

Figure S1. IS rate was positively correlated with Hit rate (**a**), and negatively correlated with CR rate (**b**). Dashed lines: linear fitting.

Figure S2. Lick count decreased as task progressed within sessions. Left: normalized singlesession trajectory of lick count, mean \pm s.e.m. Right: averaged every 20% progression. Lick count is defined as the total number of licks emitted in each trial.

Figure S3. 5 consecutive 100 μ m coronal sections from a mouse where 300 nL Fluoro-Gold was locally infused. Arrows point to visible Fluoro-Gold (red) in sections 2-4. Fluoro-Gold in the most anterior and posterior sections (1 and 5) is very faint.

Figure S4. Two example behavior sessions of localized clonidine infusion showing that mouse behavior tended to recover later in the session (Hit rate increased and CR rate decreased), indicated by the arrows.

Figure S5. Mean Hit rate, CR rate, IS rate, Fraction Correct, RT, decision bias (c) and detection sensitivity (d') for 3 consecutive days (± s.e.m.). Black: saline, n = 6; Red: clonidine, n = 8.

Figure S6. Localized saline infusion did not affect behavior. Hit rate, P = 1, Signed rank = 22; CR rate, P = 0.20, Signed rank = 11; IS rate, P = 0.13, Signed rank = 36; Frac. Corr., P = 0.16, Signed rank = 10; RT, P = 0.055, Signed rank = 6; c, P = 0.30, Signed rank = 13; d', P = 0.65, Signed rank = 18. n = 9.

Figure S7. Clonidine minimally affected behavior when the infusion was outside of LC. **a.** Example histological sections showing off-target infusion. The location of drug infusion was estimated by Fluoro-Gold (red), which is ~300 μ m anterior to the LC (green). **b.** Hit and CR rates during baseline and off-target clonidine sessions (Hit rate, 0.85 ± 0.03 vs. 0.79 ± 0.05; CR rate, 0.78 ± 0.05 vs. 0.80 ± 0.05, mean ± s.e.m., n = 5).

Figure S8. Hit rate, CR rate, decision bias (c) and detection sensitivity (d') for baseline (black, n = 10), 5 mM clonidine (light red, n = 5), and 10 mM clonidine (red, n = 10) sessions. **a.** Hit rate: one-way ANOVA, F(2,22) = 23.97, P = 3.0e-6. Baseline vs. 5 mM, P = 0.70; Baseline vs. 10 mM, P = 3.5e-6; 5 mM vs. 10 mM, P = 4.0e-4. **b.** CR rate: one-way ANOVA, F(2,22) = 18.69, P = 1.8e-5. Baseline vs. 5 mM, P = 0.18; Baseline vs. 10 mM, P = 1.2e-5; 5 mM vs. 10 mM, P = 0.013. **c.** Decision bias: one-way ANOVA, F(2,22) = 26.47, P = 1.4e-6. Baseline vs. 5 mM, P = 0.36; Baseline vs. 10 mM, P = 1.2e-6; 5 mM vs. 10 mM, P = 6.6e-4. **d.** Detection sensitivity: one-way ANOVA, F(2,22) = 4.39, P = 0.025. Baseline vs. 5 mM, P = 0.98; Baseline vs. 10 mM, P = 0.029; 5 mM vs. 10 mM, P = 0.12. All post-hoc pairwise tests were Tukey-Kramer.

Figure S9. Systemic saline administration did not affect behavior. Hit rate, P = 0.81, Signed rank = 16; CR rate, P = 1, Signed rank = 14; IS rate, P = 0.70, Signed rank = 16.5; Frac. Corr., P = 0.81, Signed rank = 16; RT, P = 0.69, Signed rank = 17; c, P = 0.58, Signed rank = 10; d', P = 0.47, Signed rank = 19. n = 7.

Figure S10. Mean Hit rate, CR rate, IS rate, Fraction Correct, RT, decision bias (c) and detection sensitivity (d') for 3 consecutive days (\pm s.e.m.). Black: saline, n = 7; Magenta: yohimbine, n = 9.

Figure S11. Localized saline injection did not affect behavior. Hit rate, P = 0.32, Signed rank = 17; CR rate, P = 0.92, Signed rank = 29; IS rate, P = 0.70, Signed rank = 32; Frac. Corr., P = 0.63, Signed rank = 22; RT, P = 0.43, Signed rank = 19; c, P = 0.77, Signed rank = 31; d', P = 0.86, Signed rank = 25. n = 10.

Figure S12. Hit rate, CR rate, decision bias (c) and detection sensitivity (d') for baseline (black, n = 9), 10 mM yohimbine (light magenta, n = 9), and 20 mM yohimbine (magenta, n = 6) sessions. **a.** Hit rate: one-way ANOVA, F(2,21) = 0.89, P = 0.42. Baseline vs. 10 mM, P = 0.48; Baseline vs. 20 mM, P = 0.53; 10 mM vs. 20 mM, P = 1.0. **b.** CR rate: one-way ANOVA, F(2,21) = 7.36, P = 0.0038. Baseline vs. 10 mM, P = 0.021; Baseline vs. 20 mM, P = 0.0055; 10 mM vs. 20 mM, P = 0.66. **c.** Decision bias: one-way ANOVA, F(2,21) = 2.17, P = 0.14. Baseline vs. 10 mM, P = 0.61; Baseline vs. 20 mM, P = 0.18; 10 mM vs. 20 mM, P = 0.45. **d.** Detection sensitivity: one-way ANOVA, F(2,21) = 6.9, P = 0.0047. Baseline vs. 10 mM, P = 0.029; Baseline vs. 20 mM, P = 0.0061; 10 mM vs. 20 mM, P = 0.58. All post-hoc pairwise tests were Tukey-Kramer.

Saline				
Mouse number	1		2	
	Left	Right	Left	Right
TH positive cells	453	442	586	577
TH/c-fos double positive cells	40	41	117	132
c-fos expression level (%)	8.8	9.3	20.0	22.9
	P = 0.41		P = 0.051	

Table S1. Quantification of c-fos expression to examine the effect of localized saline infusion on LC activity in 2 awake mice. Saline was infused in the left LC. The right LC serves as a basal level control. Permutation test was performed (10^5 iterations) to compare c-fos expression levels between the left and right LC in individual mice.