IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma

Supplementary materials

	Ν	Ionocyte PTPRO	
Variable	Low	High	P value*
All cases	82	83	
Age			0.0081
<60	32	50	
≥60	50	33	
Gender			0.872
Male	52	51	
Female	30	32	
HBV			<0.0001
Positive	43	68	
Negative	39	15	
Differentiation grade			0.358
Well	23	32	
Moderate	32	28	
Poorly	27	23	
Tumor Size(cm)			<0.0001
≤5cm	20	67	
>5cm	62	16	
Tumor Number			0.0002
Solitary	57	34	
Multiple	25	49	

Supplementary Table 1 The clinicopathological relevance analysis of monocyte PTPRO expression in HCC patients.

* Data was analyzed by chi-squared test. P value in bold indicated statistically significant.

Supplementary Table 2: Primers used in the experiments

Primer sequence (5'-3')	Amplicon size
ATGACTTCAGCCGTGTGAGAT	111
GGGTGGCAATATACTCCTGGG	
TGGCATTTGCTGAACGCATTT	120
TGCAGCCAGGTCTAATTGTTTT	
GCACACTTTTAATTGGACTGCTC	87
TGCCAGCTCCACATTCCCTA	
AGTATGGCAGCAACGTCACG	88
TCCTTTTCCCAGTACACCACTA	
	Primer sequence (5'-3') ATGACTTCAGCCGTGTGAGAT GGGTGGCAATATACTCCTGGG TGGCATTTGCTGAACGCATTT TGCAGCCAGGTCTAATTGTTTT GCACACTTTTAATTGGACTGCTC TGCCAGCTCCACATTCCCTA AGTATGGCAGCAACGTCACG TCCTTTTCCCAGTACACCACTA

Supplementary table 3. Information of Antibodies used for flowcytometry analysis

Gene	Manufacturer	Antibody	Clone
Mouse			
Pd-L1	BD Bioscience	BD Pharmingen™ APC Rat Anti-Mouse CD274	MIH5
Tim3	BD Bioscience	BD Pharmingen [™] PE Mouse Anti-Mouse CD366 (TIM-3)	5D12

Ifn-γ	BD Bioscience	BD Pharmingen™ APC Rat Anti-Mouse IFN-γ	XMG1.2
F4/80	Biolegend	FITC anti-mouse F4/80 Antibody	BM8
Human			
CD68	BD Bioscience	BD Pharmingen [™] FITC Mouse Anti- Human CD68	Y1/82A
TIM3	BD Bioscience	BD Horizon [™] PE- CF594 Mouse Anti- Human TIM-3 (CD366)	7D3
PD-L1	BD Bioscience	BD Horizon™ PE- CF594 Mouse Anti- Human CD274	MIH1
CD14	BD Bioscience	BD Pharmingen™ Alexa Fluor® 488 Mouse Anti-Human CD14	M5E2

Figure s1: The protein was extracted from cells indicated in the figure and the expression of PTPRO was detected by western-blot.

Figure s2: The expression of Pd-L1 as well as Jak2/Stat1 and Jak2/Stat3/c-Myc signaling were detected by western-blot in WT and *Ptpro* KO mice.

Figure s3: The localization of PTPRO and JAK2 were detected by IF staining ($\times 400$).

Figure s4: A co-IP assay was performed in macrophage from WT mice treated with or without IL-6 (50ng/mL) by PTPRO antibody, and further detected by using PTPRO and JAK2.

agccatatgggtctgctgctgactttttatatgttgtagagttatatcaagttatgtcaagatgttcagtcaccttga ag<mark>aggcttttatcagaaaggggg</mark>acgcctttctgataaaggttaaggggtaaccttaagctcttacccctctg aaggtaaaatcaaggtgcgttcagatgttggcttgttgtaaatttctttttttattaataacatactaaatgtggattt gctttaatcttcgaaactcttcccgggtgaaaatctcatttacaagaaaactggactgacatgtttcactttctgtttc atttctatacacagctttattcctaggacaccaacactagatacctaaactgaaagcttccgccgatttcaccg aaggtcaggaaagtccaacgccggcaaactggatttgctgcttggtggcagaggtgggcgggaccccgc ctccggggcctggcgcaacgctgagcagctggcggcccccATGAGGATATTTGCT GTCTTTATA... Stat1/STAT3 binding site

Stat2/STAT5 binding site

transcription starting site

Figure s5. Sequence of human PD-L1 promoter (-500) showing the position of the most representative putative binding sites of STAT1/STAT3, STAT2/STAT5 (upper panel), Luciferase gene reporter assay reflecting promoter activity of PD-L1 treated differently indicated in the figure (Lower panel).

Figure s6: The secretory cytokines detection by human inflammatory array Q1 in the culture supernatant from U937- and THP-1- derived macrophage treated with control and tumor conditional medium.

Figure s7: A and B: Macrophages extracted from WT and PTPRO KO mice and human macrophage derived from U937 and THP-1 were treated with IL-6 and IFN- γ , the transcription of Pd-L1/PD-L1 was detected by real-time PCR.**, P<0.01, compared to its no treatment control, by Student's t-test. C and D: Macrophages extracted from WT and PTPRO KO mice and human macrophage derived from U937 and THP-1 were treated with IL-6 and IFN- γ respectively, the protein expression was detected by using western-blot.

Figure s8. Detection of surface PD-L1 expression in macrophage

Figure s9: The potential binding sites of miR-25-3p in 3'UTR of PTPRO were predicted by Targetscan.

Figure 10. The effect of miR-25-3p on the transcription and protein expression of PTPRO in macrophage.

Figure s11 Upper: Schematic representations of genomic regulatory regions of the miR-106b \sim 25 clusters containing putative c-Myc binding sites. Lower: Luciferase gene reporter assay was carried out reflecting the promoter activity of miR-106b-25 cluster. Error bars represent standard errors from three independent experiments, each conducted in triplicate. **, significantly different (P < 0.01).

Figure s12: The serum IL-6 of 165 HCC patients and 155 healthy controls were detected by ELISA. **, P<0.01, compared to Normal control, by Student's t-test.

2-2 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4 2-4	70 79 wit 87 174m	79 Isseen hormegte pD-Li 55 43
g-sec kijk H	fi-bets low	40
p1p*		

figure 2a

7-3 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Prato Profiles plant of the bootstatt
figure 2l	
figure 3a	fr av ^{ia}
	Java vijk
low 7-18 100 p.5003 21	الم المعول
lua kua nde kua nde	produce preserve

Figure 3b part 1

Uncropped figure of WB

Figure 3d

Figure 3f

Figure 4a

Figure 4b

Uncropped figure of WB

Figure 5h

Figure 6d

ter and still that one little	
Figure s7 A C	

Uncropped figure of WB