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Supplementary Text 

Scaling analysis 

 

 

 

 

 

 

The vibrating beam can be approximated as a one-dimensional homogenous prismatic beam 

subject to an axial force. The transverse vibrations of the beam (with no damping) can be 

approximated by the following equation [S1].  
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where w(x, t) is the beam displacement, E is the Young’s modulus, I is the moment of inertia, F is 

the axial force,  is the density and A is the cross-sectional area of the beam. Further note, the 

beam displacement can be written as: 
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With boundary conditions approximated as: 0)()0()()0( ==== ll nnnn   (i.e. clamped-clamped) 

where l is the beam length and the two ends of the beam are situated at x = 0 and x = l. In the 

context of an accelerometer, the axial force on the beam is related to the inertial force on the proof 

mass under external acceleration such that F   mg. Under these assumptions, equations can be 

found for the mode shapes and natural frequencies of the beam under axial load [S2]. The resulting 

equations can be numerically solved to graph the variation of the natural frequencies as a function 

of external load. 

A Rayleigh approximation can be applied to obtain a closed-form estimate for the natural 

frequency of the beam subject to axial force F [S2] which provides an excellent match to numerical 

results for the case of small axial loads where the contribution of the axial load to the modal 
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stiffness is much lower than the bending stiffness (corresponding to the applications of interest 

here). Nonlinear and dissipative effects are ignored (again a good assumption given that the Q 

factors are typically > 20000 and the beams are driven in the linear regime). 
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If the axial force F is replaced by the scaled inertial force (mg*Alvr) where Alvr is the force 

amplification provided by the mechanical lever arrangement, an analytical approximation to the 

scale factor can be obtained as follows: 
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showing that the scale factor is related to the ratio of the area of the mass (Amass) to the squared 

width of the vibrating beam (b), and hence is scale-invariant to first order. In practice, b can be set 

to the smallest dimension achievable (set by a combination of process (etch/lithography) 

constraints and geometric nonlinearities associated with the vibration of the beams) while Amass is 

usually the largest dimension on the chip (set by constraints on overall chip dimensions) 

demonstrating compatibility of this transduction approach with miniaturization. 

In the context of displacement sensing we have: 

2

1

nk

m

g

x


==


                          (S5) 

where x is the displacement of a mass-spring gravimeter in response to gravitational input (g) 

along the sensitive axis. The mechanical sensitivity is clearly scale dependent (scaling as L-2 where 

L is a representative dimensional scale). This involves a fundamental trade-off between size, 

robustness and sensitivity (7). 

 



 

 

4 

 

References: 

[S1] Timoshenko, S. P., Young, D., Weaver, W., Vibration Problems in Engineering, John Wiley 

& Sons, 4th edition, 1974. 

[S2] Albert, W. C., Force sensing using quartz crystal flexure resonators, Proc. 38th Ann. Symp. 

Freq. Contr., Philadelphia, PA, USA, pp. 233-239 (1984). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5 

 

Supplementary Figures 

Fig. S1. 

 

 

 

 

 

Fig. S1: Process cross-section for MEMS sensor. The devices are manufactured by bonding three 

silicon wafers together with the mechanical structures sandwiched between the VIA wafer 

(providing for electrical interconnects using high-aspect ratio trench isolation techniques) and the 

CAP wafer (that seals the structures in a vacuum ambient).  

Process key: Single-crystal silicon       , silicon dioxide,       aluminium       , passivation        . 

 

Fig. S2 

 
 

Fig. S2: Finite element model of the device illustrating the primary mechanical mode.  
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Fig. S3 

 

 

 

 

 

 

 

 

 

Fig. S3: Illustration of the mode shapes for the beam resonator connected to the proof mass 

through a force lever arrangement. 

 

 

 

 

 

 

Fig. S3: Illustration of the first and second flexural modes of the vibrating beam connected to the 

mass (through a lever scheme) at one end and anchored to the chip substrate at the other end. 

 

Fig. S4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4: Results from the finite element simulations of the differential frequency shift (the 

difference in the natural frequencies of the beams located on either end of the proof mass) as a 

function of acceleration applied along the sensitive axis.  
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Fig. S5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S5: Measurements demonstrating stability of the chip-level temperature (250 µ°K  of a given 

set-point) for integration times greater than 10000s. 
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Fig. S6 

 
 

(a) 

 

 
(b) 

Fig. S6: Allan deviation for sensor response without drift correction recorded in (a) the low-noise 

facility in Eskdalemuir, Scotland, and (b) the Cambridge University lab facility corresponding to 

the datasets presented in Fig. 2.  
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Fig. S7 

 

(a) 

 

(b) 

Fig. S7: Measurement of ground acceleration ((a) – time series, and (b) corresponding PSD) in a 

basement laboratory in Bristol, UK, and comparison of dataset to a reference seismometer located 

in Swindon, UK, for the 2017 Chiapas, Mexico, Earthquake (Mw 8.2) on September 8 2017.  The 

MEMS accelerometer output was sampled at 1 Hz while the reference accelerometer was sampled 

at 50 Hz.  
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Fig. S8 

 
 

 
 

Fig. S8: Comparison of the time-series and noise-spectral density of the MEMS seismometer based 

in Cambridge, UK relative to a reference broadband seismometer (Guralp CMG3TD) integrated 

as part of the BGS network in Elham, UK in response to the 16th February 2018 earthquake in 

Oaxaca state in southern Mexico (Mw 7.2). Note that the broadband seismometer is configured to 

operate over a bandwidth between ~0.01 Hz – 50 Hz. 
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Fig. S9 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S7: Record of ground oscillations as measured by the MEMS instrument (situated in 

Cambridge, UK) in response to the 16th February 2018 earthquake in Oaxaca state in southern 

Mexico (Mw 7.2). A clipped-section of the time-series corresponding the long-period oscillations 

is shown in the lower panel.  

 

 

 

 

 

 

Fig. S9: Record of ground oscillations as measured by the MEMS instrument (situated in 

Cambridge, UK) in response to the 16th February 2018 earthquake in Oaxaca state in southern 

Mexico (Mw 7.2). A clipped-section of the time-series corresponding to the long-period 

oscillations is shown in the lower panel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clipped section: 

Time (min)                             Time offset: 2018-02-16, 23:39.8 UTC 
(Earthquake origin time) 

Time (min)                             Time offset: 2018-02-16, 23:39.8 UTC 
(Earthquake origin time) 
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Fig. S10. 

 

 
 

 

Fig. S10: Noise power spectral density for the MEMS sensor with the sensitive axis oriented in 

the horizontal configuration while integrating two levels of temperature control. The sampling is 

conducted as 10 samples/s and the noise floor is 25 nano-g/rt-Hz at 1.5 Hz. 

 

 

 

 

 

Fig. S11. 

  

 

 
 

Fig. S11: Schematic implementation of the frequency counting approach for the measurement of 

acceleration. 
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