Indoximod opposes the immunosuppressive effects mediated by IDO and TDO via modulation of AhR function and activation of mTORC1

SUPPLEMENTARY MATERIALS

Supplementary Figure 1: Modulation of tryptophan and kynurenine by TDO is independent of indoximod concentration in CD8 T cell proliferation assays. Culture assay supernatants from the cultures described in Figure 1A were harvested at the end of the T cell proliferation period and the concentration of tryptophan and kynurenine was assessed by LCMS. The graph on the left displays proliferation data for T cells in direct co-culture with TDO-expressing SW48 cell (black squares, \blacksquare , left vertical axis). The graph on the right displays proliferation data for T cells cultured in media that had been conditioned for 48 hours by TDO-expressing SW48 cells. The tryptophan (dark gray circles, \bullet , right vertical axis) and kynurenine (light gray diamonds, \diamond , right vertical axis) data have been included for the corresponding culture condition. The input concentrations of tryptophan and kynurenine (i.e., previous to SW48/TDO conditioning) have been indicated on the graphs as a dotted line at 200 μ M for tryptophan and a dashed line to indicate the limit of detection (LOD) for kynurenine.

Supplementary Figure 2: Differentiation of protocol scheme of human monocyte-derived dendritic cells. Schematic protocol design for differentiation of human monocytes into IDO⁺ moDCs. (A) Protocol to obtain IDO⁺ moDCs for western blot or FACS analysis. Incubation with test agents indoximod, GNF352, Kyn and/or Epacadostat was initiated on Day 1 and extended until analysis on Day 8. Protocol details available in Methods section. (B) Human monocytes obtained by the same differentiation and maturation protocol as in A were harvested and co-cultured with dye-labeled allogeneic human CD8⁺ T cells for 4 days, to assess the impact of treatment of moDCs during differentiation with indoximod or AhR inhibitors. In addition, indoximod and/or AhR inhibitor were added during the T cell proliferation phase. T cell proliferation was assessed on Day 13 by FACS analysis.

Т

+/-indoximod (0-100µM)

+/-AHRi (GNF351 500 nM)

D0-8: moDC diff and maturation

+/-AHRi (GNF351 500 nM)

+/-indoximod (30 µM)

Supplementary Figure 3: Kyn production in MLR assays. Kyn synthesis in MLR assays. moDCs were obtained by leukocytapheresis from 4 different human donors, differentiated and matured according to the protocol of Supplementary Figure 1B, in the absence or presence of 30 μ M indoximod. T cells from allogeneic donor pairs were co-cultured with these moDCs for 4 days and Kyn levels in the supernatant were measured by LC-MS/MS.

Supplementary Figure 4: AhR does not inhibit proliferation of CD8⁺ T cells in the absence of IDO⁺ moDCs. To investigate the inhibitor GNF-351 could inhibit proliferation of CD8⁺ T cells, dye-labeled human primary CD8⁺ T cells were stimulated with anti-CD3/CD28 and incubated in the absence and presence of 100 μ M indoximod and in the absence or presence of 500 nM GNF351. At the end of the proliferation period, T cell proliferation was measured by FACS using the dye-dilution analysis tools in FloJo. There were no statistical differences between vehicle and AhR inhibitor, both in the absence or presence of indoximod indicating that GNF351 does not have a toxic or inhibitory effect on T cell proliferation.

Supplementary Figure 5: Epacadostat does not affect differentiation of CD4⁺ T cells. Epacadostat does not reduce the fraction of FoxP3⁺ T cells obtained after a 4-day differentiation culture of primary human CD4⁺ T cells stimulated with anti-CD3/CD28 and IL-2, in the absence or presence of 50 μ M Kyn. For details see Materials and Methods.

Supp	lementary	7 Table	1: 9	Summarv	of /	4h	R-	-luciferase	in	duction	bv	ind	loximo	d
\sim - p p					~						~ 1			-

			=	
Exp #	Indoximod Source	Solvent	Max fold induction	EC ₅₀ (μM)
LUC.1	Sigma lot 09009BE	DMSO/HCl	26	43.3
LUC.2	Sigma lot 09009BE	DMSO/HCl	22	24.2
LUC.3	Sigma lot MKBZ1441V	DMSO/HCl	17	33.6
LUC.4	Sigma lot MKBZ1441V	DMSO/HCl	21	35.2
LUC.5	Sigma lot MKBZ1441V	DMSO/HCl	21	32.3
LUC.6	Regis lot P235-42-2	DMSO/HCl	22	34.6
LUC.7	Regis lot P235-42-2	DMSO/HCl	23	33.7
LUC.8	Regis lot P235-42-2	DMSO/HCl	19	25.1
	Combined		17-26 fold	32.7 ± 6.0

Supplementary Table 1 shows independent experiments carried out with 3 different lots of indoximod, to assess induction of AhR-driven expression of firefly luciferase normalized to that of Renilla luciferase. Maximum fold induction is the ratio of normalized luciferase activity observed at 100 μ M indoximod relative to the normalized luciferase activity in vehicle control. EC₅₀ is the concentration of indoximod that is necessary to achieve half of the induction level observed at 100 μ M indoximod. For details see Materials and Methods.

Expt #	Source	Solvent	Max fold induction	EC ₅₀ (μM)
CYP.1	Sigma lot 09009BE	DMSO/HCl	3.2	13.1
CYP.2	Regis lot P235-42-2	DMSO/HCl	2.6	22.8
CYP.3	Sigma lot 09009BE	DMSO/HCl	5.2	20.2
CYP.4	Regis lot P235-42-2	DMSO/HCl	3.8	26.3
CYP.5	Sigma lot 09009BE	DMSO/HCl	8.3	25.6
CYP.6	Regis lot P235-42-2	DMSO/HCl	4.4	36.9
CYP.7	Sigma lot 09009BE	DMSO/HCl	3.1	19.5
CYP.8	Regis lot P235-42-2	DMSO/HCl	2.1	29.2
CYP.9	Sigma lot 09009BE	DMSO/HCl	2.8	17.8
CYP.10	Sigma lot MKBZ1441V	DMSO/HCl	2.5	21.2
CYP.11	Regis lot P235-42-2	DMSO/HCl	2.8	22.4
	Combined		2.1-8.3 fold	23.2 +/- 6.3

Supplementary Table 2: Summary of CYP1A1 induction by indoximod

Supplementary Table 2 shows independent experiments carried out with 3 different lots of indoximod, to assess induction of CYP1A1 enzymatic activity, assessed by de-ethylation of 7-ethoxyresorufin into resorufin by a fluorescence assay (EROD assay). Maximum fold induction is the ratio of CYP1A1 activity observed at 100 μ M indoximod relative to the activity in vehicle control. EC₅₀ is the concentration of indoximod that is necessary to achieve half of the induction level observed at 100 μ M indoximod. For details see Materials and Methods.