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Supplementary Figure S1. Two compartment model. In this model, polymers are intravenously (i.v.) injected to blood 

circulation, which is defined as a central compartment. From the compartment, polymers translocate to a tissue 

compartment, which includes the liver sinusoid, at a rate constant of k12, and then are back to the central compartment at a 

rate constant of k21. Polymers in a central compartment are eventually excreted at a rate constant of k10. The result of 

pharmacokinetic analyses is shown in Table S1. 

 

 

 

Supplementary Figure S2. Alexa 647-labelled 1-arm-PEG-OligoLys. 

  

Table S1

PEG without 
OligoLys

1-arm-PEG-
OligoLys

2-arm-PEG-
OligoLys

Model 1-compartment 2-compartment 2-compartment

Distribution phase half-life (t1/2α) 0.24 h (14.4 min) 0.27 h (16.4 min)

Elimination phase half-life (t1/2β) 19.8 h 13.3 h 5.7 h

K10 0.11 h-1 0.54 h-1

K12 1.48 h-1 1.55 h-1

K21 1.35 h-1 0.57 h-1

R2 0.83 0.90 0.98

i.v.

k10
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k21
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Supplementary Figure S3. Blood clearance profile of 2-arm-PEG−OligoLys under intravenous infusion. Bolus 

intravenous injection of Alexa594-labelled 2-arm-PEG−OligoLys was performed at a dose of 1,250 µg/mouse, which is 

the same as that used throughout this study, followed by its infusion with varying rate in a stepwise manner as follows: 

4,050 µg/h/mouse (0-10 min), 1,200 µg/h/mouse (10-50 min), and 630 µg/h/mouse. Fluorescence intensity of a vessel in 

the earlobe was observed using intravital confocal microscopy. 
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Supplementary Figure S4. Ex vivo hemolysis assay. Mouse red blood cells were incubated with PBS (buffer), non-

PEGylated OligoLys (PEG(−)), 1-arm-PEG−OligoLys (1-arm) and 2-arm-PEG−OligoLys (2-arm) for 1 h at 37 °C. Release 

of hemoglobin was spectroscopically quantified. n = 4. Statistical analysis was performed using analysis of variance 

(ANOVA) followed by Tukey’s test. 
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Supplementary Figure S5. Inhibition of sinusoidal clearance of polyplex micelle by pre-injection of 2-arm-

PEG−OligoLys. Alexa594-labelled 2-arm-PEG−OligoLys (green) was intravenously injected to coat liver sinusoidal wall 

with PEG, followed by the intravenous injection of polyplex micelle loading Cy5-labelled pDNA (red) 5 min later. 

IVCLSM images of the liver was obtained 5 min, 1 h and 3 h after PM injection. Blue: autofluorescence of liver 

parenchyma.   



 

 

 

Supplementary Figure S6. Distribution of non-PEGylated OligoLys in the liver. (A) IVCLSM images of the liver after 

intravenous injection of Alexa594-labelled non-PEGylated OligoLys. Presumable regions of bile canaliculi are encircled 

with white dotted lines. (B) Intensity profile of Alexa594 in the white arrows shown in (A). 

 

 

  



 

Supplementary Table S1. Pharmacokinetic analysis. 

 PEG without OligoLys 1-arm-PEG−OligoLys 2-arm-PEG−OligoLys 

Model 1-compartment 2-compartment 2-compartment 

Distribution phase half-life (t1/2α)  0.24 h (14.4 min) 0.27 h (16.4 min) 

Elimination phase half-life (t1/2β) 19.8 h 13.3 h 5.7 h 

k10*  0.11 h-1 0.54 h-1 

k12*  1.48 h-1 1.55 h-1 

k21*  1.35 h-1 0.57 h-1 

R2 0.83 0.90 0.98 

* See Fig. S1 for the definition of these values. 

 

 

Supplementary Table S2. Blood examination.  
Buffer Non-PEGylated OligoLys 1-arm-PEG−OligoLys 2-arm-PEG−OligoLys 

LDH 243.7 ± 75.3 400.0 ± 66.4** 245.4 ± 37.0 254.6 ± 68.3 

AST 73.3 ± 18.8 69 ± 11.1 82.3 ± 30.4 83 ± 16.7 

ALT 76.8 ± 33.7 56.8 ± 13.7 85 ± 35.9 91.7 ± 30.9 

BUN 20.8 ± 2.2 22 ± 1.6 19.9 ± 0.5 18.3 ± 2.2 

CRE 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 

Data are shown as mean ± standard error of the mean. n = 4. Statistical analyses were performed using analysis of variance 

(ANOVA) followed by Tukey’s test. ** p < 0.01 vs. Buffer. 

Abbreviations: LDH: lactate dehydrogenase, AST: aspartate transaminase, ALT: alanine transaminase, BUN: blood urea 

nitrogen, CRE: creatinine 

  



 

Supplementary Note S1 Mathematical modelling of endocytosis of 1- and 2-arm-PEG−OligoLys. 

1- and 2-arm-PEG−OligoLys is assumed as 1 sphere of 80-kDa PEG and 2 spheres of 40-kDa PEG, respectively. Radius 

of each PEG chain (rp) is set to radius of gyration (Rg), 14 nm for 80-kDa PEG, 9.4 nm for 40-kDa, respectively, based on 

the calculation by the equation, Rg = 0.181 × (Mn of PEG / 44.06)0.58 (in nm) (52). The PEG spheres are first placed onto 

sinusoidal cell membrane in a hexagonal lattice structure with each sphere circumscribed with surrounding spheres, without 

overlapping (Fig. S7A). In endocytosis, curving of cell membrane induces the overlapping between adjacent PEG chains 

attached to the membrane (Fig. S7B). Endocytotic vesicle is assumed as a sphere with radius of re and diameter of de. In 

this model, distance between 2 adjacent PEG spheres (a) is calculated by a following equation.  

 

a = 2 × (re – rp) × sin(rp/re) 

 

Using this value, overlapping volume of 2 adjacent PEG spheres (Va) is calculated by a following equation. 

 

Va = 4/3 × π × rp 3 – π × a × rp 2 + 1/12 × π × a3 

 

One PEG sphere has 6 adjacent PEG spheres with each overlapping volume (Va) shared by 2 PEG spheres. Thus, 

overlapping volume per each PEG sphere (Vb) is calculated by a following equation. 

 

Vb = 3 × Va 

 

Each PEG sphere occupies cell membrane with area of 3√3/2 × rp. Thus, overlapping volume per unit membrane area (V) 

is calculated by a following equation. 

 

V = Vb / (3√3/2 × rp) 

 

V is plotted against the diameter of endocytotic vesicle (de) for each of 1- and 2-arm-PEG−OligoLys (V80k and V40k, 

respectively), in Fig. S7C. In addition, ratio of V80k to V40k is plotted against de, in Fig. S7D. While V decreases with increase 

in de, overlapping volume of 80-kDa PEG is more than 3-fold higher than that of 40-kDa PEG in the de range from 50 nm 

to 200 nm. 
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Supplementary Figure S7. Mathematical modelling of endocytosis of 1- and 2-arm-PEG−OligoLys. (A) PEG spheres 

placed onto cell membrane in a hexagonal lattice structure with each sphere circumscribed with surrounding spheres, 

without overlapping. (B) Calculation of the overlapping volume between adjacent PEG chains after endocytosis. (C) The 

overlapping volume between adjacent PEG chains per unit membrane area (V). (D) Ratio of V of 80-kDa PEG (V80k) to V 

of 40-kDa PEG (V40k). 
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Supplementary Movies 

Supplementary Movie S1. IVCLSM observation of the liver after co-injection of 1- and 2-arm-PEG−OligoLys. Red: 

Alexa647-labelled 1-arm-PEG−OligoLys, Green: Alexa594-labelled 2-arm-PEG−OligoLys. 

 

Supplementary Movie S2. IVCLSM observation of the liver after sequential injection of 2-arm-PEG−OligoLys and 

PM. Five minutes after intravenous injection of Alexa594-labelled 2-arm-PEG−OligoLys (green), polyplex micelle (PM) 

loading Cy5-labelled pDNA (red) was intravenously injected. Blue: autofluorescence of liver parenchyma.  
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