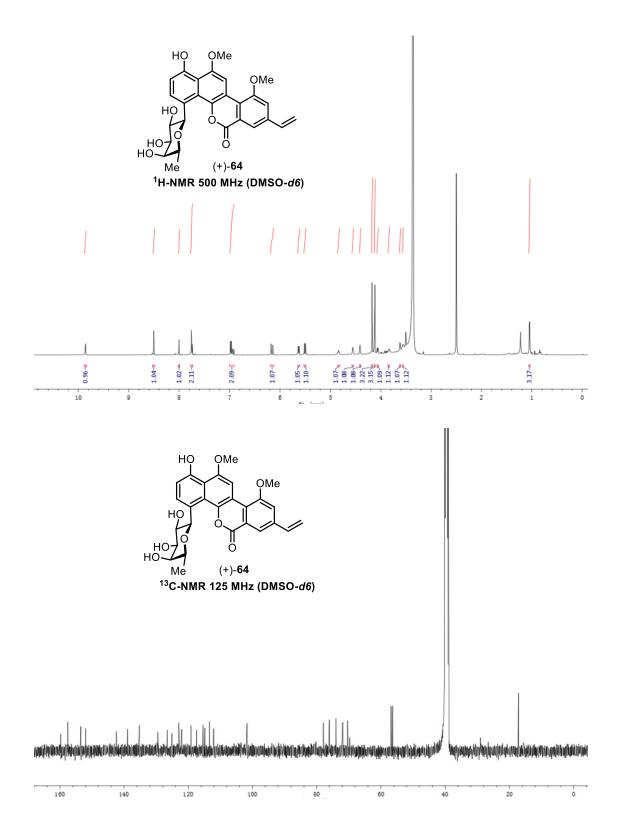


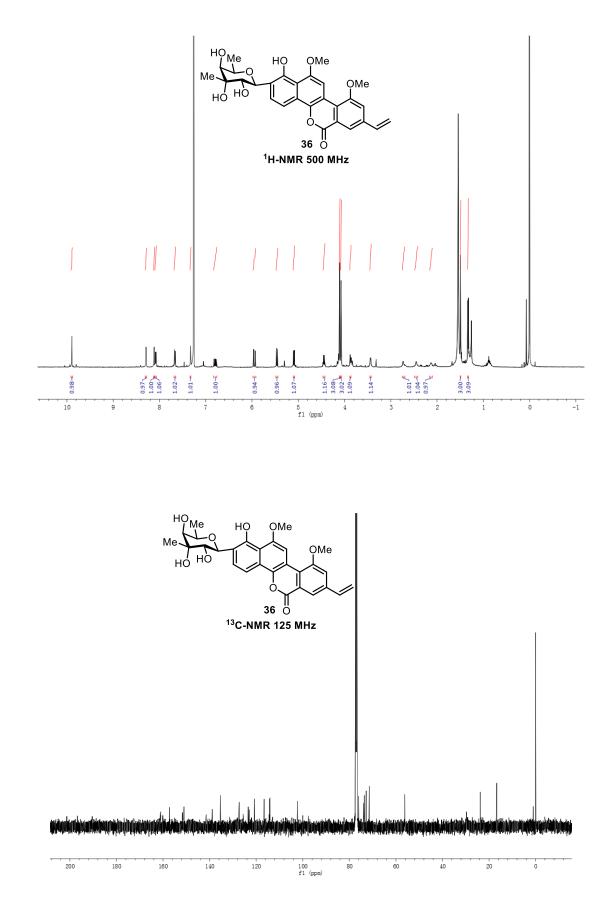


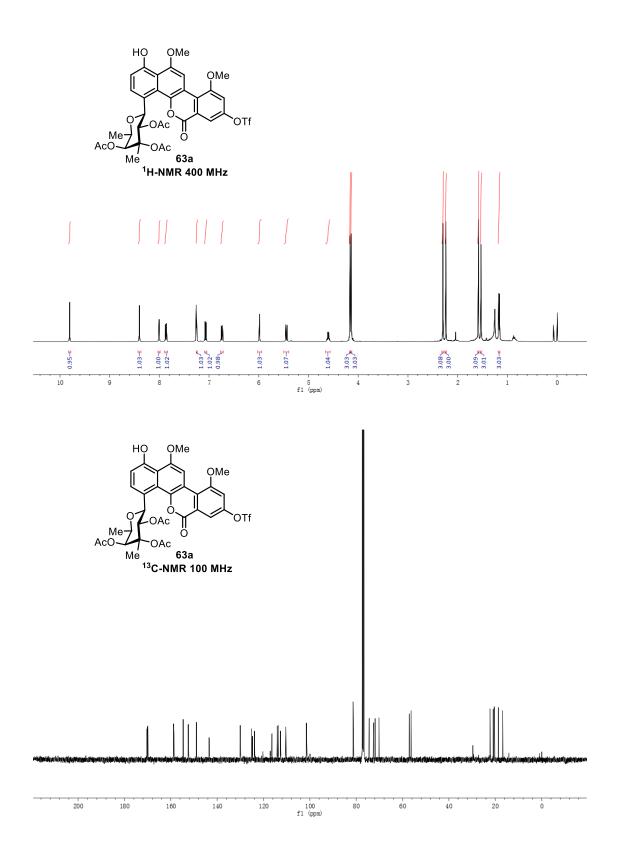


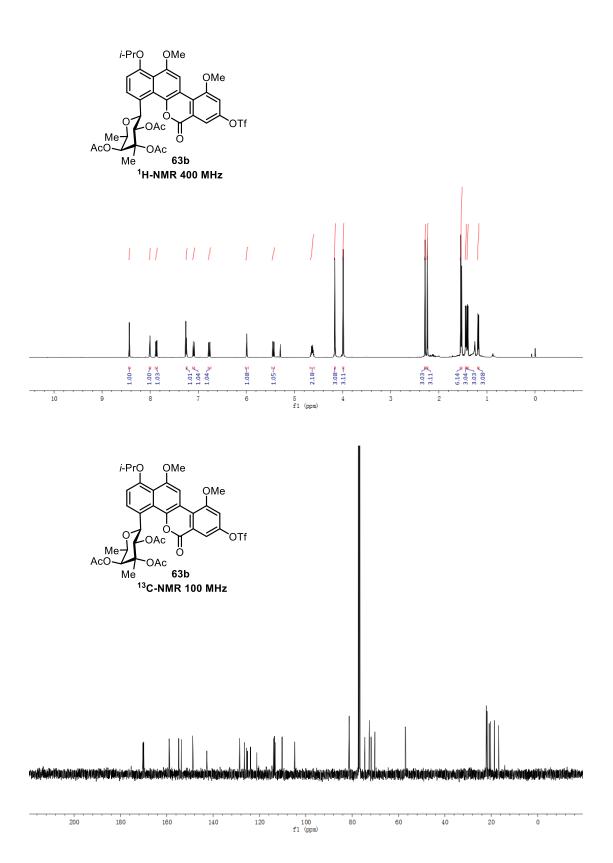


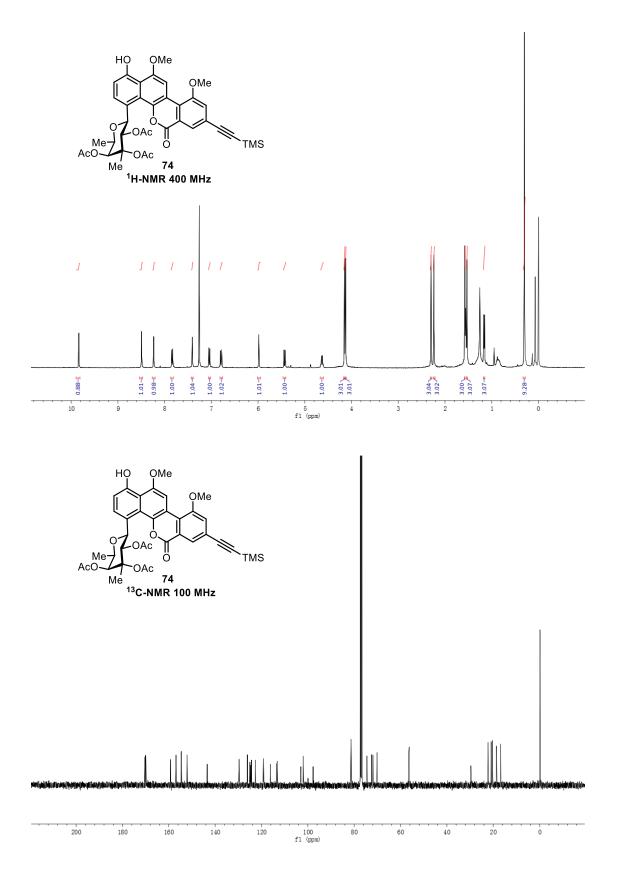


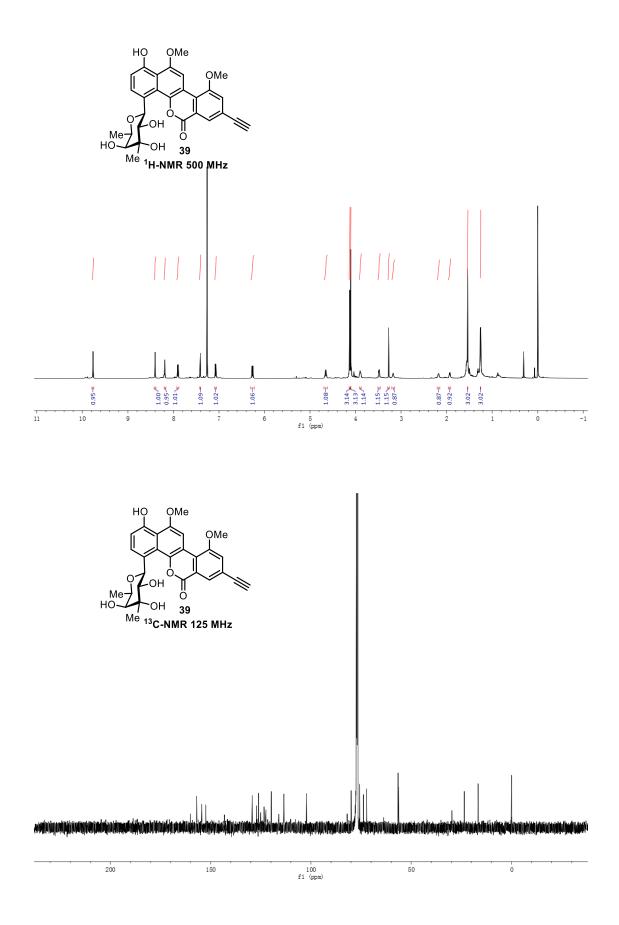


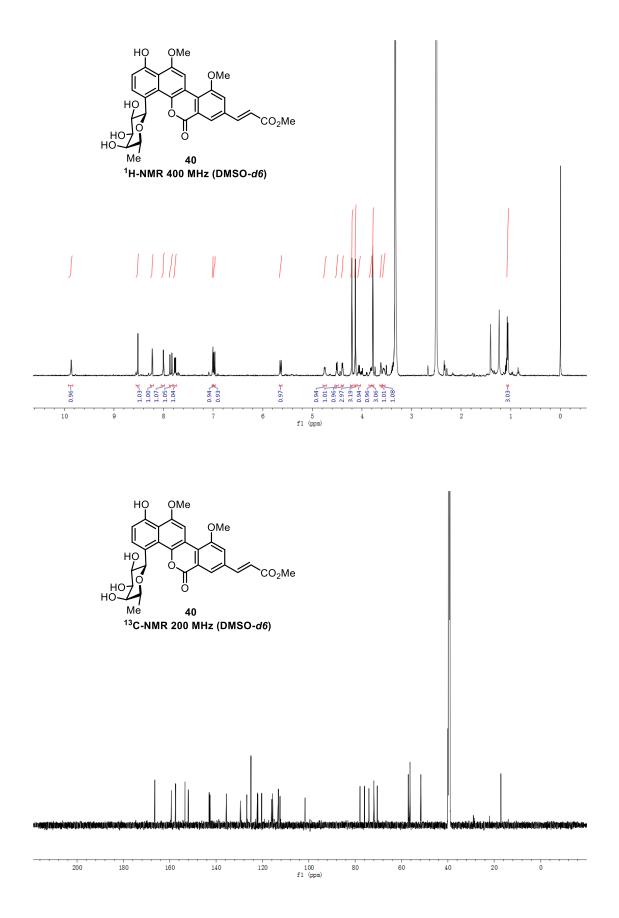


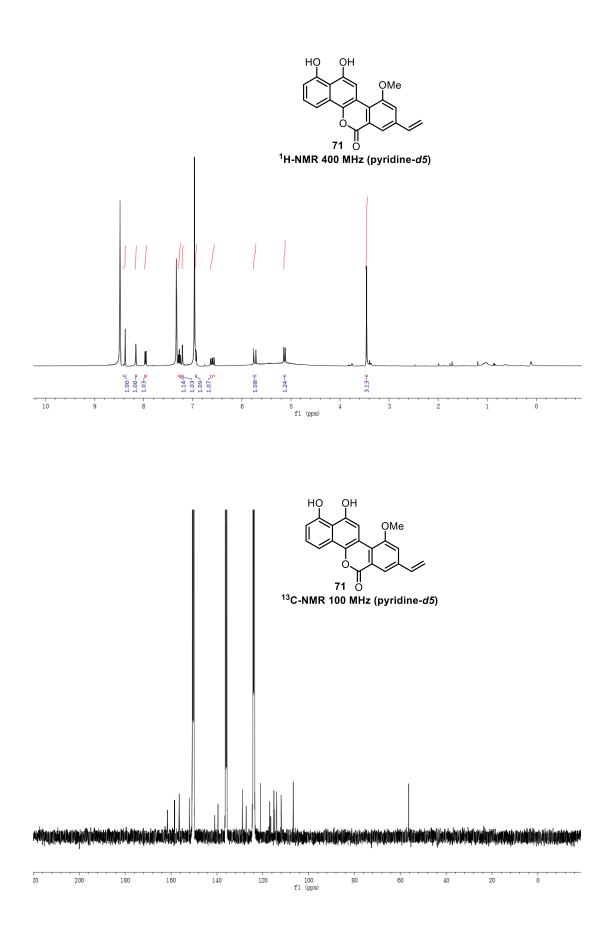


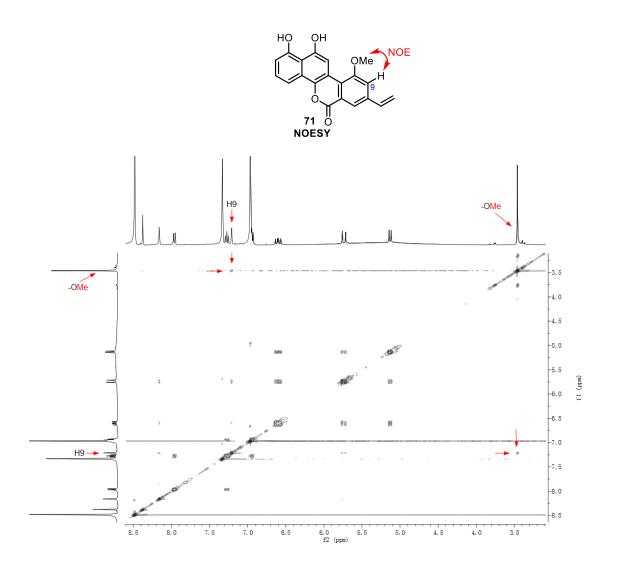


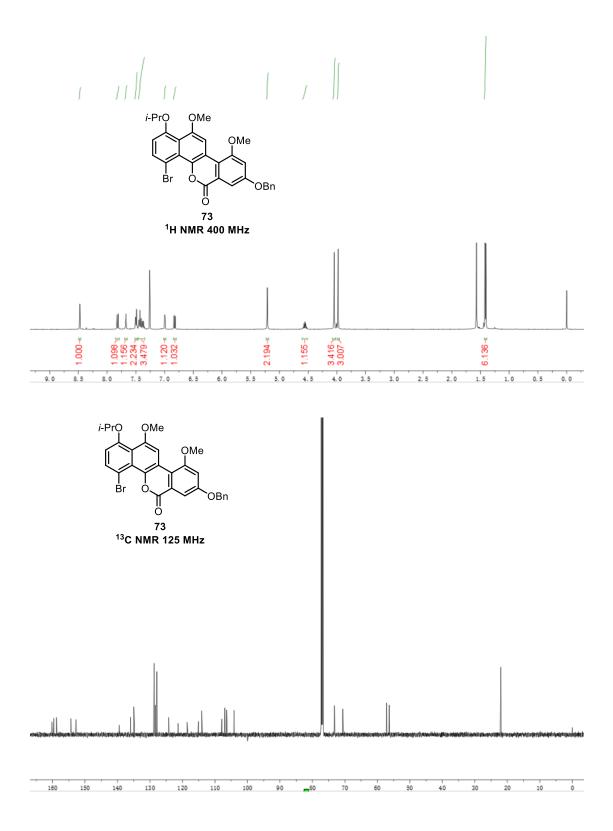


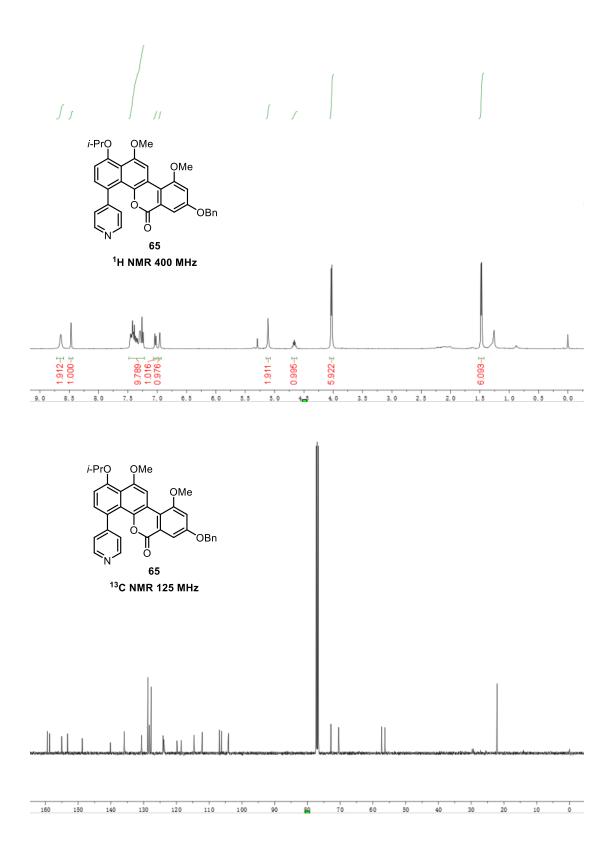


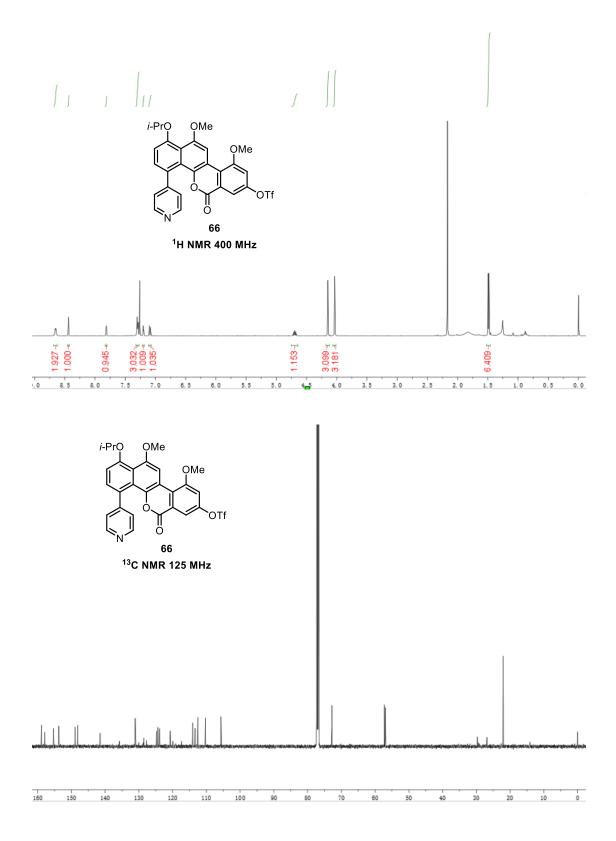


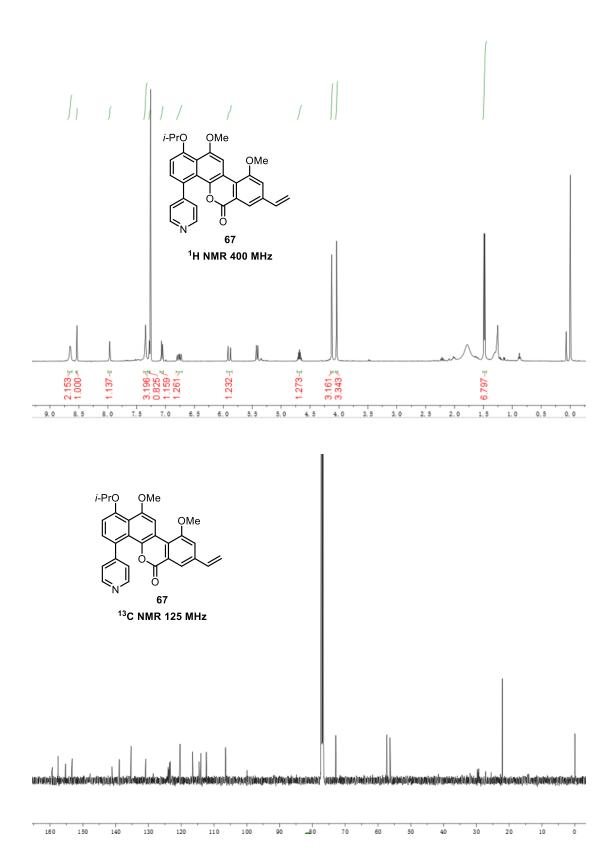


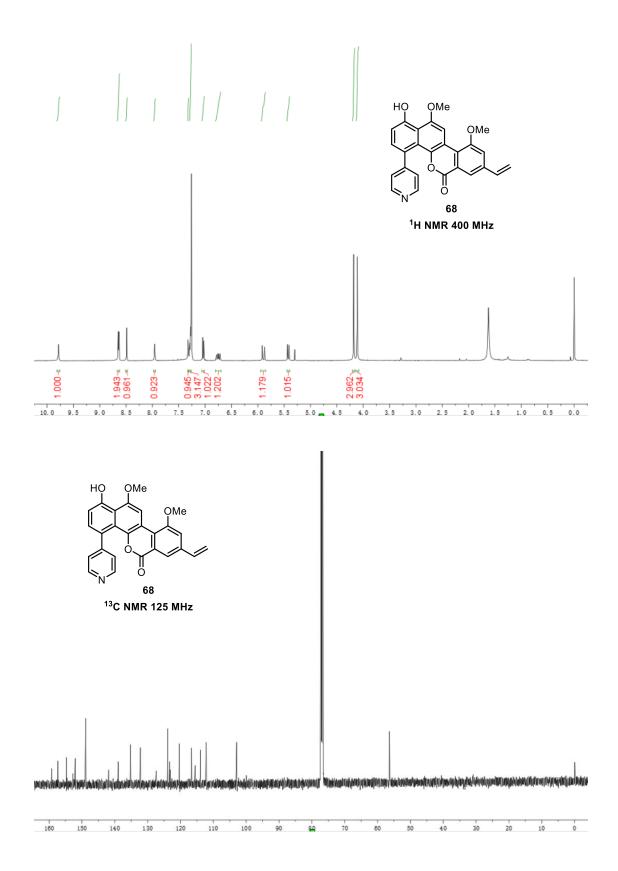


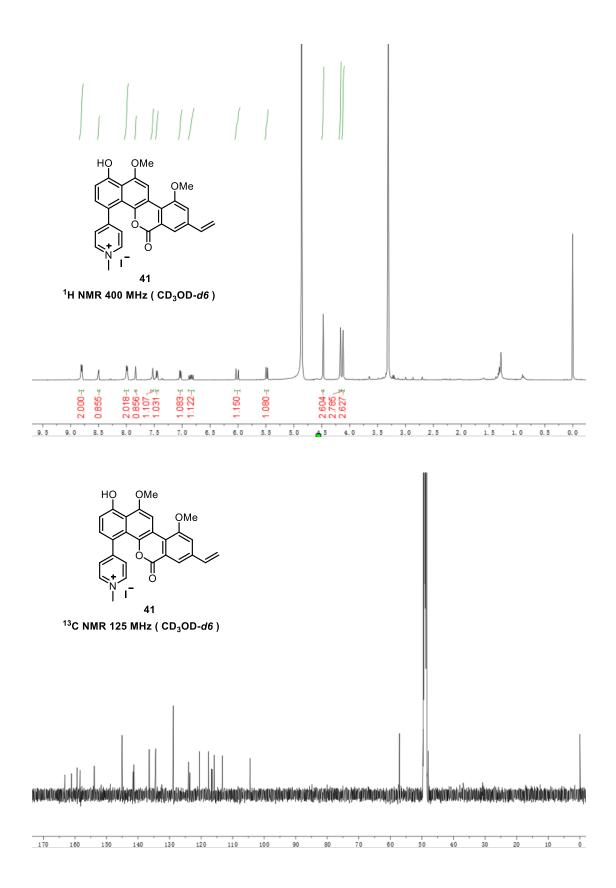


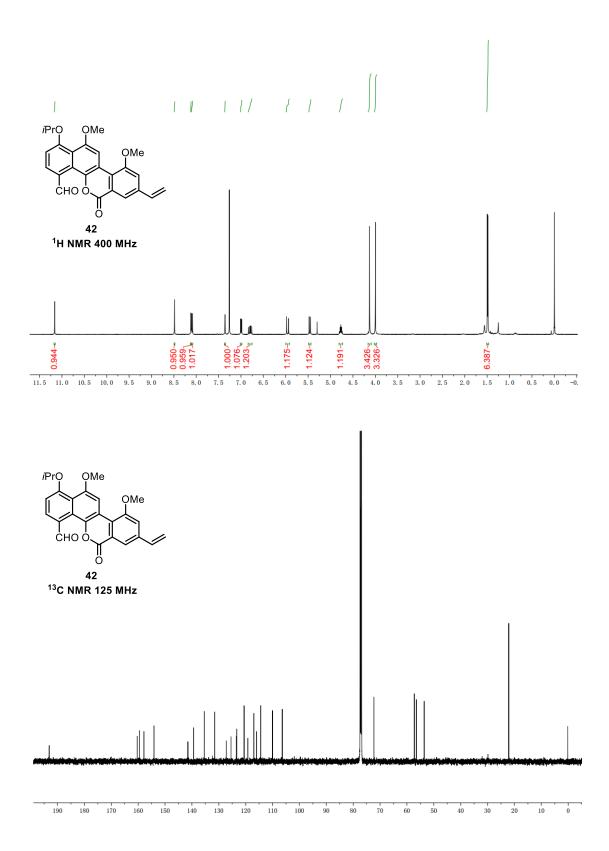


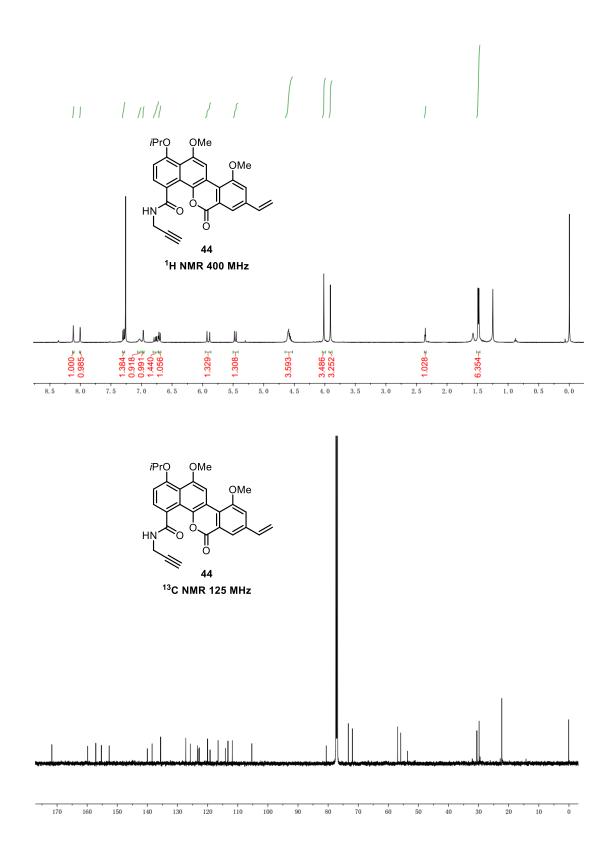


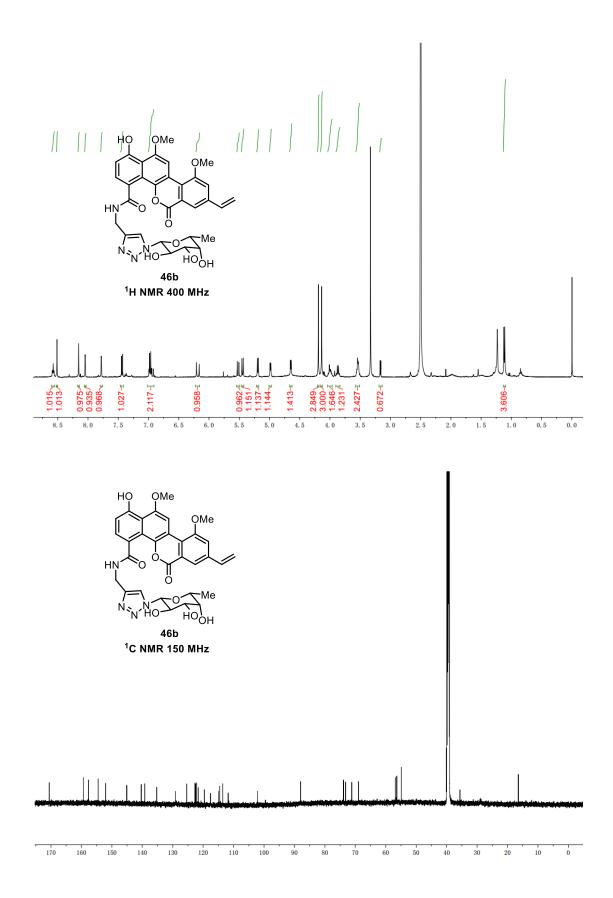

S111

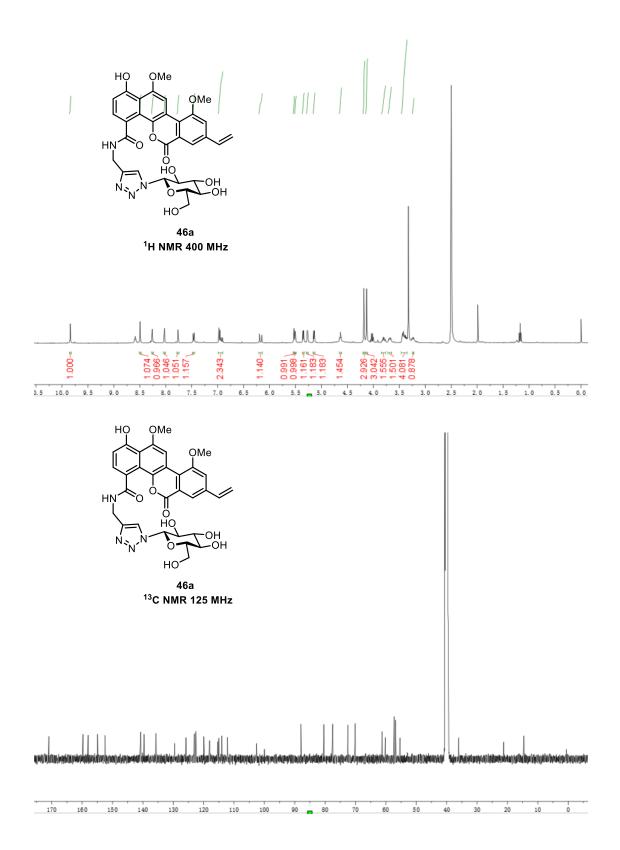


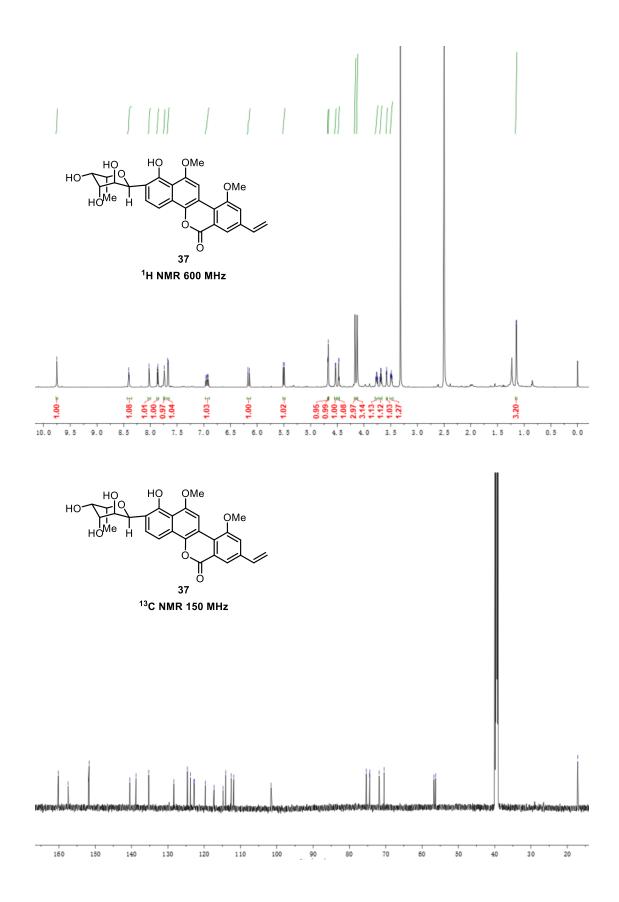


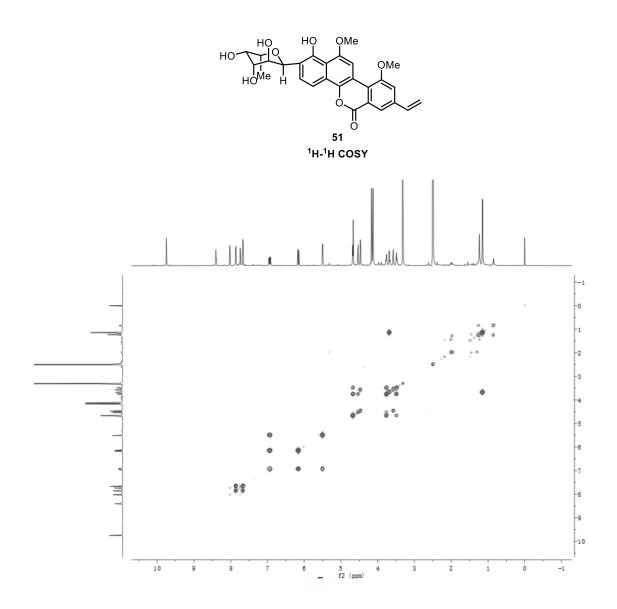


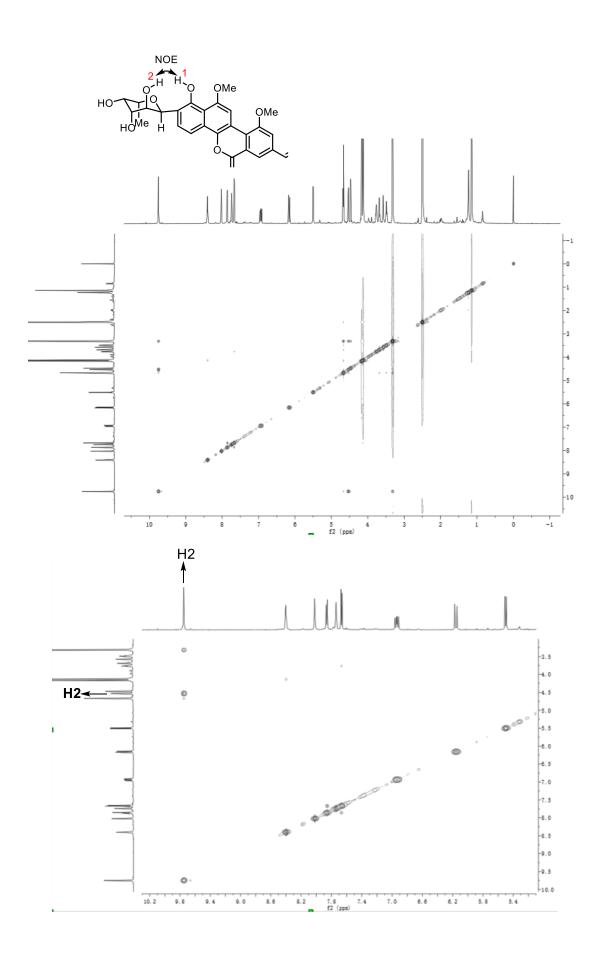


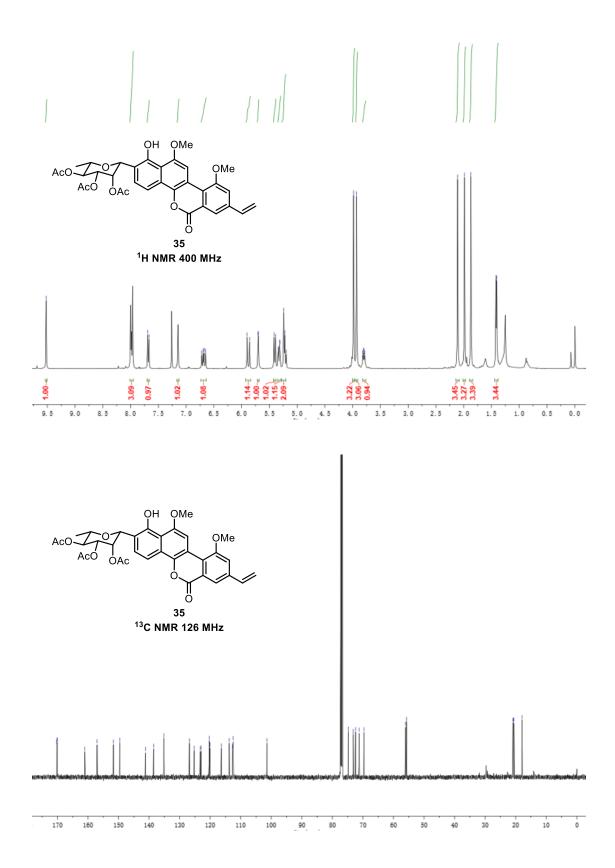


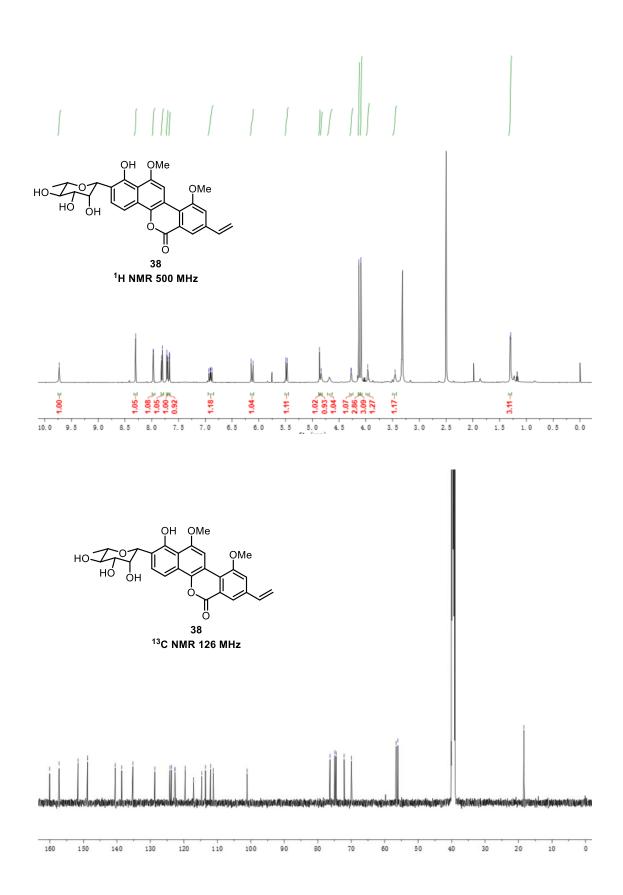


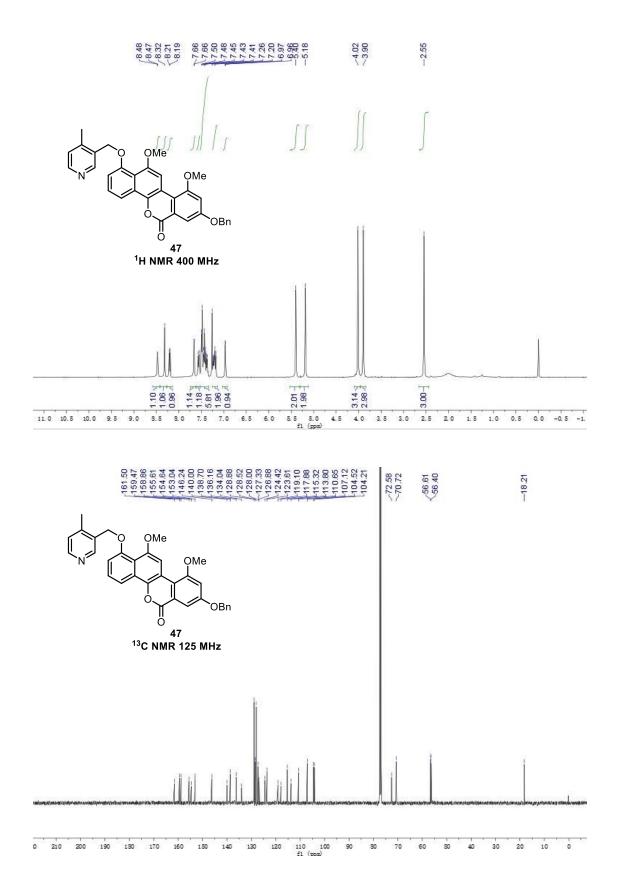




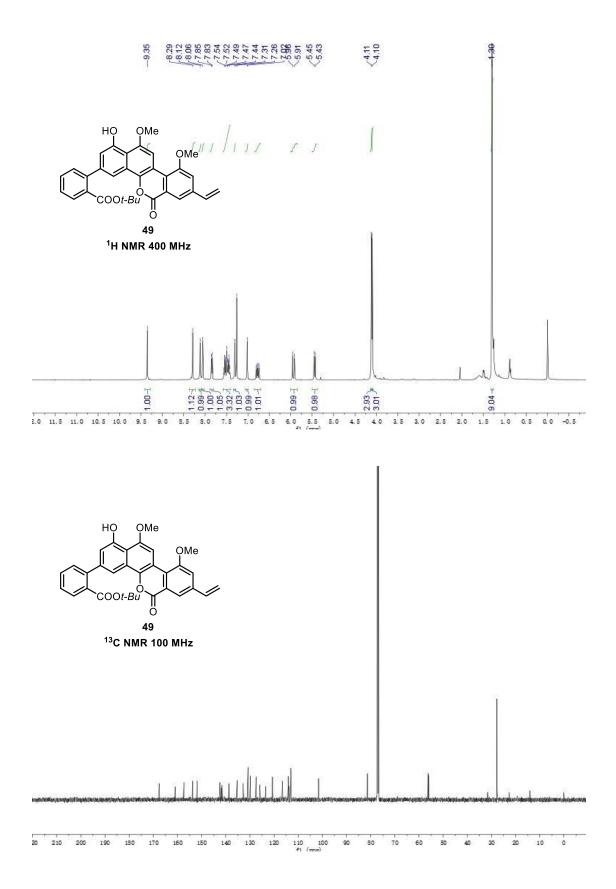


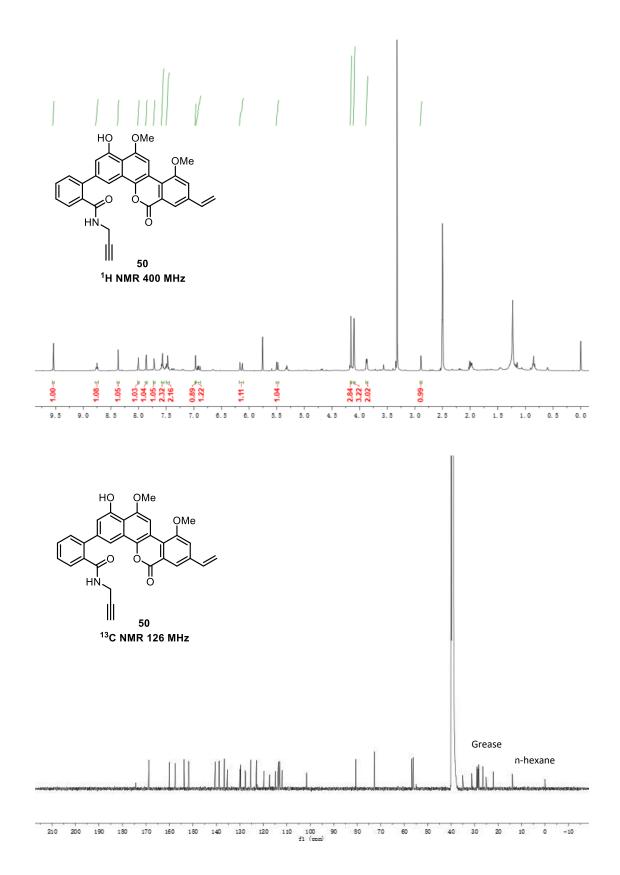


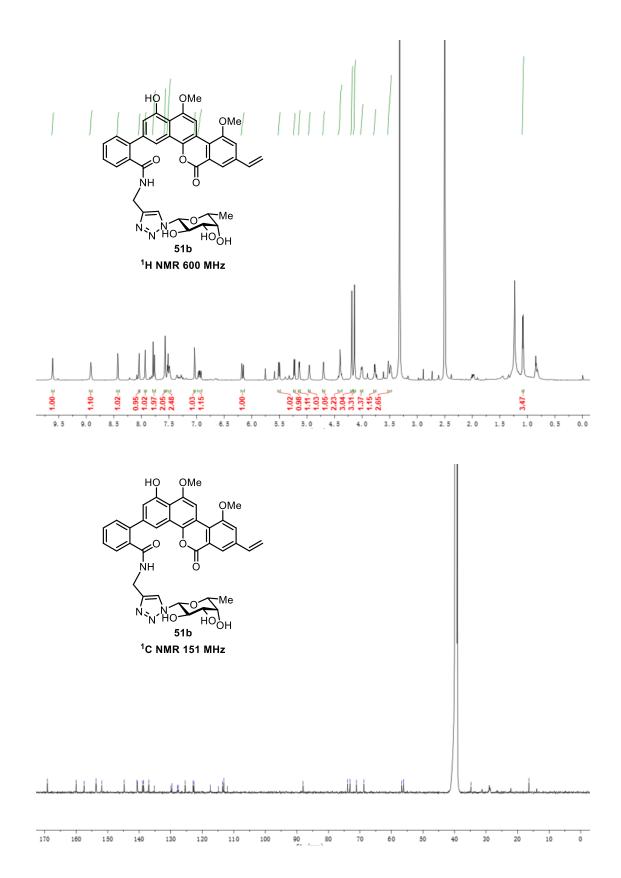


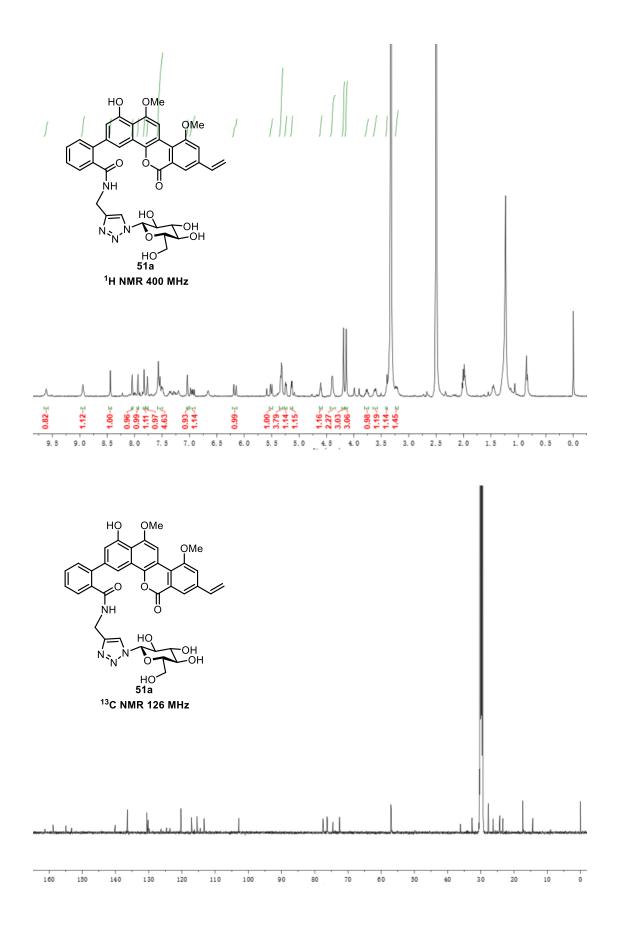












S134