
Chemistry–A European Journal


Supporting Information

Kinetics and Mechanism of Cation-Induced Guest Release from Cucurbit[7]uril

Zsombor Miskolczy,^[a] Mónika Megyesi,^[a] László Biczók,^{*[a]} Amrutha Prabodh,^[b] and Frank Biedermann^[b]

Fig. S1 (a) Absorption and (b) fluorescence spectra of 2 μ M MDAP²⁺ in the absence (black line) and in the presence of 8.6 μ M CB7 (red line). Excitation occurred at 339 nm.

Fig. S2 (a) Stopped flow signals at 454 nm in MDAP²⁺–CB7 solution (5 μ M at t = 0 s) after mixing with the solution of AH⁺ (300 μ M at t = 0 s) in water. (b) Stopped flow signals at 454 nm after mixing MDAP²⁺ and CB7 aqueous solutions. Initial concentrations at t = 0 s were 0.0708 μ M. Excitation at 339 nm. The black lines represent the result of the nonlinear least-squares analysis.

Formula for the overall rate constant of B^+ exit from BC and BCM

The fluorescence intensity at the monitoring wavelength (I(t)) has contribution from BC and BCM emissions:

$$I(t) = \alpha[BC] + \beta[BCM]$$
(S1)

Since the back formation of B^+ –CB7 and B^+ –CB7– M^{n+} is negligible in the presence of AH^+ , the dissociation rates are defined as follows:

$$\frac{d[BC]}{dt} = -k_{out}(BC)[BC]$$
(S2)

$$[BC] = [BC]_0 \exp(-k_{out}(BC)t)$$
(S3)

$$\frac{d[BCM]}{dt} = -k_{out}(BCM)[BCM]$$
(S4)

$$[BCM] = [BCM]_0 \exp(-k_{out}(BCM)t)$$
(S5)

where $[BC]_0$ and $[BCM]_0$ represent the BC and BCM concentrations at t = 0 s

Substitution of eq. (S3) and (S5) into (S1) yields

$$I(t) = \alpha[BC]_0 \exp(-k_{out}(BC)t) + \beta[BCM]_0 \exp(-k_{out}(BCM)t)$$
(S6)

Single exponential decay was observed with k_{out} apparent rate constant because $k_{out}(BC)$ and $k_{out}(BCM)$ do not differ sufficiently for the resolution of the two decay components.

$$I(t) = (\alpha[BC]_0 + \beta[BCM]_0)\exp(-k_{out}t)$$
(S7)

The contribution of BC emissions to the overall fluorescence intensity:

$$I_{BC}(t)/I(t) = \alpha[BC]_0 \exp(-k_{out}t) / (\alpha[BC]_0 + \beta[BCM]_0)\exp(-k_{out}t)$$
$$I_{BC}(t)/I(t) = \alpha[BC]_0 / (\alpha[BC]_0 + \beta[BCM]_0)$$
(S8)

Similarly, the contribution of BCM emissions to the overall fluorescence intensity:

$$I_{BCM}(t)/I(t) = \beta[BCM]_0/(\alpha[BC]_0 + \beta[BCM]_0)$$
(S9)

The relationship between $[BCM]_0$ and $[BC]_0$ can be derived from the equilibrium constant of M^{n+} binding to BC:

$$[BCM]_0 = K_{BCM}[M]^{n+}[BC]_0$$
(S10)

Substitution of (S10) into (S8) and (S9)

$$I_{BC}(t)/I(t) = \frac{\alpha}{\alpha + \beta K_{BCM}[M]^{n+}} = \frac{1}{1 + \frac{\beta}{\alpha} K_{BCM}[M]^{n+}}$$
(S11)

$$I_{BCM}(t)/I(t) = \frac{\beta K_{BCM}[M]^{n+}}{\alpha + \beta K_{BCM}[M]^{n+}} = \frac{\frac{\beta}{\alpha} K_{BCM}[M]^{n+}}{1 + \frac{\beta}{\alpha} K_{BCM}[M]^{n+}}$$
(S12)

The contributions of $k_{out}(BC)$ and $k_{out}(BCM)$ to the overall rate constant k_{out} are proportional to the contributions of BC and BCM emissions to the total fluorescence intensity.

$$k_{out} = k_{out}(BC) \frac{1}{1 + \frac{\beta}{\alpha} K_{BCM}[M^{n+1}]} + k_{out}(BCM) \frac{\frac{\beta}{\alpha} K_{BCM}[M^{n+1}]}{1 + \frac{\beta}{\alpha} K_{BCM}[M^{n+1}]}$$
(S13)

Formulas for the calculation of B^+ -CB7- M^{n+} / CB7- M^{n+} molar ratios and the concentrations of each component in equilibrium

As metal cations (M^{n+}) are in large excess relative to the other components, concentration of M^{n+} is not influenced by complex formations and practically equal to their total concentration (M).

 B_T and C_T represent the total concentrations of B^+ and CB7, while B, C, BC, CM, and BCM denote the concentration of B^+ , CB7, B^+ –CB7, CB7– M^{n+} and B^+ –CB7– M^{n+} , respectively.

$$M^{n+} + CB7 \iff CB7 - M^{n+}$$
 binding constant K_M
 $CM = K_M * C^*M$ (S14)

$$B^+ + CB7 \implies B^+ - CB7$$
 binding constant K_B

$$BC = K_B * B * C \tag{S15}$$

$$B^+$$
-CB7 + M^{n+} \longrightarrow B^+ -CB7- M^{n+} binding constant K_T

$$BCM = K_T * BC * M = K_T * K_B * B * C * M$$
 (S16)

Material balance equations:

$$C_{\rm T} = C + BC + BCM + CM \tag{S17}$$

$$B_{\rm T} = B + BC + BCM \tag{S18}$$

From (S17) using (S14), (S15), and (S16)

$$C_{T} = C + K_{B}*B*C + K_{T}*K_{B}*B*C*M + K_{M}*M*C$$
(S19)

$$C = C_T / (1 + K_B * B + K_T * K_B * B * M + K_M * M)$$
(S20)

From (S18) using (S14), (S15), and (S16)

$$B_{T} = B + K_{B} * B * C + K_{T} * K_{B} * B * C * M$$
(S21)

$$B + K_B * B * C + K_T * K_B * B * C * M - B_T = 0$$
(S22)

From (S22) using (S20)

$$B + K_{B}*B*C_{T} / (1 + K_{B}*B + K_{T}*K_{B}*B*M + K_{M}*M) + K_{T}*K_{B}*B*M*C_{T} / (1 + K_{B}*B + K_{T}*K_{B}*B*M + K_{M}*M) - B_{T} = 0$$
(S23)
$$B*(1 + K_{B}*B + K_{T}*K_{B}*B*M + K_{M}*M) + K_{B}*B*C_{T} + K_{T}*K_{B}*B*M*C_{T} - B_{T}*(1 + K_{B}*B + K_{T}*K_{B}*B*M + K_{M}*M) = 0$$
(S24)
$$B^{2}*(K_{B} + K_{T}*K_{B}*M) + B*(1 + K_{M}*M + K_{B}*C_{T} + K_{T}*K_{B}*M*C_{T} - K_{B}*B_{T} - K_{T}*K_{B}*B_{T}*M) - (1+K_{M}*M)*B_{T} = 0$$
(S25)

The solution of the second order equation (S25) gives B.

(S16) and (S14) provide

 $BCM \ / \ CM = K_T ^* \ K_B ^*B \ / \ K_M$

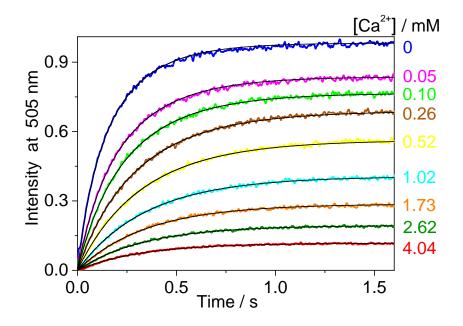

C, CM, BC, and BCM can be calculated on the basis of (S20), (S14), (S15), and (S16), respectively.

Table S1 Calculated solution composition in equilibrium as a function of total Ca^{2+} concentration at 0.02 mM B⁺ and 1 mM CB7 total concentrations ^a

[Ca ²⁺] _{total}	$[B^+]$	$[B^+-CB7]$	$[B^+-CB7-Ca^{2+}]$	[C]	[CM]
mM	10 ⁻⁵ mM	10 ⁻³ mM	10^{-3} mM.	10^{-3} mM	$10^{-3} \mathrm{mM}$
5	2.13	6.77	13.21	13.80	966.2
6	2.26	5.98	14.00	11.53	968.5
7	2.35	5.36	14.62	9.90	970.1
8	2.43	4.85	15.13	8.67	971.4
9	2.50	4.43	15.55	7.72	972.3
10	2.55	4.08	15.90	6.95	973.1
11	2.60	3.78	16.20	6.32	973.7
12	2.64	3.52	16.46	5.80	974.2

^a Binding constants of B⁺–CB7, B⁺–CB7–Ca²⁺, and CM formations are $K_{BC} = 2.3 \times 10^7 \text{ M}^{-1}$

(ref. 26), $K_{BCM} = 390 \text{ M}^{-1}$ (Table 1), and $K_{CM} = 14000 \text{ M}^{-1}$ (ref. 16), respectively.

Fig. S3 Stopped-flow signals recorded after 1:1 mixing of equimolar (0.25 μ M at t = 0 s) B⁺ and CB7 solutions at various CaCl₂ concentrations. Excitation occurred at 345 nm.

Table S2 Effect of Li^+ and Ba^{2+} concentrations on the apparent rate constant of B^+ inclusion in CB7 (k_{in})

[LiCl] mM	$k_{ m in}{}^{[a]}_{ m 10^6~M^{-1}~s^{-1}}$	[BaCl ₂] mM	$k_{ m in}^{[a]}$ 10 ⁶ M ⁻¹ s ⁻¹
0	21.8	0	19.7
1.11	20.5	0.005	14.8
2.21	20.0	0.010	11.5
3.77	19.6	0.021	7.8
6.23	18.0	0.039	5.4
10.45	15.7	0.065	4.2
		0.098	4.0

^[a] Estimated error ≈ 10 %