

p<2.2e-16

4000

Ε

Negative (-)

нсс

Adjacent

. . ..

G4

Neoplasm Histologic Grade

D

Huh7/siDNMT3A

45% methylated

Hep3B/siDNMT3A

36% methylated

HepGi Hepas 541138 HUMI 34 3

Ε

35 kD 25 kD

-

1.0 0.5 0

J HEK293/PGLYRP2 promoter Con 4.5% methylated 3888 222 DNMT 3A

DNNT 3A

con

21.9% methylated

sicht

I

Hepa1-6/Con

Hepa1-6/PGLYRP2

В

С

Ε

Huh7/PGLYRP2 ChIP Marker Inp^{ut} d¹⁹⁶ dPGLYRP2 MW 2000bp 1000bp 750bp 500bp 250bp CCL5 100bp

F

G

PGLYRP2+anti-CCL5

Η

G

Immune subpopulation of cultured NK-1 Immune subpopulation of cultured NK-2 Immune subpopulation of cultured NK-3

В

Tumor-Derived PGLYRP2 Predicts Survival and Antitumor Immune

Responses in Hepatocellular Carcinoma

Zongyi Yang, Jia Feng, Li Xiao, Xi Chen, Yuanfei Yao, Yiqun Li, Yu Tang, Shuai Zhang, Min Lu, Yu Qian, Hongjin Wu* & Ming Shi*

Table of contents

Supplementary methods	2
Supplementary information, Figure Legends	9
Supplementary information, Table S1	16
Supplementary information, Table S2	17
Supplementary information, Table S2	27
References	29

Supplementary Methods

Patient samples

Ninety-eight paired tumor-adjacent non-cancerous liver tissues and HCC tissue samples and additional fourteen HCC tissues were from human liver cancer tissue array HLiv-HCC180Sur-01, Hliv-HCC030PG-01, HLivH090Su01 and OD-CT-DgLiv02-005 (Outdo Biotech, Shanghai, China). Twenty-two paired cDNA of HCC tissues and their corresponding adjacent non-tumor tissues were from human liver cancer cDNA array cDNA-HlivH60PG02 (Outdo Biotech, Shanghai, China). The collection of three HCC samples used for bisulfite sequencing, patient consent, and patient recruitment followed Institutional Review Board protocols from the First Affiliated Hospital of Kunming Medical University. The clinical information of these liver cancer tissues were listed in Table S2. The study has been approved by the Research Ethics Committee of Harbin Institute of Technology and the First Affiliated Hospital of Kunming Medical University.

Chemokine analysis

The tissue lysates of high PGLYRP2-expressing HCC tissue and low PGLYRP2-expressing HCC tissue were obtaining by homogenizing tissue in homogenization buffer (10 mM HEPES-KOH (pH 7.6), 25 mM KCl, 0.15 mM spermine, 0.5 mM spermidine, 2 M sucrose, 10% (v/v) glycerol, 1 mM EDTA

(pH 8.0)). Cell culture supernates of Huh7/Con and Huh7/PGLYRP2 were harvested after 24 h of culture and frozen at -80°C until further analyses. Sample protein concentration was quantified using BCA protein concentration determination kit (Beyotime, Jiangsu, China). The concentrations of chemokines were measured with a human chemokine array kit (R&D Systems, Minneapolis, MN, USA) according to the manufacturer's instructions.

Human tumor xenograft, immune-competent syngeneic murine tumor model and orthotopic HCC mouse model

All animal procedures were performed according to protocols approved by the Rules for Animal Experiments published by the Chinese Government (Beijing, China) and approved by the Research Ethics Committee of Harbin Institute of Technology, China. Animals were housed in micro-isolator cages, including a wire rack in the cage for holding food and a water bottle. Animals were housed on a 12 h light/dark cycle. PGLYRP2-transfected human hepatoma cell line HuH7 stable cells and control cells were injected intraperitoneally or subcutaneously into the right posterior flanks of 6-week-old BALB/c nude mice (female, five mice per group). PGLYRP2-transfected mouse hepatoma cell line Hepa 1-6 stable cells and control cells were injected subcutaneously into the right posterior flanks of 6-week using standard caliper measurement twice a week. The following formula was used to calculate tumor

volume: Tumor volume (mm3)=(tumor length \times width²)/2, with all measurements in mm. Following 25-40 days of treatment, mice were sacrificed and tumor tissues were harvested. Then the subcutaneous tumor was cut into cubes 1 mm³ in size, and implanted into the liver of each group respectively to mimic the primary HCC (6 mice in each group). After 2 weeks of implantation, the mice were sacrificed, and the size of tumors was calculated and compared as mentioned above.

Quantitative real-time PCR and Western blot analysis

Quantification of mRNA level was performed in a 20 µl mixture consisted of 10 µl 2×SYBR Green Mix, 0.2 ml RT product, 1 µl primer set mix at a concentration of 5 pmol/ml for each primer and 8.8 µl sterile water. As internal control, GAPDH mRNA was performed in same condition except the primer. The experiment was set on ABI 7500 Real-time PCR System (Foster City, CA, USA), PCR program was according to protocol's recommendation (10 minutes at 95 °C for 1 cycle, 10 seconds at 95 °C, 34 seconds at 60 °C and 30 seconds at 72 °C for 40 cycles, 10 minutes at 72 °C for 1 cycle). Primers for qPCR are described in Supplementary Table S3.

Cells were collected and lysed in RIPA lysis buffer (150 mm NaCl, 50 mm Tris (pH 8.0), 0.5 mm EDTA, and 1% Nonidet P-40) plus complete protease inhibitor mixture (Roche Applied Science, Indianapolis, USA). The protein levels were determined using western blot analysis, as previously reported(1).

Immunohistochemical analysis and Immunofluorescence Staining

The immunohistochemical staining was performed as described previously(2). Antibody against PGLYRP2 (#NBP2-32042) was purchased from Novus Biologicals. Immunofluorescence staining was performed as described previously(1). For the analysis of T cell infiltration in the paraffin-embedded tumor tissue, immunofluorescence staining of T cells was performed. Primary antibodies against mouse CD3 and CD8 (Cell Signaling Technology, Massachusetts, USA) were used. The secondary antibodies used were goat anti-rabbit IgG and anti-rat IgG (Invitrogen, Carlsbad, CA, USA). Images were analyzed with a Zeiss Axioskop-2 microscope. 488 and 633 nm wavelength lasers were used to excite Fluorescein tags. DAPI was excited by UV light.

Bisulfite DNA sequencing

Bisulfite DNA sequencing was conducted as described previously.(2) Briefly, bisulfite modification of DNA was performed by following the protocol of Applied Biosystems methylSEQr Bisulfite Conversion kit. Bisulfite-treated DNA was amplified using nest PCR with primers described in Supplementary information, Table S3. Amplified bisulfite-treated DNA was sequenced and compared with original sequence of *PGLYRP2* gene.

In vivo mAb treatment

Mice were injected intraperitoneally or subcutaneously with various amounts of

5

antibodies. Immune cell subsets were depleted by intraperitoneally administering 200 μg of depleting antibody i.p. twice weekly beginning one day prior to experiments as indicated: CD8 T-cells with anti-CD8α (clone 2.43, BioXCell, West Lebanon, NH, USA), CD4 T-cells with anti-CD4 (clone GK1.5, BioXCell, West Lebanon, NH, USA), NK cells with anti-NK1.1 (clone PK136, BioXCell, West Lebanon, NH, USA). CCL5 was blocked by intratumoral administrating 20 μg of anti-CCL5 blocking antibody (53405.111, ab10394, Abcam, Cambridge, UK) at 3rd, 5th and 7th day after tumor injection.

Luciferase assay and MTT assay

Luciferase assay was performed as described previously(1). Cells were transfected with promoter luciferase reporter plamids using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Luciferase assays were performed by using the luciferase assay system (Promega, Madison, WI, USA); b-Galactosidase activity was used as an internal control. Luciferase activity was measured by using CytoFluorplate 4000 Luminescence Microplate Reader (ABI, Foster City, CA, USA).

Cell viabilities were assessed by a MTT [3-(4,5-dimethylthiazol-2-yl) -2,5diphenyltetrazolium bromide] (Sigma-Aldrich, Milwaukee, USA) assay. Briefly, MTT solution in DMEM containing 10% FBS was added to each well at the final concentration of 0.5 mg/mL. The cells were incubated for 4 h at 37°C. The MTT medium was aspirated and then 100 µl dimethylsulfoxide (DMSO, Sigma-

6

Aldrich, Milwaukee, USA) was added. Optical density was measured with a spectrometer at 490 nm. Each experiment was conducted in triplicates and repeated independently for 3 times.

Cell viability and cell cytotoxicity assays

Cell viability was assessed by the MTT Cell Viability Assay Kit (Beyotime, Jiangsu, China). Cell cytotoxicity of PBMCs was assessed by measuring fluorescence intensity of green-fluorescent Calcein AM (#C3099; Thermo Fisher Scientific, Waltham, MA, USA) in intact tumor cells. Briefly, target cells (tumor cells) were resuspend with DMEM medium containing 10%FBS, and mixed with 20 μ l Calcein AM at 37 °C, 30min for staining. PBMCs were co-cultured with pre-stained target cells at a certain E:T ratio for 2 h, 4 h or 8 h of incubation time. The fluorescence intensity of living target cells is measured by using Terascan VPC instrument (Minerva Tech, Tokyo, Japan). Percent cytotoxicity of the assay was calculated by the following formula: % cytotoxicity = (1-[(average fluorescence of the sample wells - average fluorescence of the minimal release control wells)/(average fluorescence of the maximal release control wells)/(3).

Chromatin Immunoprecipitation (CHIP)

ChIP assay was performed as described previously(4). 1×10⁷ Huh7 cells were

cross-linked with 1 % formaldehyde for 10 min and then neutralized with 125 mM glycine for 5 min. Cells were collected by centrifugation (2,000 g for 5 min at 4 °C) and washed twice with ice-cold PBS. Cells were lysed in 150 µl Buffer A (10 mM Tris-HCl, pH 8.0, 10 mM NaCl, 0.2 % NP40) for 10 min on ice and cell pellet was collected and resuspended in 1 ml Buffer B (50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 1 % SDS). The lysate was fragmented by sonication to yield fragments between 500 bp and 1000 bp, and then centrifuged at 13,000 g for 15 min at 4°C. The supernatant was whole cell lysates. 5 µg of antibody against Histon H3, DNMT 3A or PGLYRP2 (Abcam, Cambridge, MA) was added into the tubes containing 200 µl whole cell lysate plus 300 µl Buffer C (16.7 mM Tris-HCl, pH 8.0, 167 mM NaCl, 1.2 mM EDTA, 0.01 % SDS, 1.1 % Triton X-100). After incubation for 4 h, the antigen-antibody complexes were collected with protein A agarose beads and subjected to serial washes. Cross-linked chromatin was reversed at 65°C in the presence of 200 mM NaCl for 5 h. The DNA fragments were then purified using chloroform-isoamyl alcohol, and were amplified by using PCR with specific primers (Table S3). PCR products were then run on agarose gel and photographed.

Supplementary information, Figure Legends

Fig. S1 PGLYRP2 level is decreased in HCC tissues and the downregulated level of PGLYRP2 correlates with poor prognosis in patients with HCC. (A) PGLYRP2 mRNA levels were analyzed in tumoradjacent non-cancerous liver tissues and HCC tissues from TCGA-LIHC. (B) mRNA levels of PGRP family members were analyzed in tumor-adjacent noncancerous liver tissues and HCC tissues from TCGA-LIHC. (C, D) Expression levels of PGLYRP2 protein in 73 paired tumor-adjacent non-cancerous liver tissues and HCC tissue samples from human liver cancer tissue array HLiv-HCC180Sur-01 (C), 15 paired tumor-adjacent non-cancerous liver tissues and HCC tissue samples from human liver cancer tissue array Hliv-HCC030PG-01 (left panel, D) and 10 paired tumor-adjacent non-cancerous liver tissues and HCC tissue samples from human liver cancer tissue array OD-CT-DgLiv02-005 (right panel, D) were evaluated using immunohistochemistry assay. (E) Immunohistochemistry results showed different intensities of PGLYRP2 protein expression in paired tumor-adjacent non-cancerous liver tissues and HCC tissues. (F) The relationship between PGLYRP2 level and neoplasm grades (left), stages (right) in patients of TCGA-LIHC were analyzed. (G) Relative protein levels of PGLYRP1, PGLYRP2 and PGLYRP4 in HCC tissues and tumor-adjacent non-cancerous liver tissues were analyzed according to the LC-MS/MS-based proteomic data from Chinese Human Proteome Project (CNHPP). The results are reported as mean ± SEM. *, p<0.05; **, p<0.001; ns,

not significant.

Fig. S2 DNMT3A-mediated promoter hyper-methylation results in downregulation of PGLYRP2 in HCC. (A) The expression levels of PGLYRP2 in the three HCC tissues used for bisulfite sequencing were detected by Western blot. (B) The levels of DNMT 1, DNMT 3A, DNMT 3B and PGLYRP2 were detected in Huh7 and Hep3B transfected with scramble siRNA, DNMT 1 siRNA, DNMT 3a siRNA or DNMT 3b siRNA alone by using Real-time PCR. (C) The levels of PGLYRP2 and DNMT 3A in DNMT 3A knockdowned Huh7 or Hep3B cells were detected by Western blotting. (D) Methylation status of the PGLYRP2 promoter region was analyzed in Huh7/siDNMT 3A and Hep3B/siDNMT 3A cells. The methylation levels of PGLYRP2 promoter in Huh7, Huh7/siDNMT 3A, Hep 3B and Hep3B/siDNMT 3A cells were analyzed. (E, F) PGLYRP2 expression levels were detected in human HCC cell lines C3A, Huh7, HepG2, Hep3B, SNU387 by Real-time PCR (E) and Western blot (F). Three human non-tumor adjacent tissues acted as controls. (G, H) PGLYRP2 expression level was detected in mouse HCC cell line Hepa 1-6 by Real-time PCR (G) and Western blot (H). Three mouse normal liver tissues acted as controls. (I) Luciferase activity of PGLYRP2 promoter was detected in DNMT3A-overexpressed HEK293/PGLYRP2 promoter luciferase reporter cells and DNMT 3A-silenced Huh7cells. (J) The methylation status of the PGLYRP2 promoter region was analyzed in Con or DNMT3A-overexpressed

HEK293/PGLYRP2 promoter luciferase reporter cells. (K) The binding activity of DNMT1, DNMT3A and DNMT3B to PGLYRP2 promoter was assessed by ChIP assay in Huh7 cells. Four regions in PGLYRP2 promoter were chosen to analyze the DNMT3A binding regions in ChIP assay. The four regions of PGLYRP2 promoter were R1, -1741 to -1491; R2, -1516 to -1362; R3, -736 to -614; R4, -440 to -315. All the results are reported as mean \pm SEM. *, *p*<0.05; **, *p*<0.001; ns, not significant.

Fig. S3 PGLYRP2 suppresses HCC progression in immunocompetent mice and promotes antitumor immune response. (A) Cell colony formation assay was performed in Huh7/Con and Huh7/PGLYRP2 cells. Number of cell colonies was counted every 5 cm² field. (B) MTT assay was carried out in Huh7/Con and Huh7/PGLYRP2 cells. (C) PGLYRP2 expression in Huh7/PGLYRP2, Hepa1-6/PGLYRP2 cells. (C) PGLYRP2 expression in Huh7/PGLYRP2, Hepa1-6/PGLYRP2 and corresponding control cells was examined by Western blotting. (D, E) Human cancer cells Huh7/con or Huh7/PGLYRP2 were subcutaneously injected (s.c.) into BALB/c-*nu/nu* mice (D). Tumor weight was measured at 30 days after injection (E). (F, G) Murine cancer cells Hepa1-6/PGLYRP2 cells were inoculated s.c. in BALB/c-*nu/nu* mice (F). Tumor weight was measured at the end of the sudy (G). (H, I) Murine cancer cells Hepa1-6/con or Hepa1-6/PGLYRP2 cells were inoculated s.c. in immune-competent BALB/c mice (H). Tumor weight was measured at the end of the sudy (I). (J) Immunofluorescent staining of CD3 and

CD8 were performed on paraffin-embedded tumor tissue with Hepa1-6/Con or Hepa1-6/PGLYRP2. All the results are reported as mean \pm SEM. The ns indicates there is no significant difference.

Fig. S4 PGLYRP2 expression level was correlated with tumor-infiltrating lymphocytes in HCC. (A) The expression of PGLYRP2 and immune cell markers were detected in 22 HCC samples using RT-qPCR array assay. Heat map showed different expression of PGLYRP2 and immune cell markers in 22 HCC tissues. (B) The association between PGLYRP2 mRNA level and immune cell markers in TCGA-LIHC cohort was analyzed. The markers included CD3E (total T cells), CD226 (activated T cells, NK cells and NKT cells) and CD11b (MDSCs). (C) HE staining of 14 HCC samples and immunohistochemistry assays of PGLYRP2 and CD8 in HCC tissues were shown.

Fig. S5 The association between CCL5 and PGLYRP2 level in HCC. (A) The association between CCL5 and PGLYRP2 mRNA levels in TCGA-LIHC was analyzed (n=360). (B) The association between CCL5 and RELA mRNA levels in TCGA-LIHC was analyzed (n=360). (C, D) The TCGA samples were split into high RELA and low RELA expression groups (50%, n=180); In low RELA group (C) and high RELA group (D), the correlation between CCL5 and PGLYRP2 was analyzed respectively. (E) Localization of PGLYRP2 in Huh7/PGLYRP2 (upper panel) and Hep3B/PGLYRP2 (lower panel) cells was examined using

immunofluorescence assay. (F) The binding activity of PGLYRP2 to CCL5 promoter was assessed by ChIP assay in Huh7/PGLYRP2 cells. (G) Immunohistochemistry assays showed PGLYRP2, CD3 and CD8 protein expression in HCC tissues. (H) The association between CCL5 and DNMT 3A mRNA levels in TCGA-LIHC was analyzed (n=360). P>0.05 indicates that there is no significant difference. (I) The association between CCL5 and CD3G/CD8A mRNA levels in TCGA-LIHC was analyzed (n=360).

Fig. S6 PGLYRP2/CCL5 axis regulates tumor immunity. (A, B) PGLYRP2 or CCL5 was knockdowned in stable HCC cell lines Hepa 1-6/PGLYRP2 and Huh7/PGLYRP2. The expression levels of PGLYRP2 and CCL5 in PGLYRP2 or CCL5 silenced stable cell lines Hepa 1-6/PGLYRP2 (A) and Huh7/PGLYRP2 (B) were detected by Real-time PCR. (C) The expression levels of PGLYRP2 and CCL5 in PGLYRP2 or CCL5 silenced stable cell lines Hepa 1-6/PGLYRP2 and Huh7/PGLYRP2 or CCL5 silenced stable cell lines Hepa 1-6/PGLYRP2 and Huh7/PGLYRP2 were detected by Western blot. (D) MTT assay of PBMC/Huh7 (Con, PGLYRP2 or PGLYRP2+siPGLYRP2) co-culture system was performed. (E) The cytotoxicity assay of PBMCs on tumor cells was analyzed by incubating PBMCs with Huh7/Con or Huh7/PGLYRP2 with or without 1 μg/ml CCL5 blocking antibody (53405.111, ab10394, Abcam, Cambridge, UK) for 2 h, 4 h and 8 h at an E:T ratio of 10:1. (F) Survival rate of PBMC/Huh7 (Con, PGLYRP2 or PGLYRP2+siPGLYRP2) xenografted BALB/c-nu/nu mice were performed. The results represent at least three independent

13

experiments and are reported as mean \pm SEM. *, *p*<0.05; **, *p*<0.001; ns, not significant.

Fig. S7 Identification of immune effector cells of PGLYRP2-mediated antitumor immunity (A) Depletion of immune cells by intraperitoneally administering 200 µg of depleting antibody i.p. twice weekly beginning one day prior to tumor injection. 1×10⁶ stable Hepa 1-6/PGLYRP2 cells and control cells were injected subcutaneously into the right posterior flanks of 6-week-old immune-competent BALB/c mice. Tumor weight was measured at the end of the sudy. The depletion of immune cells was confirmed by using flow cytometry analysis. (B) The tumor killing activity of five independent PBMC donors was verified in PBMC-K562 co-culture system at an E:T ratio of 10:1. Cytotoxicity was measured after 2 h, 4 h and 8 h of incubation. (C) Cytotoxicity assay of NK cell line NK-92 was analyzed by incubating target cells Huh7/Con or Huh7/PGLYRP2 with NK92 for 2 h and 4 h at an E:T ratio of 10:1. (D, E) Cytotoxicity assay of cultured NK cells was analyzed by incubating target cells K562 (D), Huh7/Con or Huh7/PGLYRP2 (E) with cultured NK cells for 2 h and 4 h at an E:T ratio of 10:1. (F) Cell subsets of PBMC from healthy donor were identified by flow cytometry. (G) Cell subsets of cultured NK cells (NK-1, NK-2 and NK-3) from healthy donors were identified by flow cytometry. All the results are reported as mean ± SEM. *, p<0.05; **, p<0.001; ns, not significant.

14

Fig. S8 Apoptosis assay of PGLYRP2-overexpressed Huh7 and Hepa1-6

cells. (A) Apoptosis assay was performed with Annexin V-FITC/PI staining in stable Huh7/PGLYRP2, Hepa1-6/PGLYRP2 and corresponding control cells. (B) Statistic analysis showed the percentage of both early (Annexin V+/PI-) and late (Annexin V+/PI+) apoptotic cells. Student's t test was used to compare values. The results represent at least three independent experiments and are reported as mean \pm SEM. The ns indicates there is no significant difference.

Indexes	Total	PGLYRP2 expr	ession level	P value
	number	High (n=27)	Low (n=46)	
Average age				0.740
≥55	36	14	22	
<55	37	13	24	
Sex				0.751
Male	61	22	39	
Female	12	5	7	
Cirrhosis				0.312
Yes	27	12	15	
No	46	15	31	
Tumor size				0.008*
≤5 cm	31	17	14	
>5 cm	42	10	32	
Tumor number				0.847
=1	67	25	42	
>1	6	2	4	
Histological grade				0.011*
I, I-II	9	7	2	
11, 11-111, 111	64	20	44	
TNM stage				0.008*
1-11	39	20	19	
III-IV	34	7	27	

Table S1 Clinicopathologic features of PGLYRP2 expression in HCC

Note: - and + staining intensities indicate low level of PGLYRP2 expression; ++ and +++ staining intensities indicate high expression level. *A *p*-value<0.05 was considered statistically significant. The *p*-values were calculated using Fisher's test.

tissue	Condor	A .co	Life	Pathological	Histological	TNM	Tumor size
code	Gender	Age	time	typing	grade	stage	(cm)
RDgLiv07 04A0186	Male	67	79	Hepatocellular carcinoma	I - II	T2N0M0	3×2.5×2
RDgLiv07 06A0222	Male	62	77	Hepatocellular carcinoma	I - II	T2N0M0	4.5×4×3
RDgLiv07 06A0228	Female	50	11	Hepatocellular carcinoma	II -III	T2N0M0	5.5×5×4
RDgLiv07 09A0236	Male	57	43	Hepatocellular carcinoma, with cirrhosis	II -III	T2N0M0	4×3.5×3
RDgLiv07 09A0239	Male	56	32	Hepatocellular carcinoma, with cirrhosis	II	T2N0M0	1×1×1, 3×3×3
RDgLiv07 10A0240	Female	54	73	Hepatocellular carcinoma, with cirrhosis	II	T2N0M0	2×1.5×1.5, 1.5×1.5×1
RDgLiv08 03A0328	Male	46	16	Hepatocellular carcinoma	III	T3N0M0	18×13×7
RDgLiv08 03A0329	Male	52	66	Hepatocellular carcinoma	III	T3N0M0	16×14×6
RDgLiv08 07A0380	Male	61	62	Hepatocellular carcinoma	I - II	T1N0M0	1.5×1.5×1
RDgLiv08 12A0413	Male	54	57	Hepatocellular carcinoma	II	T2N0M0	3.5×3×2.5
RDgLiv08 12A0414	Male	48	57	Hepatocellular carcinoma	Ι	T2N0M0	6×5.5×5
RDgLiv09 01A0432	Female	65	57	Hepatocellular carcinoma, with cirrhosis	II	T2N0M0	7×4×4
RDgLiv09 04A0464	Male	52	55	Hepatocellular carcinoma	III	T3N0M0	9×5×3
RDgLiv09 04A0469	Male	55	55	Hepatocellular carcinoma	II	T2N0M0	7×6×5
D19A056 1	Male	40	50	Hepatocellular carcinoma, with cirrhosis	II -III	T3N0M0	9.5×8×5
D19A056 2	Male	59	50	Hepatocellular carcinoma	II -III	T3N0M0	13×12×10
D19A058 2	Male	63	49	Hepatocellular carcinoma	I - II	T2N0M0	7.5×5×4.5

Table S2 Clinical data on the specimen used in IHC, cDNA array and methylation status analysis of PGLYRP2 promoter 1. HCC tissue array HLiv-HCC180Sur-01

D19A069 0	Male	65	35	Hepatocellular carcinoma	II	T2N0M0	7×5×5
D19A069 5	Male	47	46	Hepatocellular carcinoma	II	T2N0M0	4×3.5×3.5
D19A071 5	Male	56	44	Hepatocellular carcinoma, with cirrhosis	Ι	T2N0M0	5×5×3
D19A086 0	Female	71	41	Hepatocellular carcinoma, with cirrhosis	II	T2N0M0	4.5×4.5×4
D19A086 7	Male	46	19	Hepatocellular carcinoma	III	T2N0M0	5.5×4.5×2.5
D19A116 9	Male	73	32	Hepatocellular carcinoma	I - II	T3N0M0	11×9×7
D19A093 1	Male	62	39	Hepatocellular carcinoma	II -III	T2N0M0	3.5×3×3
D19A128 7	Male	72	37	Hepatocellular carcinoma, with cirrhosis	II	T1N0M0	3×2×2
D19A129 3	Female	47	37	Hepatocellular carcinoma	II -III	T2N0M0	7.5×5.5×4.5
D19A131 1	Male	53	20	Hepatocellular carcinoma	II	T3N0M0	10×6×4
RDgLiv07 04A0179	Male	45	80	Hepatocellular carcinoma	II -III	T3N0M0	3×2.5×2
RDgLiv07 04A0187	Male	65	11	Hepatocellular carcinoma	II -III	T3N0M0	9×8×8
RDgLiv07 04A0192	Male	38	39	Hepatocellular carcinoma	III	T3N0M1	3×2.5×2
RDgLiv07 04A0195	Male	58	78	Hepatocellular carcinoma	II -III	T2N0M0	14×10×7
RDgLiv07 04A0207	Male	40	77	Hepatocellular carcinoma	II -III	T1N0M0	1.8×1.5×1.2
RDgLiv07 04A0211	Male	70	13	Hepatocellular carcinoma	II	T3N1M0	12×7.5×6
RDgLiv07 06A0220	Male	55	49	Hepatocellular carcinoma	I - II	T3N0M0	15×8.5×6.5
RDgLiv07 06A0231	Male	56	4	Hepatocellular carcinoma	III	T3N0M0	1×1×1, 7×5×5
RDgLiv07 10A0241	Male	51	29	Hepatocellular carcinoma	III	T2N0M0	5.5×5.5×3.5
RDgLiv07 10A0244	Female	58	73	Hepatocellular carcinoma, with cirrhosis	II	T1N0M0	2.5×2.5×2

RDgLiv07 10A0256	Male	50	73	Hepatocellular carcinoma	II	T2N0M0	6×6×5.5
RDgLiv07 10A0258	Female	57	2	Hepatocellular carcinoma	II -III	T2N0M0	4×3.5×3
RDgLiv08 01A0314	Male	57	29	with cirrhosis Hepatocellular carcinoma	III	T2N0M0	4×4×4, 3×3×3
RDgLiv08 02A0319	Male	52	35	Hepatocellular carcinoma, with cirrhosis	II	T3N0M0	30×15×10
RDgLiv08 02A0323	Male	43	67	Hepatocellular carcinoma	II	T1N0M0	1.5×1×1
RDgLiv08 02A0325	Female	48	25	Hepatocellular carcinoma	II	T3N0M0	11×6×6
RDgLiv08 02A0327	Male	56	4	Hepatocellular carcinoma	III	T4N0M0	13×7×4
RDgLiv08 03A0330	Male	52	16	Hepatocellular carcinoma	III	T3N0M0	6×6×6
RDgLiv08 04A0336	Male	56	6	Hepatocellular carcinoma	III	T3N0M0	13×11×5
RDgLiv08 04A0338	Male	54	17	Hepatocellular carcinoma	II	T2N0M0	4.5×4.5×4
RDgLiv08 04A0340	Male	57	11	Hepatocellular carcinoma, with cirrhosis	II -III	T4N0M0	19×18×10
RDgLiv08 04A0343	Male	56	14	Hepatocellular carcinoma, with cirrhosis	Ι	T2N0M0	4×4×4
RDgLiv08 06A0363	Female	72	4	Hepatocellular carcinoma	II -III	T3N0M0	11×6×5
RDgLiv08 06A0365	Male	43	4	Hepatocellular carcinoma, with cirrhosis	II	T3N0M0	15×13×9
RDgLiv08 08A0385	Male	49	5	Hepatocellular carcinoma, with cirrhosis	III	T3N0M0	9×6×4, 2.8×2.5×1
RDgLiv08 08A0388	Male	68	1	Hepatocellular carcinoma, with cirrhosis	III	T3N0M0	12×9×9
RDgLiv08 11A0403	Male	42	3	Hepatocellular carcinoma, with cirrhosis	II	T1N0M0	2×1.5×1.5
RDgLiv08 11A0407	Female	51	22	Hepatocellular carcinoma,	II	T3N0M0	5.5×5.5×3, 1.5×1.3×1.3

				with cirrhosis			
RDøl iv09				Hepatocellular			
0140436	Male	51	17	carcinoma,	II	T3N0M0	10×7×7
01/10/100				with cirrhosis			
RDgLiv09	Male	52	30	Hepatocellular	П	T3N0M0	14x10x10
02A0454	Wate	52	50	carcinoma	11		14/10/10
RDgLiv09	Male	57	32	Hepatocellular	Ш	T3NOMO	14x9x6
04A0463	Wate	57	52	carcinoma	111		14//3//0
RDgLiv09	Male	54	54	Hepatocellular	П		3x2 5x1 7
04A0471	Wate	34	34	carcinoma	11	121001010	5~2.5~1.7
RDgLiv09	Male	51	5	Hepatocellular	II		3 5x3x2 5
04A0472	whate	51	5	carcinoma	11	121101010	5.57572.5
RDgLiv09	Fomalo	51	16	Hepatocellular	П		3×3×7
04A0475	remaie	54	10	carcinoma	11	121101010	37372
RDgLiv09	Male	65	Λ	Hepatocellular	П		12~10~/
04A0487	IVIAIC	05	4	carcinoma	11		13~10~4
RDgLiv09	Fomalo	67	51	Hepatocellular	П	τονιονίο	1~1~2
04A0488	Female	07	54	carcinoma	11		4^4^5
RDgLiv09	Mala	Γ 4	c	Hepatocellular	II	TONONAO	242 542
04A0490	wale	54	0	carcinoma	11	131001010	3×2.5×2
RDgLiv09	Mala	FC	Λ	Hepatocellular	TT TT	TONOMO	7~1 5~2
05A0510	wale	50	4	carcinoma	11 -111	ISINUIVIU	/*4.5*5
				Hepatocellular			
D19A050	Male	40	5	carcinoma,	II	T3N0M0	22×12×6
/				with cirrhosis			
D19A062	Mala	70	47	Hepatocellular	TT		2.222
3	wale	/3	47	carcinoma	11	I TINUIVIU	3×3×3
D19A062	Mala	ГC	-	Hepatocellular	TT	T2N/0N40	
8	wale	50	5	carcinoma	11	IZINUIVIU	4×4×2.5
D19A068	Mala	20	10	Hepatocellular	II	T2N/0N40	24422
9	wale	38	10	carcinoma	11	131001010	3×4×3
D19A083	Mala	50	2	Hepatocellular	TT	T2N/0N40	12.11.0
5	wale	50	2	carcinoma	11	131001010	13×11×8
D19A085	Mala	F.C.	27	Hepatocellular	TT	T2N/0N40	
6	wale	50	37	carcinoma	11	131001010	0.5×5×4
D104117				Hepatocellular			
DI9AII7	Male	53	38	carcinoma,	II	T2N0M0	6×5×4
3				with cirrhosis			
D19A117	Mala	62	10	Hepatocellular	11 111	TONONAO	4.4.2.4.2 F
9	iviale	63	12	carcinoma	11 -111	I ZINUIVIU	4×3×2.5

Tissue	Gonder	Age	Pathological	Histological	Primary	Tumor size	
code	Genuer	Age	typing	grade	organ	(cm)	
CDgLiv05	Mala	61	Hepatocellular	1 11	Vac	4×4×2	
06A0092	wale	61	carcinoma	-	res	4×4×3	
CDgLiv08	Malo	62	Hepatocellular	1 - 11	Voc	1 5-2 5-2	
11A0423	IVIAIE	05	carcinoma		Tes	4.3^3.3^3	
CDgLiv09	Malo	61	Hepatocellular	1 - 11	Voc	7~7~5	
01A0443	IVIAIE	04	carcinoma	1 - 11	Tes	/~/~3	
CDgLiv07	Malo	61	Hepatocellular	П	Voc	11~0~2	
07A0251	IVIAIE	04	carcinoma	11	Tes	11~9~2	
CDgLiv07	Malo	21	Hepatocellular	П	Voc	5~1~1	
09A0270	IVIAIC	54	carcinoma	11	163	J~4~4	
CDgLiv07	Malo	13	Hepatocellular	П	Vac	3 1 x 3 7 x 7 1	
11A0293	IVIAIC	45	carcinoma	11	163	5.4^5.2^2.1	
CDgLiv08	Malo	52	Hepatocellular	П	Voc	1~2.8	
01A0317	IVIAIC	52	carcinoma	11	163		
CDgLiv08	Fomalo	63	Hepatocellular	П	Vac	1×3×3	
03A0346	Tennale	05	carcinoma	11	163	44343	
CDgLiv08	Female	56	Hepatocellular	П	Vec	6×4×4	
12A0439	remaie	50	carcinoma		103	0/4/4	
CDgLiv09	Male	63	Hepatocellular	П	Vec	3 5x3x3	
01A0442	Wate	05	carcinoma		103	3.34343	
CDgLiv09	Malo	53	Hepatocellular	П	Vec	3 7x3x3	
02A0459	Wate	55	carcinoma		103	3.24343	
CDgLiv09	Malo	52	Hepatocellular	П	Voc	10x7x6	
04A0481	IVIAIC	52	carcinoma	11	163	104740	
CDgLiv08	Male	42	Hepatocellular	11 - 111	Vec	62525	
06A0373	Wate	42	carcinoma	11 111	163	0~3~5	
CDgLiv07	Female	68	Hepatocellular	111	γρς	4 5×1×1	
11A0289	remaie	00	carcinoma	111	103	4.3444	
CDgLiv07	Male	55	Hepatocellular	Ш	Vec	6×6×5	
11A0291	IVIAIC	55	carcinoma	111	163		

2. HCC tissue array Hliv-HCC030PG-01

Tissue	Condon	A = -	Pathological	Histological	Distant	Primary	Tumor size
code	Gender	Age	typing	grade	transfer	organ	(cm)
			Hepatocellular	III	No	Vec	
D19A1249	Male	53	carcinoma	111	NO	res	0.5×5.5×5.5
			Hepatocellular	П	No	Voc	<u> </u>
D19A1251	Male	45	carcinoma	11	NO	162	8~7.9~7
			Hepatocellular	П	No	Voc	17×16×0
D19A1253	Male	53	carcinoma	11	NO	163	17~10~9
			Hepatocellular	TIT	No	Voc	0×7×7
D19A1254	Male	49	carcinoma	111	NO	162	3~/~/
			Hepatocellular	П	No	Voc	8 5 4 8 4 6
D19A1261	Male	39	carcinoma	11	NO	163	8.3~8~0
			Hepatocellular	тп	No	Voc	7×6×6
D19A1263	Male	51	carcinoma	1 - 11	NO	163	74040
			Hepatocellular	П	No	Vec	8x6x6
D19A1266	Male	69	carcinoma	11	NO	103	
			Hepatocellular	П	No	Vec	1 5×1 5×3
D19A1267	Male	44	carcinoma	11	NO	103	4.374.373
			Hepatocellular	I - II	No	Ves	4 7×4×4
D19A1203	Female	58	carcinoma	1 11	NO	105	4.77474
			Hepatocellular	I - II	No	Ves	5x4x3
D19A1269	Male	51	carcinoma	1 - 11	NO	105	3/14/3
			Hepatocellular	П	No	Yes	4×4×3
D19A1802	Male	45	carcinoma	11	NO	105	
			Hepatocellular	Ш	No	Yes	2 5x2x2
D19A1800	Male	51	carcinoma	111	110	105	2.3**2**2
			Hepatocellular	П	No	Yes	3 5x3x3
D19A1798	Female	48	carcinoma	11	NO	105	3.37.37.3
			Hepatocellular	II -III	No	Yes	7x5 5x5
D19A1799	Male	63	carcinoma	11 -111	140	105	1.0.0.0

3. HCC tissue array HLivH090Su01

Tissue	Condor	Ago	Pathological	Histologic	Distant	Primary	Tumorcizo	
code	Gender	Age	typing	al grade	transfer	organ	Tumor size	
CDgLiv08	Fomalo	FO	Hepatocellular	I	No	Voc	ExExEcm	
01A0344	remale	59	carcinoma	I	NO	res	3×3×3(11)	
CDgLiv07	Fomalo	57	Hepatocellular	1 11	No	Voc	7292700	
04A0204	remaie	57	carcinoma	1 - 11	NO	165	/ ×8× / СШ	
CDgLiv07	Malo	15	Hepatocellular	1 - 11	No	Voc	<u> </u>	
11A0292	IVIAIC	45	carcinoma	1 - 11	NO	Tes	2*2*2011	
CDgLiv08	Malo	61	Hepatocellular	1 - 11	No	Voc	2.2×1.2×1.2c	
04A0369	IVIAIE	01	carcinoma	1 - 11	NO	res	m	
CDgLiv07	Malo	71	Hepatocellular	П	No	Voc	2 Ex2 Ex2cm	
04A0197	IVIAIC	/1	carcinoma	11	NO	Tes	2.3^2.3^2011	
CDgLiv07	Malo	52	Hepatocellular	Ш	No	Voc	2×2×2cm	
04A0200	IVIAIC	55	carcinoma	11	NO	163	3~3~3011	
CDgLiv08	Malo	50	Hepatocellular	Ш	No	Voc	0×7×6cm	
03A0348	IVIAIC	50	carcinoma	11	NO	163	3×7×0011	
CDgLiv07	Malo	22	Hepatocellular	11 - 111	No	Voc	9vE Ev6cm	
09A0255	IVIAIC	52	carcinoma	11 111	NO	163	8~3.3~0cm	
CDgLiv07	Malo	20	Hepatocellular	Ш	No	Voc	11×9×5cm	
12A0298	IVIAIC	50	carcinoma	111	NO	Tes	11/9/3011	
CDgLiv08	Malo	71	Hepatocellular	111	No	Voc	4×2 5×2cm	
04A0368	ividle	/1	carcinoma	111	INU	165	4~2.5*2011	

4. HCC tissue array OD-CT-DgLiv02-005

|--|

Tierre			Dethological			History of	Tumor
issue	Gender	Age		Histological	I INIVI	liver	size
code			typing	grade	stage	disease	(cm)
D19A1531	Male	61	Hepatocellular carcinoma	II	T3N0M0	Cirrhosis, Hepatitis B	3×5 , 5×6
D19A1541	Male	41	Hepatocellular carcinoma	II	T2N0M0	Cirrhosis, Hepatitis B	2×3
D19A1545	Male	53	Hepatocellular carcinoma	II	T3N0M0	Cirrhosis, Hepatitis B	4×4×5, 5.5×3×1.5
D19A1754	Female	23	Hepatocellular carcinoma	II	T2N0M0		9
D19A2384	Male	70	Hepatocellular carcinoma	II	T3N0M0	Cirrhosis, Hepatitis B	6
D19A2388	Male	62	Hepatocellular carcinoma	II	T2N0M0	Cirrhosis, Hepatitis B	7
D19A2411	Male	42	Hepatocellular carcinoma	II	T2N0M0	Cirrhosis, Hepatitis B	5×4×4
D19A1144	Male	47	Hepatocellular carcinoma	II -III	T2N0M0	Hepatitis B	13.2×8.6
D19A1370	Male	41	Hepatocellular carcinoma	II -III	T2N0M0		5×4.5×4
D19A1525	Male	68	Hepatocellular carcinoma	II -III	T2N0M0	Cirrhosis, Hepatitis B	7
D19A1532	Male	62	Hepatocellular carcinoma	II -III	T2N0M0	Cirrhosis, Hepatitis B	6
D19A2079	Male	53	Hepatocellular carcinoma	II -III	T3N0M0	Cirrhosis, Hepatitis B	7
D19A2091	Female	69	Hepatocellular carcinoma	II -III	T3N0M0	Cirrhosis, Hepatitis B	7
D19A2331	Male	59	Hepatocellular carcinoma	II -III	T2N0M0		4.5×4.5×4
D19A2335	Female	60	Hepatocellular carcinoma	II -III	T2N0M0		4×3×3
D19A2392	Male	53	Hepatocellular carcinoma	II -III	T2N0M0	Cirrhosis, Hepatitis B	10×8
D19A2404	Female	65	Hepatocellular carcinoma	II -III	T3N0M0	Cirrhosis, Hepatitis B	7
D19A2406	Male	55	Hepatocellular carcinoma	II -III	T2N0M0	Cirrhosis, Hepatitis B	6
729406/12- 29	Male	66	Hepatocellular carcinoma	II -III	T2N0M0		1.5
744588/12- 471	Male	73	Hepatocellular carcinoma	II -III	T2N0M0		2.5

D19A2634	Female	54	Hepatocellular carcinoma	III	T4N0M1		12×13
D19A0886	Male	42	Hepatocellular carcinoma	IV	T4N0M0	Hepatitis B	7.1×5

6. three HCC samples used in analysis of methylation status of PGLYRP2 promoter

Patient	Tumor_type	Gender	Age_at_initial_patho logic_diagnosis	Histological_type
HCC001	Primary liver cancer	MALE	59	Hepatocellular Carcinoma
HCC002	Primary liver cancer	FEMALE	62	Hepatocellular Carcinoma
HCC003	Primary liver cancer	MALE	40	Hepatocellular Carcinoma

T4N1M1; III	T4N1M0; III	T4aN0M0; IIB	Tumor_stage
YES	YES	ON	History_of_hepatitis b infection
YES	NO	NO	history_of_hepatitis c infection
YES	NO	YES	alcohol consumption
3510	218	400	AFP level
DEAD	DEAD	LIVING	vital_status
YES	YES	YES	Written informed consent for publication of their clinical details

Table S3 Primer sets and siRNA sequences

Primer sets for Bisulfite DNA sequencing

Primer name	Sequence
PGLYRP2 promoter 33F	5'-TATTTGAGGTTGGGAGTTTGAGATTAG-3'
PGLYRP2 promoter 767R	5'-GGGGTTGAGTTTGAGTGTTTAGGAT-3'
PGLYRP2 promoter 671F	5'-AGGTGGAGGTTGTAGTGAGTTGAGAT-3'
PGLYRP2 promoter 1295R	5'-TGTGGGTTGAGGTAGGGATTAGG-3'
PGLYRP2 promoter 1257F	5'-TTAGTTATGGGTATTTGGAGAAGAGGA-3'
PGLYRP2 promoter 2102R	5'-ATTTATTTGTTTTGGTTTTTTAAAGTGTTG-3'

Primer sets for immune markers

Primer name	Sequence
hCD3G RT_F	5'- GGAATCTGGGAAGTAATGCCAA-3'
hCD3G RT_R	5'- TCAATGCAGTTCTGACACATTCT-3'
hCD4 RT_F	5'-CTTCTGGTGCTGCAACTGG-3'
hCD4 RT_R	5'-GCTGTACAGGTCAGTTCC-3'
hCD8A RT_F	5'-CTTACCAGTGACCGCCTTG-3'
hCD8A RT_R	5'-CACTTCAGCTCCACTGTCTC-3'
Hcd14 RT_F	5'-GACCTAAAGATAACCGGCACC-3'
hCD14 RT_R	5'-GCAATGCTCAGTACCTTGAGG-3'
hCD68 RT_F	5'-GGAAATGCCACGGTTCATCCA-3'
hCD68 RT_R	5'-TGGGGTTCAGTACAGAGATGC-3'
hCD22 RT_F	5'-CACCTCAATGACAGTGGTCAG-3'
hCD22 RT_R	5'-TGGATCGGATACCCATAGCAG-3'
hCD11b RT_F	5'-ACTTGCAGTGAGAACACGTATG-3'
hCD11b RT_R	5'-TCATCCGCCGAAAGTCATGTG-3'
hFOXP3 RT_F	5'-GTGGCCCGGATGTGAGAAG-3'
hFOXP3 RT_R	5'-GGAGCCCTTGTCGGATGATG-3'
C2 RT_F	5'-CCTTGAATGGGAGCAAACTGAAC-3'
C2 RT_R	5'-GATTGATGTGAAAGTCTCGTGGC-3'
C3 RT_F	5'-GCTGCTCCTGCTACTAACCCA-3'
C3 RT R	5'-AAAGGCAGTTCCCTCCACTTT-3'

Primer sets for chemokines

Primer name	Sequence
CCL5 RT_F	5'-CCAGCAGTCGTCTTTGTCAC-3'
CCL5 RT_R	5'-CTCTGGGTTGGCACACACTT-3'
Midkine RT_F	5'-CGCGGTCGCCAAAAAGAAAG-3'
Midkine RT_R	5'-TACTTGCAGTCGGCTCCAAAC-3'
CXCL7 RT_F	5'-GTAACAGTGCGAGACCACTTC-3'
CXCL7 RT_R	5'-CTTTGCCTTTCGCCAAGTTTC-3'
CXCL4 RT_F	5'-GTCCGTCCCAGGCACATCA-3'
CXCL4 RT_R	5'-GCTTGCAGGTCCAAGCAAATT-3'

CXCL12 RT_F	5'-ATTCTCAACACTCCAAACTGTGC-3'
CXCL12 RT_R	5'-ACTTTAGCTTCGGGTCAATGC-3'
CCL21 RT_F	5'-GTTGCCTCAAGTACAGCCAAA-3'
CCL21 RT_R	5'-AGAACAGGATAGCTGGGATGG-3'
Chemerin RT_F	5'-AGAAACCCGAGTGCAAAGTCA-3'
Chemerin RT_R	5'-AGAACTTGGGTCTCTATGGGG-3'
IL16 RT_F	5'-GCCGAAGACCCTTGGGTTAG-3'
IL16 RT_R	5'-GCTGGCATTGGGCTGTAGA-3'
Fibrinogen RT_F	5'-AGTGATTCAGAACCGTCAAGAC-3'
Fibrinogen RT_R	5'-CATCCTGGTAAGCTGGCTAATTT-3'

Primer sets for ChIP analysis

Primer name	Sequence
CCL5 promoter_F	5'-ATTCTATCACTGAGTGGGTGGA-3'
CCL5 promoter_R	5'-GTGTCATGGTGGTTTGCTGTA-3'
PGLYRP2 promoter-440F	5'-GGCATTTACTTACCTCTGGCTTTC-3'
PGLYRP2 promoter-315R	5'-GGGTCCTGGTTACATGGCTGT-3'
PGLYRP2 promoter-736F	5'-GTTTAGGATCTTATCTACCTCCATCA-3'
PGLYRP2 promoter-614R	5'-TCAACAAATGTTTCCCGAGTG-3'
PGLYRP2 promoter-1516F	5'-CAGCCTGGGAGACAGAGCA-3'
PGLYRP2 promoter-1362R	5'-GTGACGCAATCATGGTTCACT-3'
PGLYRP2 promoter-1741F	5'-CAGGCACGGTGGCTCAT-3'
PGLYRP2 promoter-1491R	5'-AGGGTCTTGCTCTGTCTCCC-3'

Primer sets for construction of promoter-luciferase reporter plasmids

Primer name	Sequence
CCL5 promoter luc -1841_KpnI F	5'-GGGGTACCCCCTGACTCTTGATTTCCTCCCG-3'
CCL5 promoter luc -500_KpnI F	5'-GGGGTACCCC AAGTGTCAGCATGTATCTACTAATAA-3'
CCL5 promoter luc -1_Xhol R	5'-CCGCTCGAGCGGGCAGAACGTGCAGGTTTGTT-3'
CCL5 promoter luc -500_XhoI R	5'-CCGCTCGAGCGGTTATTAGTAGATACATGCTGACACTT-3'
PGLYRP2 promoter luc_Sacl F	5'-CGAGCTCGCATTGTCTTAGTTTGGGTCTTCC-3'
PGLYRP2 promoter luc_Xhol R	5'-CCGCTCGAGCGGCATGATTGTGGGTCACTGCA-3'

Primer sets for detection of mycoplasma contamination

Primer name	Sequence
Forward primers	
MF (for six species of mycoplasma)	5'-TCTGAAT(C/T)TGCCGGGACCACC-3'
PF (for M. pirum only)	5'-GGAAAATGTTATTTTGACGGAACCT-3'
AF (for A. laidlawii only)	5'-GGAATCCCGTTTGAAGATAGGA-3'
Reverse primer	
MR (for eight species of mycoplasma)	5'-CTTTCCATCACGGTACTGGTTCACT-3'
siRNA sequences	
siRNA name	Sequence

siDNMT1_1	5'- GCAGGCGGCTCAAAGATTT-3'
siDNMT1_2	5'- GCTTCAGTGTGTACTGTAA-3'
siDNMT1_3	5'- GCTTCAATTCGCGCACCTA-3'
siDNMT3a_1	5'- CCATGTACCGCAAAGCCAT-3'
siDNMT3a_2	5'- CCAGATGTTCTTCGCTAAT-3'
siDNMT3a_3	5'- GCATCCACTGTGAATGATA-3'
siDNMT3b_1	5'- CCAAAGCTCTTCCGGGAAA-3'
siDNMT3b_2	5'- CCTCAAGACAAATTGCTAT-3'
siDNMT3b_3	5'- CCATGAAGGTTGGCGACAA-3'
siPGLYRP2_1	5'- GGCUGUACCACUUUCUGCUTT-3'
siPGLYRP2_2	5'- GACCAUGGCCUUCCUCAAUTT-3'
siPGLYRP2_3	5'- CCUGCUCUCCCAGUAUUAUTT-3'
siCCL5_1	5'- GCCCACGUCAAGGAGUAUUTT-3'
siCCL5_2	5'- CCAAUCUUGCAGUCGUGUUTT-3'
siCCL5_3	5'- GGGUUCAAGAAUACAUCAATT-3'

References

1. Shi M, Zhang Y, Liu L, Zhang T, Han F, Cleveland J, Wang F, et al. MAP1S Protein Regulates the Phagocytosis of Bacteria and Toll-like Receptor (TLR) Signaling. J Biol Chem 2016;291:1243-1250.

2. Shi M, Wang S, Yao Y, Li Y, Zhang H, Han F, Nie H, et al. Biological and clinical significance of epigenetic silencing of MARVELD1 gene in lung cancer. Sci Rep 2014;4:7545.

3. Narumi K, Miyakawa R, Ueda R, Hashimoto H, Yamamoto Y, Yoshida T, Aoki K. Proinflammatory Proteins S100A8/S100A9 Activate NK Cells via Interaction with RAGE. J Immunol 2015;194:5539-5548.

4. Zhang H, Hua Y, Jiang Z, Yue J, Shi M, Zhen X, Zhang X, et al. Cancer-associated Fibroblast-promoted LncRNA DNM3OS Confers Radioresistance by Regulating DNA Damage Response in Esophageal Squamous Cell Carcinoma. Clin Cancer Res 2018.