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SUPPLEMENTARY MATERIALS — PACCMANN: A
WEB SERVICE FOR INTERPRETABLE
ANTICANCER COMPOUND SENSITIVITY
PREDICTION

NETWORK PROPAGATION FOR GENE SELECTION

We use STRING [1] to include biomolecular interaction
information in the process to assemble the gene list fed to
the model. The approach is based on a network propagation
scheme for each drug in GDSC [2]. Briefly, we start by
assigning a high weight (W = 1) to drug target genes,
while assigning a small weight to all the others. Afterwards,
the weights are propagated over the STRING topology. Let
Wy denote the initial weights, and S=(G,FE,A), the string
network, where G represents the nodes, F, the edges and A
is the weighted adjacency matrix. The smoothed weights are
determined by iteratively applying the following propagation
function:

Wt+1:aWtA'+(1—a)Wo, D

where D is the degree matrix and A’ is the normalized
adjacency matrix:

P S
A=D"2AD 2. 2)

The diffusion tuning parameter, o (0 <a<1), defines how

far the information propagates in the network. We used
a=0.7, as recommended in the literature for the STRING
network [3]. Using the resulting weight distribution, we
selected the top 20 genes for every drug, resulting in a set
of 2,128 highly informative genes that are used to filter
the transcriptomic data provided as input to the model. The
choice of 20 neighbors was done as a compromise between
model complexity and model accuracy, and was found to
outperform models where the gene list is based on the top
10 neighbors only (1,120 genes). For more details on the
parameters and the implementation refer to [4]. The gene
list can be downloaded from https://ibm.box.com/v/
paccmann—aas—gene—1list.

DATA PREPROCESSING

Prior to training the model, the RMA gene expression
profiles from the two data sets, GDSC [2] and CCLE [5],
were processed with ComBat to remove batch effects [6].
ComBat is specifically designed to correct batch effects in
microarray data and has been demonstrated to outperform
other techniques [7]. Lastly, we applied feature-wise
standardization, and imputed missing values by setting
them to the feature-wise mean, i.e., zero values after
the standardization. Similar parameters were applied to
standardize the validation and test data to prevent information
leakage.
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UNCERTAINITY ESTIMATION
Overview about uncertainty estimation in deep learning

Aleatoric uncertainty, i.e. irreducible uncertainty about the
observations/data that arises e.g. from the measurement
techniques, is commonly distinguished from epistemic
uncertainty. Epistemic uncertainty, in contrast, describes
uncertainty about the model itself, which, given enough
data, could be explained away. Efforts from the bayesian
deep learning community have brought forward frameworks
to simultaneously capture both types of uncertainty [8].
Without the need of Bayesian methodology, epistemic and
aleatoric uncertainty can be approximated empirically. To
estimate epistemic uncertainty, dropout, i.e. randomly pruning
a fraction of nodes in a neural network, can be applied
during testing, which is commonly referred to as Monte
Carlo Dropout [9]. Aleatoric uncertainty can be captured by
applying data augmentation during test time [10].

Implementation of uncertainty estimation

To estimate epistemic uncertainty, the same drug-cell-line pair
is passed ten times through PaccMann. Each time, a randomly
sampled subset of 40% of the nodes is pruned from a model
yielding a distribution of IC50 values.

To estimate aleatoric uncertainty, we equally perform ten
forward passes, but only change the input instead of the
model. Specifically, we explore SMILES augmentation [11],
a technique that performs different traverses through a
molecular graph to get different, but equivalent SMILES
strings for the same molecule.

In both cases, the confidence estimate ¢; is computed by
scaling the sample’s standard deviation and interpreting it as
an inverse precision:

0 —Omin

)+1, 3

=
Omaz — Omin

where o; is the sample standard deviation of IC50 values in

the ten forward passes, 0y,iy, 1s the minimal standard deviation
(0, i.e. all predictions are identical) and 0,4, is the maximal
standard deviation (0.5, i.e. 50% of the predictions are 0 and
50% are 1). Note that the model was trained on normalized
logarithmic IC50 scale, so all outputs are in the range [0,1]).
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