OMTN, Volume 21

Supplemental Information

H19, a Long Non-coding RNA, Mediates

Transcription Factors and Target Genes through

Interference of MicroRNAs in Pan-Cancer

Aimin Li, Saurav Mallik, Haidan Luo, Peilin Jia, Dung-Fang Lee, and Zhongming Zhao

SUPPLEMENTARY FILES

Figure S1. H19 highly expressed across pan-cancer except for brain lower grade glioma (LGG), prostate adenocarcinoma (PRAD), and thyroid carcinoma (THCA).

Figure S2. TF-gene regulation was affected by H19 expression level.

 Table S1. Number of samples and genes across the 24 cancer types based on TCGA

 data.

Table S2. Eighty-eight H19-TF-gene regulation triplets identified in at least two cancer

 types.

Table S3. 173 of 186 (93%) TF-gene pairs had direct or indirect evidence to support their relation to cancer (Table S3). The remaining 13 TF-gene pairs might be potential candidates for cancer research.

Table S4. The list of 29 H19 target miRNAs with evidence in literature.

Table S5. Regulation of 29 miRNAs in eight triplets. In the H19-ETS1-*TGFBR2* sheet, we list all the 29 miRNAs and their targets (TFs and genes). Some of the targets were predicted and then verified. In the H19-ETS1-*TGFBR2* table, TFs are marked in yellow if miRNAs target them, and genes are marked in red if miRNAs target them.

Table S6. Primers for qRT-PCR.

Figure S2. TF-gene regulation was affected by H19 expression level.

BRCA, AHR-HSPB1 H19 lowly expressed, p-value=3.27e-03

5

10

ω

9

0

2

3

AHR, log2(FPKM)

4

5

6

HSPB1, log2(FPKM)

BRCA, AHR-HSPB1 H19 highly expressed, p-value=2.3e-17

AHR, log2(FPKM)

BRCA, AHR–SOS1 H19 lowly expressed, p-value=6.07e–13

BRCA, AHR-SOS1 H19 highly expressed, p-value=6.4e-25

AHR, log2(FPKM)

AHR, log2(FPKM)

BRCA, AIP–RSF1 H19 lowly expressed, p-value=5.21e–05

BRCA, AIP-RSF1 H19 highly expressed, p-value=1.14e-12

AIP, log2(FPKM)

5

AIP, log2(FPKM)

6

7

CD40, log2(FPKM)

2

0

BRCA, AKNA-CD40 H19 highly expressed, p-value=5.19e-37

AKNA, log2(FPKM)

4

3

2

1

5

6

BRCA, CIITA-HLA-DRA H19 lowly expressed, p-value=1.4e-103

BRCA, CIITA-HLA-DRA H19 highly expressed, p-value=1.73e-62

CIITA, log2(FPKM)

12

ŝ

-2

0

2

CIITA, log2(FPKM)

BRCA, CREBBP-CREB1 H19 lowly expressed, p-value=1.72e-35

BRCA, CREBBP-CREB1 H19 highly expressed, p-value=1.84e-58

CREBBP, log2(FPKM)

CREBBP, log2(FPKM)

BRCA, E2F1-GADD45B H19 lowly expressed, p-value=2.67e-02

E2F1, log2(FPKM)

4

ω

~

9

ŝ

4

ო

N

0

GADD45B, log2(FPKM)

BRCA, E2F1–GADD45B H19 highly expressed, p-value=2.45e–05

E2F1, log2(FPKM)

BRCA, E2F3–MAPK8 H19 lowly expressed, p-value=1.88e–04

BRCA, E2F3-MAPK8 H19 highly expressed, p-value=7.08e-18

E2F3, log2(FPKM)

E2F3, log2(FPKM)

BRCA, EGR1–SPRY1 H19 lowly expressed, p-value=1.81e–14

8

BRCA, EGR1-SPRY1 H19 highly expressed, p-value=1.15e-35

EGR1, log2(FPKM)

2

4

EGR1, log2(FPKM)

ETS1, log2(FPKM)

BRCA, EZH2-BRCA1 H19 highly expressed, p-value=1.46e-15

EZH2, log2(FPKM)

BRCA, EZH2–BRCA1 H19 lowly expressed, p-value=4.6e-02

BRCA, ETS1-TGFBR2 H19 highly expressed, p-value=2.09e-52

BRCA, ETS1-TGFBR2 H19 lowly expressed, p-value=1.69e-31

EZH2, log2(FPKM)

BRCA, EZH2–DACT3 H19 highly expressed, p-value=1.4e–20

EZH2, log2(FPKM)

BRCA, EZH2–DACT3 H19 lowly expressed, p-value=7.31e–02

EZH2, log2(FPKM)

BRCA, EZH2–SNAI2 H19 lowly expressed, p-value=8.49e–03

BRCA, EZH2-SNAI2 H19 highly expressed, p-value=7.22e-05

EZH2, log2(FPKM)

EZH2, log2(FPKM)

BRCA, FLI1–CTGF H19 lowly expressed, p-value=1.28e–06

BRCA, FLI1-CTGF H19 highly expressed, p-value=2.66e-15

FLI1, log2(FPKM)

FLI1, log2(FPKM)

BRCA, FLI1–TGFBR2 H19 lowly expressed, p-value=4.53e–58

BRCA, FLI1–TGFBR2 H19 highly expressed, p-value=8.37e–70

FLI1, log2(FPKM)

2

0

1

2

FLI1, log2(FPKM)

3

BRCA, FOSL2–BCL6 H19 lowly expressed, p-value=4.04e–03

BRCA, FOSL2–BCL6 H19 highly expressed, p-value=4.33e–12

FOSL2, log2(FPKM)

FOSL2, log2(FPKM)

BRCA, FOXO1–TXNIP H19 lowly expressed, p-value=1.27e–07

ი

ω

 \sim

9

ŝ

-1

0

1

2

FOXO1, log2(FPKM)

3

4

TXNIP, log2(FPKM)

BRCA, FOXO1–TXNIP H19 highly expressed, p-value=8.73e–23

FOXO1, log2(FPKM)

BRCA, GATA2–VCAM1 H19 lowly expressed, p-value=5.08e–02

BRCA, GATA2-VCAM1 H19 highly expressed, p-value=7.39e-03

GATA2, log2(FPKM)

GATA2, log2(FPKM)

BRCA, GATA2–VWF H19 lowly expressed, p-value=4.84e–07

GATA2, log2(FPKM)

ო

N

-4

0 2 -2 4

GATA2, log2(FPKM)

BRCA, HDAC1–TXNIP H19 lowly expressed, p-value=1.36e–04

BRCA, HDAC1-TXNIP H19 highly expressed, p-value=2.64e-02

TXNIP, log2(FPKM)

HDAC1, log2(FPKM)

HDAC1, log2(FPKM)

BRCA, HDAC2-TWIST1 H19 lowly expressed, p-value=5.33e-02

HDAC2, log2(FPKM)

BRCA, HDAC2-TWIST1 H19 highly expressed, p-value=1.85e-02

HDAC2, log2(FPKM)

BRCA, HDGF-FAS H19 lowly expressed, p-value=9.91e-03

BRCA, HDGF–FAS H19 highly expressed, p-value=4e-05

HDGF, log2(FPKM)

HDGF, log2(FPKM)

BRCA, IKZF1-BIRC5 H19 lowly expressed, p-value=8.57e-04

IKZF1, log2(FPKM)

4

BRCA, IKZF1-BIRC5 H19 highly expressed, p-value=5.21e-03

IKZF1, log2(FPKM)

-2

0

BIRC5, log2(FPKM)

0

FAS, log2(FPKM)

BRCA, KAT2B-SMAD4 H19 lowly expressed, p-value=2.47e-08

BRCA, KAT2B–SMAD4 H19 highly expressed, p-value=4.89e–21

KAT2B, log2(FPKM)

KAT2B, log2(FPKM)

1

3

4

KAT2B, log2(FPKM)

BRCA, KAT2B–ZEB1 H19 lowly expressed, p-value=2.12e–17

ZEB1, log2(FPKM)

2

0

2

-1

BRCA, KAT2B–ZEB1 H19 highly expressed, p–value=2.62e–27

KAT2B, log2(FPKM)

BRCA, KLF4–IL6 H19 lowly expressed, p-value=3.98e-05

BRCA, KLF4–IL6 H19 highly expressed, p-value=4.75e-21

KLF4, log2(FPKM)

KLF4, log2(FPKM)

BRCA, KLF6–TXNIP H19 lowly expressed, p-value=6.11e–03

BRCA, KLF6-TXNIP H19 highly expressed, p-value=1.77e-14

KLF6, log2(FPKM)

6

TXNIP, log2(FPKM)

10

ი

ω

~

9

ŝ

3

4

5

KLF6, log2(FPKM)

MYBL2, log2(FPKM)

BRCA, MYBL2–COL1A1 H19 highly expressed, p-value=2.74e–10

MYBL2, log2(FPKM)

BRCA, NFKB1–CHUK H19 lowly expressed, p-value=6.26e-05

BRCA, NFKB1-CHUK H19 highly expressed, p-value=4.84e-18

NFKB1, log2(FPKM)

NFKB1, log2(FPKM)

BRCA, NFKB1–MIF H19 lowly expressed, p-value=4.42e–05

 $\begin{bmatrix} N \\ T \\ T \\ 0 \\ 0 \\ 0 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$

MIF, log2(FPKM)

BRCA, NFKB1-MIF H19 highly expressed, p-value=8.42e-13

NFKB1, log2(FPKM)

NFKB1, log2(FPKM)

BRCA, NFYB–EDF1 H19 lowly expressed, p-value=5.55e–06

10

ი

ω

 \sim

2.5

3.0

3.5

4.0

NFYB, log2(FPKM)

4.5

5.0

5.5

EDF1, log2(FPKM)

NFYB, log2(FPKM)

BRCA, NFYB-HMGCS1 H19 lowly expressed, p-value=1.39e-03

BRCA, NFYB-HMGCS1 H19 highly expressed, p-value=4.1e-11

NFYB, log2(FPKM)

NFYB, log2(FPKM)

BRCA, NFYB-SP3 H19 lowly expressed, p-value=1.45e-09

BRCA, NFYB-SP3 H19 highly expressed, p-value=3.48e-30

NFYB, log2(FPKM)

NFYB, log2(FPKM)

BRCA, NR3C1-CALD1 H19 lowly expressed, p-value=1.01e-02

BRCA, NR3C1-CALD1 H19 highly expressed, p-value=4.54e-19

NR3C1, log2(FPKM)

NR3C1, log2(FPKM)

BRCA, PARP1–FBN1 H19 lowly expressed, p-value=3.92e–02

Т

7.5

7.0

6.5

PARP1, log2(FPKM)

BRCA, PARP1-FBN1 H19 highly expressed, p-value=3.94e-02

PARP1, log2(FPKM)

~

0

5.0

5.5

6.0

BRCA, PARP1–FN1 H19 lowly expressed, p-value=4.25e–02

13 12 ÷ FN1, log2(FPKM) 10 ი ω 9 5.0 7.5 5.5 6.0 6.5 7.0 PARP1, log2(FPKM)

BRCA, PARP1-FN1 H19 highly expressed, p-value=2.29e-03

BRCA, POU2AF1–TK1 H19 lowly expressed, p-value=2.88e–04

9

ŝ

4

ო

2

-6

-4

-2

0

POU2AF1, log2(FPKM)

2

4

6

TK1, log2(FPKM)

.

BRCA, POU2AF1–TK1 H19 highly expressed, p-value=2.1e–03

POU2AF1, log2(FPKM)

BRCA, PPARA-KLF11 H19 lowly expressed, p-value=6.81e-15

BRCA, PPARA-KLF11 H19 highly expressed, p-value=5.66e-38

PPARA, log2(FPKM)

PPARA, log2(FPKM)

BRCA, RB1–WRN H19 lowly expressed, p-value=3.09e–05

BRCA, RB1–WRN H19 highly expressed, p-value=9.54e-15

RB1, log2(FPKM)

4

Э N

1

2

3

RB1, log2(FPKM)

WRN, log2(FPKM)

RUNX2, log2(FPKM)

BRCA, RUNX2–MMP2 H19 highly expressed, p-value=1.18e–52

RUNX2, log2(FPKM)

BRCA, SNAI2–MET H19 lowly expressed, p-value=1.32e–12

SNAI2, log2(FPKM)

SNAI2, log2(FPKM)

SOX18, log2(FPKM)

BRCA, SOX18-CLDN5 H19 highly expressed, p-value=3.05e-59

SOX18, log2(FPKM)

BRCA, SP1-ADAM17 H19 lowly expressed, p-value=2.81e-09

1.5

BRCA, SP1–ADAM17 H19 highly expressed, p–value=5.76e–27

SP1, log2(FPKM)

S

4

ო

2

2.5

3.0

3.5

4.0

SP1, log2(FPKM)

4.5

5.0

5.5

BRCA, SP1–ATM H19 lowly expressed, p-value=1.56e-18

BRCA, SP1–ATM H19 highly expressed, p-value=1.96e–34

ATM, log2(FPKM)

SP1, log2(FPKM)

SP1, log2(FPKM)

BRCA, SP1–HRAS H19 lowly expressed, p-value=1.61e–10

ω

 \sim

9

ß

4

ო

2.5

3.0

3.5

4.0

SP1, log2(FPKM)

4.5

5.0

5.5

HRAS, log2(FPKM)

BRCA, SP1-HRAS H19 highly expressed, p-value=1.06e-32

SP1, log2(FPKM)

BRCA, SP1-HSPB1 H19 highly expressed, p-value=2.61e-12

01 1, 10gz(11 1111)

BRCA, SP1–HSPB1 H19 lowly expressed, p–value=6.68e–02

SP1, log2(FPKM)

BRCA, SP1–SIGIRR H19 lowly expressed, p–value=6.2e–02

ω

~

9

ŝ

4

ო

2

2.5

3.0

SIGIRR, log2(FPKM)

BRCA, SP1–SIGIRR H19 highly expressed, p-value=1.8e–10

4.0

4.5

5.0

5.5

3.5

SP1, log2(FPKM)

BRCA, SP1–TGFBR2 H19 lowly expressed, p–value=1.03e–08

BRCA, SP1-TGFBR2 H19 highly expressed, p-value=1.05e-21

SP1, log2(FPKM)

, 9 (

BRCA, SP1–UTRN H19 lowly expressed, p-value=7.05e–24

SP1, log2(FPKM)

SP1, log2(FPKM)

BRCA, SPI1–CD40 H19 lowly expressed, p-value=1.04e–50

BRCA, SPI1-CD40 H19 highly expressed, p-value=9.71e-40

BRCA, SPI1–IL18 H19 lowly expressed, p-value=2.57e-43

6

BRCA, SPI1-IL18 H19 highly expressed, p-value=8.64e-17

SPI1, log2(FPKM)

9

ŝ

4

ო

2

~

0

1

2

3

SPI1, log2(FPKM)

4

BRCA, SPI1–NCF2 H19 highly expressed, p-value=3.34e-28

SPI1, log2(FPKM)

BRCA, SPI1–NCF2 H19 lowly expressed, p-value=3.8e–56

SPI1, log2(FPKM)

BRCA, STAT1-CD40 H19 lowly expressed, p-value=2.66e-21

9

ŝ

4

с

2

~

0

3

4

5

6

STAT1, log2(FPKM)

7

8

9

10

CD40, log2(FPKM)

BRCA, STAT1-CD40 H19 highly expressed, p-value=1.71e-06

STAT1, log2(FPKM)

BRCA, STAT1-FCGR1A H19 lowly expressed, p-value=1.52e-23

BRCA, STAT1–SERPING1 H19 lowly expressed, p–value=7.07e–23

BRCA, STAT1-SERPING1 H19 highly expressed, p-value=4.85e-06

STAT1, log2(FPKM)

10

ი

ω

 \sim

9

ŝ

4

3

4

5

6

STAT1, log2(FPKM)

7

8

9

10

SERPING1, log2(FPKM)

STAT1, log2(FPKM)

BRCA, STAT1-TYMP H19 highly expressed, p-value=2.96e-02

STAT1, log2(FPKM)

BRCA, STAT3-AKAP12 H19 lowly expressed, p-value=2.81e-06

4

6

STAT3, log2(FPKM)

7

8

4

2

0

4

AKAP12, log2(FPKM)

BRCA, STAT3-AKAP12 H19 highly expressed, p-value=1.31e-16

STAT3, log2(FPKM)

BRCA, STAT3–IKBKE H19 lowly expressed, p-value=5.74e-02

BRCA, STAT3-IKBKE H19 highly expressed, p-value=2.46e-02

STAT3, log2(FPKM)

STAT3, log2(FPKM)

BRCA, STAT3-KLF11 H19 lowly expressed, p-value=1.52e-03

STAT3, log2(FPKM)

BRCA, STAT3-KLF11 H19 highly expressed, p-value=1.75e-14

STAT3, log2(FPKM)

BRCA, STAT3-NDUFA13 H19 lowly expressed, p-value=3.61e-08

BRCA, STAT3-NDUFA13 H19 highly expressed, p-value=4.08e-18

STAT3, log2(FPKM)

STAT3, log2(FPKM)

BRCA, STAT3-TYK2 H19 lowly expressed, p-value=2.83e-05

STAT3, log2(FPKM)

BRCA, STAT3-TYK2 H19 highly expressed, p-value=1.84e-13

STAT3, log2(FPKM)

Table S1. Number of Samples and Genes

		Cancer		Sample	S	After Filtr	FKPM ation	TF-gene Interactions			
No	Cancer Type Abbreviation	Cancer Type Name	Total Number of Samples	# Primary Tumor Samples	# Matched Controls	# Other Samples	# Genes	Number of TFs	# Pairs (TF- gene)	# TFs	# Genes
1	BLCA	Bladder urothelial carcinoma	426	407	19	0	11481	683	7723	607	2103
2	BRCA	Breast invasive carcinoma	1212	1092	113	7	11867	694	8181	625	2198
3	CESC	Cervical squamous cell carcinoma and endocervical adenocarcinoma	309	304	3	2	11508	709	8057	634	2161
4	COAD	Colon adenocarcinoma	331	288	41	2	11537	700	8123	631	2187
5	ESCA	Esophageal carcinoma	195	181	13	1	11727	723	8277	655	2205
6	GBM	Glioblastoma multiforme	171	153	5	13	12279	717	7755	636	2156
7	HNSC	carcinoma	564	518	44	2	11406	691	7866	621	2140
8	KIRC	Kidney renal clear cell carcinoma	91	66	25	0	11881	697	7889	628	2172
9	KIRP	Kidney renal papillary cell carcinoma	321	288	32	1	11599	667	7130	591	2030
10	LGG	Brain lower grade glioma	523	509	0	14	12104	. 678	6837	589	1996
11	LIHC	Liver hepatocellular carcinoma	421	369	50	2	10577	622	6988	546	1964
12	LUAD	Lung adenocarcinoma	574	513	59	2	12065	695	8223	621	2233
13	LUSC	Lung squamous cell carcinoma	548	498	50	0	12002	720	8444	653	2281
14	OV	Ovarian serous cystadenocarcinoma	427	419	0	8	11838	699	8030	622	2159
15	PAAD	Pancreatic adenocarcinoma	183	178	4	1	12346	722	8758	651	2369
16	PCPG	Paraganglioma	185	177	3	5	11520	660	6438	562	1896
17	PRAD	Prostate adenocarcinoma	548	495	52	1	11785	700	7889	624	2170
18	SARC	Sarcoma	264	258	2	4	11343	690	7353	602	2053
19	SKCM	Skin cutaneous melanoma	470	102	1	367	11028	667	7055	585	1982
20	STAD	Stomach adenocarcinoma	450	414	36	0	11792	726	8460	648	2252
21	TGCT	Testicular germ cell tumors	154	148	0	6	12184	. 701	8042	620	2202
22	THCA	Thyroid carcinoma	571	504	59	8	11693	666	7284	587	2020
23	THYM	Thymoma	571	504	59	8	11757	680	7270	602	2055
24	UCEC	Uterine corpus endometrial carcinoma	204	180	23	1	11718	698	8092	625	2152

Trinlet	BRCA	COAD	HNSC	KIRC	LGG	LUAD	ΡΔΔΒ	STAD	тест	тнса	# of cancer	H19 lowley	H19 highly
	DRCA	COAD	muse	MINU	LUU	LUAD	IAAD	BIAD	1001	шся	types	expressed	expressed
H19_AHR_HSPB1	5.05									2.98	2	-1	-1-1
H19_AIP_RSF1	2.97									2.77	2	-1	
H19_EZH2_DACT3	5.87							4.90			2	4	
H19_NFKB1_MIF	2.47						3.33				2	-	
H19_NFYB_EDF1	5.59									2.28	2	4	
H19_SP1_HRAS	4.02									4.98	2	4	
H19_SP1_HSPB1	3.50									2.54	2	-1	
H19_SP1_SIGIRR	3.15				_					2.16	2	-1	
H19_SP3_EDF1		_		5.92						4.91	2	H	-1-1
H19_STAT3_NDUFA13	2.54									2.93	2	H	-1-1
H19_STAT3_TYK2	2.57							_		3.18	2	H	-1-1
H19_AHR_CCNG2	2.99						2.38				2	\rightarrow	$\rightarrow \rightarrow$
H19_AHR_SOS1	3.91						2.73			2.94	3	\rightarrow	$\rightarrow \rightarrow$
H19_CREBBP_CREB1	3.13					3.94					2	\rightarrow	$\rightarrow \rightarrow$
H19_E2F3_MAPK8	4.49									3.59	2	\rightarrow	$\rightarrow \rightarrow$
H19_EGR1_SPRY1	3.44				3.38						2	\rightarrow	$\rightarrow \rightarrow$
H19_ERG_EPB41L3							2.22			2.84	2	\rightarrow	$\rightarrow \rightarrow$
H19_ETS1_TGFBR2	9.19			4.21				-			2	\rightarrow	$\rightarrow \rightarrow$
H19_EZH2_BRCA1	3.70				4.87						2	\rightarrow	$\rightarrow \rightarrow$
H19_FLI1_CTGF	2.51	3.53									2	\rightarrow	$\rightarrow \rightarrow$
H19_FLI1_TGFBR2	6.02		4.14								2	\rightarrow	$\rightarrow \rightarrow$
H19_FOSL2_BCL6	3.02	6.40									2	\rightarrow	$\rightarrow \rightarrow$
H19_FOXM1_CCNB1					3.83				3.39		2	\rightarrow	$\rightarrow \rightarrow$
H19_FOXO1_TXNIP	2.93			3.12							2	\rightarrow	$\rightarrow \rightarrow$
H19_GATA2_VWF	3.20			8.26							2	\rightarrow	$\rightarrow \rightarrow$
H19_HNRNPK_EIF4E					-	2.92				5.33	2	\rightarrow	$\rightarrow \rightarrow$
H19_KAT2B_SMAD4	5.05						-			2.19	2	\rightarrow	$\rightarrow \rightarrow$
H19_KAT2B_ZEB1	2.66						2.78				2	\rightarrow	$\rightarrow \rightarrow$
H19_KLF4_IL6	4.16							-		3.96	2	\rightarrow	$\rightarrow \rightarrow$
H19_KLF6_TXNIP	3.26					2.66					2	\rightarrow	$\rightarrow \rightarrow$
H19_NFKB1_CHUK	3.60						-			5.56	2	\rightarrow	$\rightarrow \rightarrow$

Table S2. Regression of H19's regulation on TF-gene pairs
Triplet	BRCA	COAD	HNSC	KIRC	LGG	LUAD	PAAD	STAD	TGCT	THCA	# of cancer types	H19 lowley expressed	H19 highly expressed
H19_NFYB_HMGCS1	2.37									3.79	2	\rightarrow	$\rightarrow \rightarrow$
H19_NFYB_SP3	7.48									2.79	2	\rightarrow	$\rightarrow \rightarrow$
H19_NR3C1_CALD1	5.86									2.72	2	\rightarrow	$\rightarrow \rightarrow$
H19_PPARA_KLF11	6.41									3.46	2	\rightarrow	$\rightarrow \rightarrow$
H19_RB1_WRN	2.40									2.86	2	\rightarrow	$\rightarrow \rightarrow$
H19_RUNX2_MMP2	3.20									2.81	2	\rightarrow	$\rightarrow \rightarrow$
H19_SOX18_CLDN5	9.50					3.07					2	\rightarrow	$\rightarrow \rightarrow$
H19_SP1_ADAM17	3.71									5.66	2	\rightarrow	$\rightarrow \rightarrow$
H19_SP1_ATM	3.51									5.70	2	\rightarrow	$\rightarrow \rightarrow$
H19_SP1_TGFBR2	2.91									4.08	2	\rightarrow	$\rightarrow \rightarrow$
H19_SP1_UTRN	4.22									3.01	2	\rightarrow	$\rightarrow \rightarrow$
H19_STAT3_AKAP12	2.67									3.59	2	\rightarrow	$\rightarrow \rightarrow$
H19_STAT3_KLF11	3.53									3.41	2	\rightarrow	$\rightarrow \rightarrow$
H19_TWIST2_SRPX		•				3.97	3.33				2	\rightarrow	$\rightarrow \rightarrow$
H19_AHR_CYP1B1									2.45	7.59	2	$\rightarrow \rightarrow$	\rightarrow
H19_AKNA_CD40	2.68						3.30				2	$\rightarrow \rightarrow$	\rightarrow
H19_CIITA_HLA-DRA	3.73									3.68	2	$\rightarrow \rightarrow$	\rightarrow
H19_IRF8_CD68							4.43			5.10	2	$\rightarrow \rightarrow$	\rightarrow
H19_SNAI2_MET	2.58		5.20								2	$\rightarrow \rightarrow$	\rightarrow
H19_SPI1_ACP5							2.42			4.55	2	$\rightarrow \rightarrow$	\rightarrow
H19_SPI1_CD40	3.07							3.39			2	$\rightarrow \rightarrow$	\rightarrow
H19_SPI1_IL18	3.75									3.14	2	$\rightarrow \rightarrow$	\rightarrow
H19_SPI1_NCF2	3.67						2.63				2	$\rightarrow \rightarrow$	\rightarrow
H19_STAT1_CD40	4.37							_		3.12	2	$\rightarrow \rightarrow$	\rightarrow
H19_STAT1_FCGR1A	4.69									2.73	2	$\rightarrow \rightarrow$	\rightarrow
H19_STAT1_SERPING1	4.06									4.74	2	$\rightarrow \rightarrow$	\rightarrow
H19_STAT1_TYMP	3.88					3.72					2	$\rightarrow \rightarrow$	\rightarrow
H19_GATA2_VCAM1	2.95			6.16							2	-	\rightarrow
H19_NFKB1_NCAM1							3.51			3.86	2	-	\rightarrow
H19_SP1_ME1						4.42				5.08	2	-	\rightarrow
H19_TP53_IGFBP3					4.07		_			3.41	2	-	\rightarrow
H19_CTCF_IPO13						3.15				3.26	2	\rightarrow	-
H19_E2F1_GADD45B	5.75	3.86					_				2	\rightarrow	-

Triplet	BRCA	COAD	HNSC	KIRC	LGG	LUAD	PAAD	STAD	TGCT	THCA	# of cancer	H19 lowley	H19 highly
H10 E2E1 MVC							3 64			6 27	cypes 2		
$\mathbf{H}_{\mathbf{L}}^{\mathbf{L}} = \mathbf{L}_{\mathbf{L}}^{\mathbf{L}} = \mathbf{L}_{\mathbf$							3.04	4 20		0.27	2		י
H19_EZH2_CHIA	C 0.4	1 5 5					5.52	4.20			2	~	-
HI9_EZH2_SNAI2	0.04	4.55				0.64			0.10		2	7	-
HI9_FOXOI_HYOUI	1.00					2.64			9.10		2	\rightarrow	-1
H19_HDAC1_TXNIP	4.88					4.11					2	\rightarrow	-1
H19_HDAC2_TWIST1	2.77	3.76									2	\rightarrow	-1
H19_HDGF_FAS	6.14						7.27				2	\rightarrow	4
H19_IKZF1_BIRC5	4.72						3.70				2	\rightarrow	H
H19_MYB_COL1A1		4.33						4.66			2	\rightarrow	4
H19_MYBL2_COL1A1	11.03	4.48						6.07			3	\rightarrow	4
H19_MYC_E2F1							4.03			5.84	2	\rightarrow	H
H19_NFKB2_HIF1A						3.54	3.57				2	\rightarrow	4
H19_PARP1_FBN1	2.70								5.57		2	\rightarrow	4
H19_PARP1_FN1	3.53	3.08									2	\rightarrow	H
H19_POU2AF1_TK1	5.63						7.38		_		2	\rightarrow	H
H19_POU2F1_VWF						7.74		5.91			2	\rightarrow	H
H19_RELA_BGN							3.90			3.75	2	\rightarrow	H
H19_RUNX1_SYMPK		5.54				7.74				5.65	3	\rightarrow	H
H19_SOX9_CD3E			-	4.64			5.49				2	\rightarrow	4
H19_SP1_ABCA2						8.08				4.60	2	\rightarrow	H
H19_SP1_FLNA						5.20				5.60	2	\rightarrow	4
H19_STAT3_DNMT1						4.92				3.38	2	\rightarrow	4
H19_STAT3_IKBKE	2.59							6.50			2	\rightarrow	4
H19_USF1_FMR1							3.09			2.91	2	\rightarrow	H

Notes: The values are transformed as $-\log 10$ (p-value). Pattern: \rightarrow activation, \dashv repression.

No	TF/Gene	BRCA	COAD HNSC	KIRC	LGG	LUAD	PAAD	STAD	TGCT	THCA
1	AHR	[1]					[2]			
	CCNG2	[3]					[4]			
2	AHR								[5]	[6]
	CYP1B1								[7]	[8]
3	AHR	[1]								[6]
	HSPB1	[9]								[10]
4	AHR	[1]					[2]			[6]
	SOS1	[11]					[12]			[13]
5	AIP	[14]								[15]
	RSF1	[16]								[17]
6	AKNA	[18]					[19]			
	CD40	[20]					[21]			
7	CIITA	[22]								[23]
	HLA-DRA	[24]								[25]
8	CREBBP	[26]				[27]				
	CREB1	[28]				[29]				
9	CTCF					[30]				[31]
	IPO13					?				?
10	E2F1	[32]	[33]							
	GADD45B	[34]	[35]							
11	E2F1						[36]			[37]
	MYC						[38]			[39]
12	E2F3	[40]								[41]
	MAPK8	[42]								[43]
13	EGR1	[44]			[45]					
	SPRY1	[46]			[47]					
14	ERG						[48]			[49]
	EPB41L3						[50]			[51]
15	ETS1	[52]		[53]						
	TGFBR2	[54]		[55]						
16	EZH2	[56]			[57]					
	BRCA1	[58]			[59]					
17	EZH2						[60]	[61]		
	CIITA						[62]	[63]		
18	EZH2	[56]						[61]		
	DACT3	[64]						?		
19	EZH2	[56]	[65]							
	SNAI2	[66]	[67]							
20	FLI1	[68]	[69]							
	CTGF	[70]	[71]							

Table S3. TF-gene pairs modulated by H19 and their evidences that related to specific cancers.

No	TF/Gene	BRCA	COAD	HNSC	KIRC	LGG	LUAD	PAAD	STAD	TGCT	THC
21	FLI1	[68]		[72]							
	TGFBR2	[52]		[73]							
22	FOSL2	[74]	[75]								
	BCL6	[76]	[77]								
23	FOXM1	[78]				[79]				[80]	
	CCNB1	[81]				[82]				[83]	
24	FOXO1	[84]					[85]			[86]	
	HYOU1	[87]					[88]			?	
25	FOXO1	[84]			[89]						
	TXNIP	[90]			[91]						
26	GATA2	[92]			[93]						
	VCAM1	[94]			[93]						
27	GATA2	[92]			[93]						
	VWF	[95]			[96]						
28	HDAC1	[97]					[98]				
	TXNIP	[90]					[99]				
29	HDAC2	[100]	[101]								
	TWIST1	[102]	[103]								
30	HDGF	[104]						[105]			
	FAS	[106]						[107]			
31	HNRNPK						[108]				[109]
	EIF4E						[110]				[111]
32	IKZF1	[112]						[113]			
	BIRC5	[114]						[115]			
33	IRF8							[116]			[117]
	CD68							[118]			[119]
34	KAT2B	[120]									[121]
	SMAD4	[122]									[123]
35	KAT2B	[120]						[124]			
	ZEB1	[125]						[126]			
36	KLF4	[127]									[128]
	IL6	[129]									[130]
37	KLF6	[131]					[132]				
	TXNIP	[90]					[99]				
38	MYB		[133]						[134]		
	COL1A1		[135]						[136]		
39	MYBL2	[137]	[35]						[138]		
	COL1A1	[139]	[135]						[136]		
40	MYC							[38]			[39]
	E2F1							[36]			[37]

No	TF/Gene	BRCA	COAD	HNSC	KIRC	LGG	LUAD	PAAD	STAD	TGCT	THCA
41	NFKB1	[140]									[141]
	CHUK	[142]									?
42	NFKB1	[143]						[144]			
	MIF							[145]			
43	NFKB1							[144]			[141]
	NCAM1							[146]			[147]
44	NFKB2						[148]	[149]			
	HIF1A						[150]	[151]			
45	NFYB	[152]									[153]
	EDF1	[154]									?
46	NFYB	[152]									[153]
	HMGCS1	[155]									[156]
47	NFYB	[152]									[153]
	SP3	[157]									[158]
48	NR3C1	[159]									[160]
	CALD1	[161]									[162]
49	PARP1	[163]								[164]	
	FBN1	[161]								[165]	
50	PARP1	[163]	[166]								
	FN1	[167]	[168]								
51	POU2AF1	[169]						[170]			
	TK1	[171]						[172]			
52	POU2F1						[173]		[174]		
	VWF						[175]		[176]		
53	PPARA	[177]									[178]
	KLF11	[179]									[180]
54	RB1	[181]									[182]
	WRN	[183]									[184]
55	RELA							[185]			[186]
	BGN							[187]			?
56	RUNX1		[188]				[189]				[190]
	SYMPK		[191]				[192]				?
57	RUNX2	[193]									[194]
	MMP2	[195]									[196]
58	SNAI2	[66]		[197]							
	MET	[198]		[199]							
59	SOX18	[200]					[201]				
	CLDN5	[202]					[203]				
60	SOX9				[204]			[205]			
	CD3E				[206]			[207]			

No	TF/Gene	BRCA	COAD 1	HNSC	KIRC	LGG	LUAD	PAAD	STAD	TGCT THCA
61	SP1						[208]			[209]
	ABCA2						[210]			[211]
62	SP1	[212]								[209]
	ADAM17	[213]								[214]
63	SP1	[212]								[209]
	ATM	[215]								[216]
64	SP1	[212]					[208]			[209]
	FLNA	[217]					[218]			[219]
65	SP1	[212]								[209]
	HRAS	[220]								[221]
66	SP1	[212]								[209]
	HSPB1	[9]								[222]
67	SP1	[212]					[208]			[209]
	ME1	[223]					[224]			?
68	SP1	[212]								[209]
	SIGIRR	[225]								?
69	SP1	[212]								[209]
	TGFBR2	[52]								[226]
70	SP1	[212]								[209]
	UTRN	[227]								[228]
71	SP3				[229]					[158]
	EDF1				?					?
72	SPI1							[187]		[230]
	ACP5							[231]		[232]
73	SPI1	[233]							[234]	
	CD40	[20]							[235]	
74	SPI1	[233]								[230]
	IL18	[236]								[237]
75	SPI1	[233]						[187]		
	NCF2	[238]						[239]		
76	STAT1	[240]								[241]
	CD40	[20]								[242]
77	STAT1	[240]								[241]
	FCGR1A	[243]								[244]
78	STAT1	[240]								[241]
	SERPING1	[245]								[246]
79	STAT1	[240]					[247]			
	TYMP	[248]					[249]			
80	STAT3	[250]								[251]
	AKAP12	[252]								[253]

No	TF/Gene	BRCA COAD HNSC	C KIRC	LGG	LUAD	PAAD	STAD	TGCT THCA
81	STAT3				[254]			[251]
	DNMT1				[255]			[256]
82	STAT3	[250]					[257]	
	IKBKE	[258]					[259]	
83	STAT3	[250]						[251]
	KLF11	[179]						[180]
84	STAT3	[250]						[251]
	NDUFA13	[260]						[261]
85	STAT3	[250]						[251]
	TYK2	[262]						[263]
86	TP53			[264]				[265]
	IGFBP3			[266]				[267]
87	TWIST2				[268]	[269]		
	SRPX				[270]	[271]		
88	USF1					?		[272]
	FMR1					[273]		[274]

Notes: '?' means having not found related evidences. There are 13 TFs/genes which have not evidences to support their relation to specific cancers. TF: Transcription Factor, BRCA: Breast invasive carcinoma, COAD: Colon adenocarcinoma, HNSC: Head and Neck squamous cell carcinoma, KIRC: Kidney renal clear cell carcinoma, LGG: Brain Lower Grade Glioma, LUAD: Lung adenocarcinoma, PAAD: Pancreatic adenocarcinoma, STAD: Stomach adenocarcinoma, TGCT: Testicular Germ Cell Tumors, THCA: Thyroid carcinoma.

References

- D'Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane DR, Spoelstra NS, Nemkov TG, D'Alessandro A, Hansen KC, Richer JK: A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. *Cancer research* 2015, 75(21):4651-4664.
- Koliopanos A, Kleeff J, Xiao Y, Safe S, Zimmermann A, Büchler MW, Friess H: Increased arylhydrocarbon receptor expression offers a potential therapeutic target for pancreatic cancer. *Oncogene* 2002, 21(39):6059.
- 3. Li XJ, Ren ZJ, Tang JH, Yu Q: Exosomal microRNA miR-1246 promotes cell proliferation, invasion and drug resistance by targeting CCNG2 in breast cancer. *Cellular Physiology and Biochemistry* 2017, 44(5):1741-1748.
- Hasegawa S, Eguchi H, Nagano H, Konno M, Tomimaru Y, Wada H, Hama N, Kawamoto K, Kobayashi S, Nishida N: MicroRNA-1246 expression associated with CCNG2mediated chemoresistance and stemness in pancreatic cancer. British journal of cancer 2014, 111(8):1572.
- 5. Brokken LJ, Lundberg-Giwercman Y, Meyts R-D, Eberhard J, Stahl O, Cohn-Cedermark G, Daugaard G, Arver S, Giwercman A: Association between polymorphisms in the aryl hydrocarbon receptor repressor gene and disseminated testicular germ cell cancer. *Frontiers in endocrinology* 2013, 4:4.
- 6. Haymart MR, Banerjee M, Yin H, Worden F, Griggs JJ: Marginal treatment benefit in

anaplastic thyroid cancer. Cancer 2013, 119(17):3133-3139.

- 7. Richiardi L, Pettersson A, Akre O: Genetic and environmental risk factors for testicular cancer. *International journal of andrology* 2007, **30**(4):230-241.
- Poljaková J, Eckschlager T, Kizek R, Frei E, Stiborová M: Electrochemical determination of enzymes metabolizing ellipticine in thyroid cancer cells—A tool to explain the mechanism of ellipticine toxicity to these cells. Int J Electrochem Sci 2013, 8(2):1573-1585.
- Cayado-Gutiérrez N, Moncalero VL, Rosales EM, Berón W, Salvatierra EE, Alvarez-Olmedo D, Radrizzani M, Ciocca DR: Downregulation of Hsp27 (HSPB1) in MCF-7 human breast cancer cells induces upregulation of PTEN. Cell Stress and Chaperones 2013, 18(2):243-249.
- 10. Li Y, Yang Q, Guan H, Shi B, Ji M, Hou P: **ZNF677 suppresses Akt phosphorylation** and tumorigenesis in thyroid cancer. *Cancer research* 2018, **78**(18):5216-5228.
- Yu Y, Nie Y, Feng Q, Qu J, Wang R, Bian L, Xia J: Targeted covalent inhibition of Grb2–Sos1 interaction through proximity-induced conjugation in breast cancer cells. *Molecular pharmaceutics* 2017, 14(5):1548-1557.
- Swanson KD, Winter JM, Reis M, Bentires-Alj M, Greulich H, Grewal R, Hruban RH, Yeo CJ, Yassin Y, Iartchouk O: SOS1 mutations are rare in human malignancies: implications for Noonan Syndrome patients. *Genes, Chromosomes and Cancer* 2008, 47(3):253-259.
- Yoo S-K, Lee S, Kim S-j, Jee H-G, Kim B-A, Cho H, Song YS, Cho SW, Won J-K, Shin J-Y: Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. *PLoS genetics* 2016, **12**(8):e1006239.
- Georgitsi M, Karhu A, Winqvist R, Visakorpi T, Waltering K, Vahteristo P, Launonen V, Aaltonen L: Mutation analysis of aryl hydrocarbon receptor interacting protein (AIP) gene in colorectal, breast, and prostate cancers. *British journal of cancer* 2007, 96(2):352.
- Kimmel RR, Zhao LP, Nguyen D, Lee S, Aronszajn M, Cheng C, Troshin VP, Abrosimov A, Delrow J, Tuttle RM: Microarray comparative genomic hybridization reveals genome-wide patterns of DNA gains and losses in post-Chernobyl thyroid cancer. *Radiation research* 2006, 166(3):519-531.
- Mao T-L, Hsu C-Y, Yen MJ, Gilks B, Sheu JJ-C, Gabrielson E, Vang R, Cope L, Kurman RJ, Wang T-L: Expression of Rsf-1, a chromatin-remodeling gene, in ovarian and breast carcinoma. *Human pathology* 2006, 37(9):1169-1175.
- 17. Ito Y, Miyoshi E, Sasaki N, Kakudo K, Yoshida H, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K: Polo-like kinase 1 overexpression is an early event in the progression of papillary carcinoma. *British journal of cancer* 2004, **90**(2):414.
- Alvarez C, Aravena A, Tapia T, Rozenblum E, Solís L, Corvalán A, Camus M, Alvarez M, Munroe D, Maass A: Different Array CGH profiles within hereditary breast cancer tumors associated to BRCA1 expression and overall survival. BMC cancer 2016, 16(1):219.
- Lei J, Wu Z, Jiang Z, Li J, Zong L, Chen X, Duan W, Xu Q, Zhang L, Han L: Pancreatic carcinoma-specific immunotherapy using novel tumor specific cytotoxic T cells. Oncotarget 2016, 7(50):83601.

- 20. Tong AW, Papayoti MH, Netto G, Armstrong DT, Ordonez G, Lawson JM, Stone MJ: Growth-inhibitory effects of CD40 ligand (CD154) and its endogenous expression in human breast cancer. *Clinical cancer research* 2001, 7(3):691-703.
- 21. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL: **CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans**. *Science* 2011, **331**(6024):1612-1616.
- 22. Shi B, Vinyals A, Alia P, Broceño C, Chen F, Adrover M, Gelpi C, Price JE, Fabra À: Differential expression of MHC class II molecules in highly metastatic breast cancer cells is mediated by the regulation of the CIITA transcription: implication of CIITA in tumor and metastasis development. The international journal of biochemistry & cell biology 2006, 38(4):544-562.
- 23. Jo YS, Lee JC, Li S, Choi YS, Bai YS, Kim YJ, Lee IS, Rha SY, Ro Hk, Kim JM: Significance of the expression of major histocompatibility complex class II antigen, HLA-DR and-DQ, with recurrence of papillary thyroid cancer. International journal of cancer 2008, 122(4):785-790.
- 24. Rangel LB, Agarwal R, Sherman-Baust CA, de Mello-Coelho V, Pizer ES, Ji H, Taub DD, Morin PJ: Anomalous expression of the HLA-DR alpha and beta chains in ovarian and other cancers. *Cancer biology & therapy* 2004, 3(10):1021-1027.
- 25. Finn S, Smyth P, Cahill S, Streck C, O'regan E, Flavin R, Sherlock J, Howells D, Henfrey R, Cullen M: Expression microarray analysis of papillary thyroid carcinoma and benign thyroid tissue: emphasis on the follicular variant and potential markers of malignancy. Virchows Archiv 2007, 450(3):249-260.
- 26. Gupta A, Patnaik MM, Naina HV: **MYST3/CREBBP rearranged acute myeloid** leukemia after adjuvant chemotherapy for breast cancer. *Case reports in oncological medicine* 2014, 2014.
- 27. Tillinghast GW, Partee J, Albert P, Kelley JM, Burtow KH, Kelly K: Analysis of genetic stability at the EP300 and CREBBP loci in a panel of cancer cell lines. *Genes, Chromosomes and Cancer* 2003, **37**(2):121-131.
- 28. Chhabra A, Fernando H, Watkins G, Mansel RE, Jiang WG: Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. *Oncology reports* 2007, **18**(4):953-958.
- 29. Cho JH, Hong WG, Jung Y-J, Lee J, Lee E, Hwang S-G, Um H-D, Park JK: Γ-Ionizing radiation-induced activation of the EGFR–p38/ERK–STAT3/CREB-1–EMT pathway promotes the migration/invasion of non-small cell lung cancer cells and is inhibited by podophyllotoxin acetate. *Tumor Biology* 2016, **37**(6):7315-7325.
- 30. Hong JA, Kang Y, Abdullaev Z, Flanagan PT, Pack SD, Fischette MR, Adnani MT, Loukinov DI, Vatolin S, Risinger JI: Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells. Cancer research 2005, 65(17):7763-7774.
- 31. Wei W-J, Lu Z-W, Wang Y, Zhu Y-X, Wang Y-L, Ji Q-H: Clinical significance of papillary thyroid cancer risk loci identified by genome-wide association studies. *Cancer genetics* 2015, **208**(3):68-75.
- 32. Frietze S, Lupien M, Silver PA, Brown M: CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer research 2008,

68(1):301-306.

- 33. Kasahara M, Takahashi Y, Nagata T, Asai S, Eguchi T, Ishii Y, Fujii M, Ishikawa K: Thymidylate synthase expression correlates closely with E2F1 expression in colon cancer. *Clinical cancer research* 2000, 6(7):2707-2711.
- 34. Gomis RR, Alarcón C, Nadal C, Van Poznak C, Massagué J: C/EBPβ at the core of the TGFβ cytostatic response and its evasion in metastatic breast cancer cells. Cancer cell 2006, 10(3):203-214.
- 35. Clark-Langone KM, Sangli C, Krishnakumar J, Watson D: Translating tumor biology into personalized treatment planning: analytical performance characteristics of the Onco type DX® Colon Cancer Assay. *BMC cancer* 2010, **10**(1):691.
- 36. Rödicker F, Stiewe T, Zimmermann S, Pützer BM: **Therapeutic efficacy of E2F1 in** pancreatic cancer correlates with **TP73** induction. *Cancer research* 2001, **61**(19):7052-7055.
- 37. Onda M, Nagai H, Yoshida A, Miyamoto S, Asaka S-i, Akaishi J, Takatsu K, Nagahama M, Ito K, Shimizu K: Up-regulation of transcriptional factor E2F1 in papillary and anaplastic thyroid cancers. *Journal of human genetics* 2004, 49(6):312.
- 38. Sancho P, Burgos-Ramos E, Tavera A, Kheir TB, Jagust P, Schoenhals M, Barneda D, Sellers K, Campos-Olivas R, Graña O: MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell metabolism 2015, 22(4):590-605.
- 39. Zhu X, Zhao L, Park JW, Willingham MC, Cheng S-y: Synergistic signaling of KRAS and thyroid hormone receptor β mutants promotes undifferentiated thyroid cancer through MYC up-regulation. Neoplasia 2014, 16(9):757-769.
- 40. Vimala K, Sundarraj S, Sujitha MV, Kannan S: Curtailing overexpression of E2F3 in breast cancer using siRNA (E2F3)-based gene silencing. *Archives of medical research* 2012, 43(6):415-422.
- 41. Ziebold U, Lee EY, Bronson RT, Lees JA: **E2F3 loss has opposing effects on different pRB-deficient tumors, resulting in suppression of pituitary tumors but metastasis of medullary thyroid carcinomas**. *Molecular and cellular biology* 2003, **23**(18):6542-6552.
- 42. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR: **The landscape of cancer genes and mutational processes in breast cancer**. *Nature* 2012, **486**(7403):400.
- 43. Bauer J, Kopp S, Schlagberger E, Grosse J, Sahana J, Riwaldt S, Wehland M, Luetzenberg R, Infanger M, Grimm D: Proteome analysis of human follicular thyroid cancer cells exposed to the random positioning machine. International journal of molecular sciences 2017, 18(3):546.
- 44. Redmond K, Crawford N, Farmer H, D'costa Z, O'brien G, Buckley N, Kennedy R, Johnston P, Harkin D, Mullan P: T-box 2 represses NDRG1 through an EGR1dependent mechanism to drive the proliferation of breast cancer cells. Oncogene 2010, 29(22):3252.
- 45. Calogero A, Arcella A, De Gregorio G, Porcellini A, Mercola D, Liu C, Lombari V, Zani M, Giannini G, Gagliardi FM: The early growth response gene EGR-1 behaves as a suppressor gene that is down-regulated independent of ARF/Mdm2 but not p53 alterations in fresh human gliomas. *Clinical Cancer Research* 2001, 7(9):2788-2796.

- 46. Fernandez S, Russo J: Estrogen and xenoestrogens in breast cancer. *Toxicologic* pathology 2010, **38**(1):110-122.
- 47. Moore LM, Zhang W: **Targeting miR-21 in glioma: a small RNA with big potential**. *Expert opinion on therapeutic targets* 2010, **14**(11):1247-1257.
- 48. Sarkar S, Dubaybo H, Ali S, Goncalves P, Kollepara SL, Sethi S, Philip PA, Li Y: Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27kip1, p57kip2, and PUMA. American journal of cancer research 2013, 3(5):465.
- 49. Kim S, Park HK, Jung HY, Lee S-Y, Min K-W, Kim WY, Han HS, Kim WS, Hwang TS, Lim SD: ERG immunohistochemistry as an endothelial marker for assessing lymphovascular invasion. Korean journal of pathology 2013, 47(4):355.
- 50. Ma J, Cheng L, Liu H, Zhang J, Shi Y, Zeng F, Miele L, H Sarkar F, Xia J, Wang Z: Genistein down-regulates miR-223 expression in pancreatic cancer cells. *Current drug targets* 2013, 14(10):1150-1156.
- 51. Ciarrocchi A, Piana S, Valcavi R, Gardini G, Casali B: Inhibitor of DNA binding-1 induces mesenchymal features and promotes invasiveness in thyroid tumour cells. *European Journal of Cancer* 2011, 47(6):934-945.
- 52. Zhang Y, Yan L-X, Wu Q-N, Du Z-M, Chen J, Liao D-Z, Huang M-Y, Hou J-H, Wu Q-L, Zeng M-S: miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. *Cancer* research 2011, 71(10):3552-3562.
- 53. Kim K-R, Yoshizaki T, Miyamori H, Hasegawa K, Horikawa T, Furukawa M, Harada S, Seiki M, Sato H: Transformation of Madin-Darby canine kidney (MDCK) epithelial cells by Epstein-Barr virus latent membrane protein 1 (LMP1) induces expression of Ets1 and invasive growth. Oncogene 2000, 19(14):1764.
- 54. Keklikoglou I, Koerner C, Schmidt C, Zhang J, Heckmann D, Shavinskaya A, Allgayer H, Gückel B, Fehm T, Schneeweiss A: MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGFβ signaling pathways. Oncogene 2012, 31(37):4150.
- 55. Lichner Z, Saleh C, Subramaniam V, Seivwright A, Prud'homme GJ, Yousef GM: miR 17 inhibition enhances the formation of kidney cancer spheres with stem cell/tumor initiating cell properties. *Oncotarget* 2015, 6(8):5567.
- 56. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF: **EZH2 is a marker of aggressive breast cancer and promotes neoplastic** transformation of breast epithelial cells. *Proceedings of the National Academy of Sciences* 2003, **100**(20):11606-11611.
- 57. Zhang J, Chen L, Han L, Shi Z, Zhang J, Pu P, Kang C: EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. *Cancer letters* 2015, 356(2):929-936.
- 58. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994, 266(5182):66-71.
- Rasmussen RD, Gajjar MK, Tuckova L, Jensen KE, Maya-Mendoza A, Holst CB, Møllgaard K, Rasmussen JS, Brennum J, Bartek Jr J: BRCA1-regulated RRM2

expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity. *Nature communications* 2016, 7:13398.

- Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, Kong D, Ahmad A, Li Y, Padhye S: Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer research 2012, 72(1):335-345.
- 61. Carvalho J, van Grieken NC, Pereira PM, Sousa S, Tijssen M, Buffart TE, Diosdado B, Grabsch H, Santos MA, Meijer G: Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer. *The Journal of pathology* 2012, 228(1):31-44.
- 62. Xi H, Blanck G: Interferon regulatory factor-2 point mutations in human pancreatic tumors. *International journal of cancer* 2000, **87**(6):803-808.
- 63. Satoh A, Toyota M, Ikeda H, Morimoto Y, Akino K, Mita H, Suzuki H, Sasaki Y, Kanaseki T, Takamura Y: Epigenetic inactivation of class II transactivator (CIITA) is associated with the absence of interferon-γ-induced HLA-DR expression in colorectal and gastric cancer cells. Oncogene 2004, 23(55):8876.
- 64. Ren Y, Chen Y, Liang X, Lu Y, Pan W, Yang M: MiRNA-638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3. *Cancer letters* 2017, 390:126-136.
- 65. Fussbroich B, Wagener N, Macher-Goeppinger S, Benner A, Fälth M, Sültmann H, Holzer A, Hoppe-Seyler K, Hoppe-Seyler F: **EZH2 depletion blocks the proliferation of colon cancer cells**. *PloS one* 2011, **6**(7):e21651.
- 66. Zhang Z, Zhang B, Li W, Fu L, Fu L, Zhu Z, Dong J-T: Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. *Genes & cancer* 2011, 2(8):782-791.
- 67. Larriba MJ, Bonilla F, Muñoz A: The transcription factors Snail1 and Snail2 repress vitamin D receptor during colon cancer progression. *The Journal of steroid biochemistry and molecular biology* 2010, **121**(1-2):106-109.
- 68. Scheiber MN, Watson PM, Rumboldt T, Stanley C, Wilson RC, Findlay VJ, Anderson PE, Watson DK: **FLI1 expression is correlated with breast cancer cellular growth, migration, and invasion and altered gene expression**. *Neoplasia* 2014, **16**(10):801-813.
- 69. Zhang J, Guo H, Zhang H, Wang H, Qian G, Fan X, Hoffman AR, Hu JF, Ge S: Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene friend leukemia virus integration 1 gene. *Cancer* 2011, 117(1):86-95.
- Pandey DP, Lappano R, Albanito L, Madeo A, Maggiolini M, Picard D: Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. *The EMBO journal* 2009, 28(5):523-532.
- 71. Ladwa R, Pringle H, Kumar R, West K: **Expression of CTGF and Cyr61 in colorectal cancer**. *Journal of clinical pathology* 2011, **64**(1):58-64.
- 72. Rahman MA, Amin AR, Wang X, Zuckerman JE, Choi CHJ, Zhou B, Wang D, Nannapaneni S, Koenig L, Chen Z: Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. *Journal of controlled release* 2012, 159(3):384-392.
- 73. Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross

N, Olson S: Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. *The Journal of clinical investigation* 2009, **119**(11):3408-3419.

- He J, Mai J, Li Y, Chen L, Xu H, Zhu X, Pan Q: miR-597 inhibits breast cancer cell proliferation, migration and invasion through FOSL2. Oncology reports 2017, 37(5):2672-2678.
- 75. Asting AG, Carén H, Andersson M, Lönnroth C, Lagerstedt K, Lundholm K: COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status. *BMC cancer* 2011, **11**(1):238.
- 76. Tran TH, Utama FE, Lin J, Yang N, Sjolund AB, Ryder A, Johnson KJ, Neilson LM, Liu C, Brill KL: Prolactin inhibits BCL6 expression in breast cancer through a Stat5adependent mechanism. *Cancer research* 2010, **70**(4):1711-1721.
- 77. Moos PJ, Edes K, Mullally JE, Fitzpatrick FA: Curcumin impairs tumor suppressor p53 function in colon cancer cells. *Carcinogenesis* 2004, **25**(9):1611-1617.
- 78. Kwok JM-M, Peck B, Monteiro LJ, Schwenen HD, Millour J, Coombes RC, Myatt SS, Lam EW-F: FOXM1 confers acquired cisplatin resistance in breast cancer cells. *Molecular cancer research* 2010, 8(1):24-34.
- 79. Gong A, Huang S: FoxM1 and Wnt/β-catenin signaling in glioma stem cells. Cancer research 2012, 72(22):5658-5662.
- 80. Xu X-S, Miao R-C, Wan Y, Zhang L-Q, Qu K, Liu C: FoxM1 as a novel therapeutic target for cancer drug therapy. *Asian Pac J Cancer Prev* 2015, 16(1):23-29.
- 81. Ding K, Li W, Zou Z, Zou X, Wang C: CCNB1 is a prognostic biomarker for ER+ breast cancer. *Medical hypotheses* 2014, **83**(3):359-364.
- Ajeawung NF, Faure R, Jones C, Kamnasaran D: Preclinical evaluation of dipotassium bisperoxo (picolinato) oxovanadate V for the treatment of pediatric low-grade gliomas. *Future Oncology* 2013, 9(8):1215-1229.
- Song R, Yao X, Shi L, Ren Y, Zhao H: Effects of dietary selenium on apoptosis of germ cells in the testis during spermatogenesis in roosters. *Theriogenology* 2015, 84(4):583-588.
- 84. Li J, Yang L, Song L, Xiong H, Wang L, Yan X, Yuan J, Wu J, Li M: Astrocyte elevated gene-1 is a proliferation promoter in breast cancer via suppressing transcriptional factor FOXO1. *Oncogene* 2009, **28**(36):3188.
- 85. Li Z-C, Zhang L-M, Wang H-B, Ma J-X, Sun J-Z: **RETRACTED ARTICLE: Curcumin inhibits lung cancer progression and metastasis through induction of FOXO1**. *Tumor Biology* 2014, **35**(1):111-116.
- 86. Jørgensen A, Jensen MB, Nielsen JE, Juul A, Rajpert-De Meyts E: Influence of vitamin D on cisplatin sensitivity in testicular germ cell cancer-derived cell lines and in a NTera2 xenograft model. The Journal of steroid biochemistry and molecular biology 2013, 136:238-246.
- Stojadinovic A, Hooke JA, Shriver CD, Nissan A, Kovatich AJ, Kao T-C, Ponniah S, Peoples GE, Moroni M: HYOU1/Orp150 expression in breast cancer. *Medical Science Monitor* 2007, 13(11):BR231-BR239.
- Yoshida Y, Yamashita T, Nagano K, Imai S, Nabeshi H, Yoshikawa T, Yoshioka Y, Abe Y,
 Kamada H, Tsutsumi Y: Limited expression of reticulocalbin-1 in lymphatic

endothelial cells in lung tumor but not in normal lung. *Biochemical and biophysical research communications* 2011, **405**(4):610-614.

- 89. Zhou L, Yin B, Liu Y, Hong Y, Zhang C, Fan J: Mechanism and function of decreased FOXO1 in renal cell carcinoma. *Journal of surgical oncology* 2012, **105**(8):841-847.
- 90. Shen L, O'Shea JM, Kaadige MR, Cunha S, Wilde BR, Cohen AL, Welm AL, Ayer DE: Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proceedings of the National Academy of Sciences 2015, 112(17):5425-5430.
- 91. Zhou J, Yu Q, Chng W-J: **TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms**. *The international journal of biochemistry & cell biology* 2011, **43**(12):1668-1673.
- 92. Yan W, Cao QJ, Arenas RB, Bentley B, Shao R: GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. *Journal of Biological Chemistry* 2010, 285(18):14042-14051.
- 93. Peters I, Dubrowinskaja N, Tezval H, Kramer MW, von Klot CA, Hennenlotter J, Stenzl A, Scherer R, Kuczyk MA, Serth J: Decreased mRNA expression of GATA1 and GATA2 is associated with tumor aggressiveness and poor outcome in clear cell renal cell carcinoma. *Targeted oncology* 2015, 10(2):267-275.
- 94. Chen Q, Zhang XH-F, Massagué J: Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. *Cancer cell* 2011, **20**(4):538-549.
- 95. Blann A, Gurney D, Wadley M, Bareford D, Stonelake P, Lip G: Increased soluble Pselectin in patients with haematological and breast cancer: a comparison with fibrinogen, plasminogen activator inhibitor and von Willebrand factor. *Blood coagulation & fibrinolysis* 2001, **12**(1):43-50.
- 96. Atrih A, Mudaliar M, Zakikhani P, Lamont D, Huang JT, Bray S, Barton G, Fleming S, Nabi G: Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling. *British journal of cancer* 2014, 110(6):1622.
- 97. Wu M-Y, Fu J, Xiao X, Wu J, Wu R-C: MiR-34a regulates therapy resistance by targeting HDAC1 and HDAC7 in breast cancer. *Cancer letters* 2014, 354(2):311-319.
- 98. Lin Y-C, Lin Y-C, Shih J-Y, Huang W-J, Chao S-W, Chang Y-L, Chen C-C: DUSP1 Expression Induced by HDAC1 Inhibition Mediates Gefitinib Sensitivity in Non– Small Cell Lung Cancers. Clinical Cancer Research 2015, 21(2):428-438.
- 99. Li Y, Miao L-Y, Xiao Y-L, Huang M, Yu M, Meng K, Cai H-R: **Hypoxia induced high** expression of thioredoxin interacting protein (TXNIP) in non-small cell lung cancer and its prognostic effect. *Asian Pac J Cancer Prev* 2015, **16**(7):2953-2958.
- 100. Müller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, Winzer K-J, Dietel M, Weichert W, Denkert C: Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer-overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC cancer 2013, 13(1):215.
- 101. Zhu P, Martin E, Mengwasser J, Schlag P, Janssen K-P, Göttlicher M: Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. *Cancer cell* 2004, 5(5):455-463.
- 102. Hong J, Zhou J, Fu J, He T, Qin J, Wang L, Liao L, Xu J: Phosphorylation of serine 68

of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. *Cancer research* 2011, **71**(11):3980-3990.

- 103. Gomez I, Peña C, Herrera M, Muñoz C, Larriba MJ, Garcia V, Dominguez G, Silva J, Rodriguez R, de Herreros AG: TWIST1 is expressed in colorectal carcinomas and predicts patient survival. *PloS one* 2011, 6(3):e18023.
- 104. Chen X, Yun J, Fei F, Yi J, Tian R, Li S, Gan X: Prognostic value of nuclear hepatomaderived growth factor (HDGF) localization in patients with breast cancer. *Pathology-Research and Practice* 2012, 208(8):437-443.
- 105. Guo H, Li W, Zheng T, Liu Z: MiR-195 targets HDGF to inhibit proliferation and invasion of NSCLC cells. *Tumor Biology* 2014, 35(9):8861-8866.
- 106. Wang YY, Kuhajda FP, Li JN, Pizer ES, Han WF, Sokoll LJ, Chan DW: Fatty acid synthase (FAS) expression in human breast cancer cell culture supernatants and in breast cancer patients. *Cancer letters* 2001, 167(1):99-104.
- 107. Kornmann M, Ishiwata T, Kleeff J, Beger HG, Korc M: Fas and Fas-ligand expression in human pancreatic cancer. *Annals of surgery* 2000, **231**(3):368.
- 108. Pino I, Pio R, Toledo G, Zabalegui N, Vicent S, Rey N, Lozano MD, Torre W, Garcia-Foncillas J, Montuenga LM: Altered patterns of expression of members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family in lung cancer. Lung cancer 2003, 41(2):131-143.
- 109. Chaker S, Kashat L, Voisin S, Kaur J, Kak I, MacMillan C, Ozcelik H, Michael Siu K, Ralhan R, Walfish PG: Secretome proteins as candidate biomarkers for aggressive thyroid carcinomas. *Proteomics* 2013, 13(5):771-787.
- 110. Yoshizawa A, Fukuoka J, Shimizu S, Shilo K, Franks TJ, Hewitt SM, Fujii T, Cordon-Cardo C, Jen J, Travis WD: Overexpression of phospho-eIF4E is associated with survival through AKT pathway in non-small cell lung cancer. *Clinical Cancer Research* 2010, 16(1):240-248.
- 111. Manfredi GI, Dicitore A, Gaudenzi G, Caraglia M, Persani L, Vitale G: PI3K/Akt/mTOR signaling in medullary thyroid cancer: a promising molecular target for cancer therapy. *Endocrine* 2015, 48(2):363-370.
- 112. Heyn H, Carmona FJ, Gomez A, Ferreira HJ, Bell JT, Sayols S, Ward K, Stefansson OA, Moran S, Sandoval J: DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. *Carcinogenesis* 2012, 34(1):102-108.
- 113. Herreros-Villanueva M, Bujanda L: Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have. Annals of translational medicine 2016, 4(7).
- 114. Wang C, Zheng X, Shen C, Shi Y: MicroRNA-203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple-negative breast cancer cells. Journal of experimental & clinical cancer research 2012, 31(1):58.
- 115. Glienke W, Maute L, Wicht J, Bergmann L: Curcumin inhibits constitutive STAT3 phosphorylation in human pancreatic cancer cell lines and downregulation of survivin/BIRC5 gene expression. *Cancer investigation* 2009, **28**(2):166-171.
- 116. Meyer MA, Baer JM, Knolhoff BL, Nywening TM, Panni RZ, Su X, Weilbaecher KN, Hawkins WG, Ma C, Fields RC: Breast and pancreatic cancer interrupt IRF8-

dependent dendritic cell development to overcome immune surveillance. *Nature* communications 2018, **9**(1):1250.

- 117. Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G, Caiazzo F, Basolo F, Giannini R, Kruhoffer M: The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. *The Journal of clinical investigation* 2005, 115(4):1068-1081.
- 118. Dallal RM, Christakos P, Lee K, Egawa S, Son Y-I, Lotze MT: **Paucity of dendritic cells** in pancreatic cancer. *Surgery* 2002, **131**(2):135-138.
- 119. Herrmann G, Schumm-Draeger P-M, Müller C, Atai E, Wenzel B, Fabian T, Usadel KH, Hübner K: T lymphocytes, CD68-positive cells and vascularisation in thyroid carcinomas. *Journal of cancer research and clinical oncology* 1994, 120(11):651-656.
- 120. Zhang G, Zhang W, Li B, Stringer-Reasor E, Chu C, Sun L, Bae S, Chen D, Wei S, Jiao K: MicroRNA-200c and microRNA-141 are regulated by a FOXP3-KAT2B axis and associated with tumor metastasis in breast cancer. Breast Cancer Research 2017, 19(1):73.
- 121. Zhao Y, Liu X, Zhong L, He M, Chen S, Wang T, Ma S: The combined use of miRNAs and mRNAs as biomarkers for the diagnosis of papillary thyroid carcinoma. *International journal of molecular medicine* 2015, **36**(4):1097-1103.
- 122. Deckers M, van Dinther M, Buijs J, Que I, Löwik C, van der Pluijm G, ten Dijke P: The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer research 2006, 66(4):2202-2209.
- 123. Geraldo M, Yamashita A, Kimura E: MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene 2012, 31(15):1910.
- 124. Ansari D, Andersson R, Bauden MP, Andersson B, Connolly JB, Welinder C, Sasor A, Marko-Varga G: Protein deep sequencing applied to biobank samples from patients with pancreatic cancer. Journal of cancer research and clinical oncology 2015, 141(2):369-380.
- 125. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, D'Alessio AC, Young RA, Weinberg RA: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. *Cell* 2013, 154(1):61-74.
- 126. Krebs AM, Mitschke J, Losada ML, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P: The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. *Nature cell biology* 2017, 19(5):518.
- 127. Yu F, Li J, Chen H, Fu J, Ray S, Huang S, Zheng H, Ai W: Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 2011, 30(18):2161.
- 128. Carina V, Zito G, Pizzolanti G, Richiusa P, Criscimanna A, Rodolico V, Tomasello L, Pitrone M, Arancio W, Giordano C: Multiple pluripotent stem cell markers in human anaplastic thyroid cancer: the putative upstream role of SOX2. *Thyroid* 2013, 23(7):829-837.
- 129. Iliopoulos D, Hirsch HA, Wang G, Struhl K: Inducible formation of breast cancer stem

cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. *Proceedings of the National Academy of Sciences* 2011, **108**(4):1397-1402.

- 130. Lumachi F, Basso SM, Orlando R: Cytokines, thyroid diseases and thyroid cancer. *Cytokine* 2010, **50**(3):229-233.
- 131. Guo H, Lin Y, Zhang H, Liu J, Zhang N, Li Y, Kong D, Tang Q, Ma D: Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC molecular biology 2007, 8(1):110.
- 132. Spinola M, Leoni VP, Galvan A, Korsching E, Conti B, Pastorino U, Ravagnani F, Columbano A, Skaug V, Haugen A: Genome-wide single nucleotide polymorphism analysis of lung cancer risk detects the KLF6 gene. Cancer letters 2007, 251(2):311-316.
- 133. Hugo H, Cures A, Suraweera N, Drabsch Y, Purcell D, Mantamadiotis T, Phillips W, Dobrovic A, Zupi G, Gonda TJ: Mutations in the MYB intron I regulatory sequence increase transcription in colon cancers. *Genes, Chromosomes and Cancer* 2006, 45(12):1143-1154.
- Liang J, Liu X, Xue H, Qiu B, Wei B, Sun K: MicroRNA-103a inhibits gastric cancer cell proliferation, migration and invasion by targeting c-Myb. *Cell proliferation* 2015, 48(1):78-85.
- Suhovskih AV, Aidagulova SV, Kashuba VI, Grigorieva EV: Proteoglycans as potential microenvironmental biomarkers for colon cancer. *Cell and tissue research* 2015, 361(3):833-844.
- 136. Li J, Ding Y, Li A: Identification of COL1A1 and COL1A2 as candidate prognostic factors in gastric cancer. *World journal of surgical oncology* 2016, 14(1):297.
- 137. Shi H, Bevier M, Johansson R, Enquist-Olsson K, Henriksson R, Hemminki K, Lenner P, Försti A: Prognostic impact of polymorphisms in the MYBL2 interacting genes in breast cancer. Breast cancer research and treatment 2012, 131(3):1039-1047.
- 138. Buffart TE, van Grieken NC, Tijssen M, Coffa J, Ylstra B, Grabsch HI, van de Velde CJ, Carvalho B, Meijer GA: **High resolution analysis of DNA copy-number aberrations of chromosomes 8, 13, and 20 in gastric cancers**. *Virchows Archiv* 2009, **455**(3):213-223.
- 139. Helleman J, Jansen MP, Ruigrok-Ritstier K, van Staveren IL, Look MP, Meijer-van Gelder ME, Sieuwerts AM, Klijn JG, Sleijfer S, Foekens JA: Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clinical cancer research 2008, 14(17):5555-5564.
- 140. Landi S, Moreno V, Gioia-Patricola L, Guino E, Navarro M, de Oca J, Capella G, Canzian F: Association of common polymorphisms in inflammatory genes interleukin (IL) 6, IL8, tumor necrosis factor α, NFKB1, and peroxisome proliferator-activated receptor γ with colorectal cancer. *Cancer research* 2003, 63(13):3560-3566.
- 141. Wang X, Peng H, Liang Y, Sun R, Wei T, Li Z, Gong Y, Gong R, Liu F, Zhang L: A functional insertion/deletion polymorphism in the promoter region of the NFKB1 gene increases the risk of papillary thyroid carcinoma. Genetic testing and molecular biomarkers 2015, 19(3):167-171.
- 142. Lerebours F, Vacher S, Andrieu C, Espie M, Marty M, Lidereau R, Bieche I: NF-kappa
 B genes have a major role in inflammatory breast cancer. *BMC cancer* 2008, 8(1):41.

- 143. Curran JE, Weinstein SR, Griffiths LR: Polymorphic variants of NFKB1 and its inhibitory protein NFKBIA, and their involvement in sporadic breast cancer. *Cancer letters* 2002, **188**(1-2):103-107.
- 144. Lu Z, Li Y, Takwi A, Li B, Zhang J, Conklin DJ, Young KH, Martin R, Li Y: miR-301a as an NF-κB activator in pancreatic cancer cells. *The EMBO journal* 2011, 30(1):57-67.
- 145. Denz A, Pilarsky C, Muth D, Rückert F, Saeger H-D, Grützmann R: Inhibition of MIF leads to cell cycle arrest and apoptosis in pancreatic cancer cells. *Journal of Surgical Research* 2010, 160(1):29-34.
- 146. Lunardi S, Jamieson NB, Lim SY, Griffiths KL, Carvalho-Gaspar M, Al-Assar O, Yameen S, Carter RC, McKay CJ, Spoletini G: IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget 2014, 5(22):11064.
- 147. Cunha LL, Morari EC, Guihen ACT, Razolli D, Gerhard R, Nonogaki S, Soares FA, Vassallo J, Ward LS: Infiltration of a mixture of different immune cells may be related to molecular profile of differentiated thyroid cancer. *Endocrine-related cancer* 2012, 19(3):L31-L36.
- 148. Medina PP, Carretero J, Ballestar E, Angulo B, Lopez-Rios F, Esteller M, Sanchez-Cespedes M: Transcriptional targets of the chromatin-remodelling factor SMARCA4/BRG1 in lung cancer cells. *Human molecular genetics* 2005, 14(7):973-982.
- 149. McDade TP, Perugini RA, Vittimberga Jr FJ, Carrigan RC, Callery MP: Salicylates inhibit NF-κB activation and enhance TNF-α-induced apoptosis in human pancreatic cancer cells. *Journal of Surgical Research* 1999, 83(1):56-61.
- 150. Tantai J, Hu D, Yang Y, Geng J: Combined identification of long non-coding RNA XIST and HIF1A-AS1 in serum as an effective screening for non-small cell lung cancer. International journal of clinical and experimental pathology 2015, 8(7):7887.
- 151. Hoffmann A-C, Mori R, Vallbohmer D, Brabender J, Klein E, Drebber U, Baldus SE, Cooc J, Azuma M, Metzger R: High expression of HIF1a is a predictor of clinical outcome in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA, VEGF, and bFGF. *Neoplasia* 2008, 10(7):674-679.
- 152. Verjans E, Noetzel E, Bektas N, Schütz AK, Lue H, Lennartz B, Hartmann A, Dahl E, Bernhagen J: Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer. *BMC cancer* 2009, 9(1):230.
- 153. Pan Z, Li L, Fang Q, Qian Y, Zhang Y, Zhu J, Ge M, Huang P: Integrated Bioinformatics Analysis of Master Regulators in Anaplastic Thyroid Carcinoma. *BioMed research international* 2019, 2019.
- 154. Mihály Z, Kormos M, Lánczky A, Dank M, Budczies J, Szász MA, Győrffy B: A metaanalysis of gene expression-based biomarkers predicting outcome after tamoxifen treatment in breast cancer. *Breast cancer research and treatment* 2013, **140**(2):219-232.
- 155. Sanchez-Alvarez R, Martinez-Outschoorn UE, Lin Z, Lamb R, Hulit J, Howell A, Sotgia F, Rubin E, Lisanti MP: Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. *Cell Cycle* 2013, 12(2):289-301.
- 156. Zhu W, Li C, Ai Z: Candidate agents for papillary thyroid cancer identified by gene

expression analysis. Pathology & Oncology Research 2013, 19(3):597-604.

- 157. Walker GE, Wilson EM, Powell D, Oh Y: Butyrate, a histone deacetylase inhibitor, activates the human IGF binding protein-3 promoter in breast cancer cells: molecular mechanism involves an Sp1/Sp3 multiprotein complex. Endocrinology 2001, 142(9):3817-3827.
- 158. Chintharlapalli S, Papineni S, Lee SO, Lei P, Jin UH, Sherman SI, Santarpia L, Safe S: Inhibition of pituitary tumor-transforming gene-1 in thyroid cancer cells by drugs that decrease specificity proteins. *Molecular carcinogenesis* 2011, 50(9):655-667.
- 159. Pan D, Kocherginsky M, Conzen SD: Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. *Cancer research* 2011, 71(20):6360-6370.
- 160. Dom G, Frank S, Floor S, Kehagias P, Libert F, Hoang C, Andry G, Spinette A, Craciun L, de Saint Aubin N: Thyroid follicular adenomas and carcinomas: molecular profiling provides evidence for a continuous evolution. Oncotarget 2018, 9(12):10343.
- 161. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, André S, Piccart M, Campone M, Brain E: A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. *Nature medicine* 2009, 15(1):68.
- Paricharttanakul NM, Saharat K, Chokchaichamnankit D, Punyarit P, Srisomsap C, Svasti J: Unveiling a novel biomarker panel for diagnosis and classification of welldifferentiated thyroid carcinomas. *Oncology reports* 2016, 35(4):2286-2296.
- 163. O'shaughnessy J, Osborne C, Pippen J, Yoffe M, Patt D, Monaghan G, Rocha C, Ossovskaya V, Sherman B, Bradley C: Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomized phase II trial. Journal of Clinical Oncology 2009, 27(18_suppl):3-3.
- 164. Usanova S, Piée-Staffa A, Sied U, Thomale J, Schneider A, Kaina B, Köberle B: Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression. *Molecular cancer* 2010, 9(1):248.
- 165. Cierna Z, Mego M, Jurisica I, Machalekova K, Chovanec M, Miskovska V, Svetlovska D, Kalavska K, Rejlekova K, Kajo K: Fibrillin-1 (FBN-1) a new marker of germ cell neoplasia in situ. *BMC cancer* 2016, 16(1):597.
- 166. Watson JL, Hill R, Yaffe PB, Greenshields A, Walsh M, Lee PW, Giacomantonio CA, Hoskin DW: Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells. Cancer letters 2010, 297(1):1-8.
- 167. Vecchi M, Confalonieri S, Nuciforo P, Vigano M, Capra M, Bianchi M, Nicosia D, Bianchi F, Galimberti V, Viale G: Breast cancer metastases are molecularly distinct from their primary tumors. Oncogene 2008, 27(15):2148.
- 168. Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J, Schweitzer A, Awad T, Sugnet C, Dee S: Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. *BMC genomics* 2006, 7(1):325.
- 169. Yoshimura K, Takeuchi K, Nagasaki K, Ogishima S, Tanaka H, Iwase T, Akiyama F, Kuroda Y, Miki Y: Prognostic value of matrix Gla protein in breast cancer. *Molecular medicine reports* 2009, 2(4):549-553.
- 170. Deng L, Shang Y, Guo S, Liu C, Zhou L, Sun Y, Nie Y, Fan D, Lu Y, Guo X: Ran GTPase

protein promotes metastasis and invasion in pancreatic cancer by deregulating the expression of AR and CXCR4. *Cancer biology & therapy* 2014, **15**(8):1087-1093.

- 171. Zhang F, Li H, Pendleton AR, Robison JG, Monson KO, Murray BK, O'Neill KL: Thymidine kinase 1 immunoassay: a potential marker for breast cancer. Cancer detection and prevention 2001, 25(1):8-15.
- 172. Paproski RJ, Young JD, Cass CE: Predicting gemcitabine transport and toxicity in human pancreatic cancer cell lines with the positron emission tomography tracer 3'-deoxy-3'-fluorothymidine. *Biochemical pharmacology* 2010, **79**(4):587-595.
- 173. Wang P, Chen D, Ma H, Li Y: LncRNA MEG3 enhances cisplatin sensitivity in nonsmall cell lung cancer by regulating miR-21-5p/SOX7 axis. OncoTargets and therapy 2017, 10:5137.
- 174. Xu SH, Huang JZ, Xu ML, Yu G, Yin XF, Chen D, Yan GR: ACK1 promotes gastric cancer epithelial-mesenchymal transition and metastasis through AKT-POU2F1-ECD signalling. *The Journal of pathology* 2015, 236(2):175-185.
- 175. Yano T, Tanikawa S, Fujie T, Masutani M, Horie T: Vascular endothelial growth factor expression and neovascularisation in non-small cell lung cancer. *European Journal of Cancer* 2000, **36**(5):601-609.
- 176. Ikeda M, Furukawa H, Imamura H, Shimizu J, Ishida H, Masutani S, Tatsuta M, Kawasaki T, Satomi T: Surgery for gastric cancer increases plasma levels of vascular endothelial growth factor and von Willebrand factor. *Gastric Cancer* 2002, 5(3):0137-0141.
- 177. Golembesky AK, Gammon MD, North KE, Bensen JT, Schroeder JC, Teitelbaum SL, Neugut AI, Santella RM: Peroxisome proliferator-activated receptor-alpha (PPARA) genetic polymorphisms and breast cancer risk: a Long Island ancillary study. Carcinogenesis 2008, 29(10):1944-1949.
- 178. FuÈhrer D: A nuclear receptor in thyroid malignancy: is PAX8/PPARg the Holy Grail of follicular thyroid cancer? *cancer* 2001, **3**:4.
- 179. Faryna M, Konermann C, Aulmann S, Bermejo JL, Brugger M, Diederichs S, Rom J, Weichenhan D, Claus R, Rehli M: Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. *The FASEB Journal* 2012, 26(12):4937-4950.
- 180. Chang C-C, Chang Y-S, Huang H-Y, Yeh K-T, Liu T-C, Chang J-G: Determination of the mutational landscape in Taiwanese patients with papillary thyroid cancer by whole-exome sequencing. *Human pathology* 2018, 78:151-158.
- 181. Hamann U, Herbold C, Costa S, Solomayer E-F, Kaufmann M, Bastert G, Ulmer HU, Frenzel H, Komitowski D: Allelic imbalance on chromosome 13q: evidence for the involvement of BRCA2 and RB1 in sporadic breast cancer. Cancer research 1996, 56(9):1988-1990.
- 182. Takahashi C, Contreras B, Iwanaga T, Takegami Y, Bakker A, Bronson RT, Noda M, Loda M, Hunt JL, Ewen ME: Nras loss induces metastatic conversion of Rb1-deficient neuroendocrine thyroid tumor. *Nature genetics* 2006, 38(1):118.
- 183. Ding S-l, Yu J-C, Chen S-T, Hsu G-C, Shen C-Y: Genetic variation in the premature aging gene WRN: a case-control study on breast cancer susceptibility. Cancer Epidemiology and Prevention Biomarkers 2007, 16(2):263-269.
- 184. Vriens MR, Suh I, Moses W, Kebebew E: Clinical features and genetic predisposition

to hereditary nonmedullary thyroid cancer. *Thyroid* 2009, **19**(12):1343-1349.

- 185. Pan X, Arumugam T, Yamamoto T, Levin PA, Ramachandran V, Ji B, Lopez-Berestein G, Vivas-Mejia PE, Sood AK, McConkey DJ: Nuclear factor-κB p65/relA silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells. *Clinical Cancer Research* 2008, 14(24):8143-8151.
- Pacifico F, Leonardi A: Role of NF-κB in thyroid cancer. Molecular and cellular endocrinology 2010, 321(1):29-35.
- 187. Tan AC, Jimeno A, Lin SH, Wheelhouse J, Chan F, Solomon A, Rajeshkumar N, Rubio-Viqueira B, Hidalgo M: Characterizing DNA methylation patterns in pancreatic cancer genome. *Molecular oncology* 2009, 3(5-6):425-438.
- 188. Kourkoumpetis T, Royse KE, Chen L, Ravishankar M, Ittmann M, El-Serag HB, Jiao L: Differential expression of tight junctions and cell polarity genes in human colon cancer. Exploratory Research and Hypothesis in Medicine 2018, 3(1):14-19.
- 189. Rauch TA, Wang Z, Wu X, Kernstine KH, Riggs AD, Pfeifer GP: DNA methylation biomarkers for lung cancer. *Tumor Biology* 2012, 33(2):287-296.
- 190. Zhang H-Y, Jin L, Stilling GA, Ruebel KH, Coonse K, Tanizaki Y, Raz A, Lloyd RV: RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors. Endocrine 2009, 35(1):101-111.
- 191. Wang H, Schmit SL, Haiman CA, Keku TO, Kato I, Palmer JR, van den Berg D, Wilkens LR, Burnett T, Conti DV: Novel colon cancer susceptibility variants identified from a genome-wide association study in African Americans. International journal of cancer 2017, 140(12):2728-2733.
- 192. Tomoshige K, Matsumoto K, Tsuchiya T, Oikawa M, Miyazaki T, Yamasaki N, Mishima H, Kinoshita A, Kubo T, Fukushima K: Germline mutations causing familial lung cancer. *Journal of human genetics* 2015, 60(10):597.
- 193. Javed A, Barnes GL, Pratap J, Antkowiak T, Gerstenfeld LC, Van Wijnen AJ, Stein JL, Lian JB, Stein GS: Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proceedings of the National Academy of Sciences 2005, 102(5):1454-1459.
- 194. Niu D-F, Kondo T, Nakazawa T, Oishi N, Kawasaki T, Mochizuki K, Yamane T, Katoh R: Transcription factor Runx2 is a regulator of epithelial-mesenchymal transition and invasion in thyroid carcinomas. *Laboratory investigation* 2012, 92(8):1181.
- 195. Azzam HS, Arand G, Lippman ME, Thompson EW: Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. JNCI: Journal of the National Cancer Institute 1993, 85(21):1758-1764.
- 196. Tian X, Cong M, Zhou W, Zhu J, Liu Q: Relationship between protein expression of VEGF-C, MMP-2 and lymph node metastasis in papillary thyroid cancer. *Journal of International Medical Research* 2008, 36(4):699-703.
- 197. Sheu JJ, Lee C, Hua C, Li C, Lai M, Lee S, Cheng J, Chen C, Chan C, Chao SC: LRIG1 modulates aggressiveness of head and neck cancers by regulating EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling. Oncogene 2014, 33(11):1375.
- 198. Gunasinghe ND, Wells A, Thompson EW, Hugo HJ: Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer and

Metastasis Reviews 2012, 31(3-4):469-478.

- 199. Seiwert TY, Jagadeeswaran R, Faoro L, Janamanchi V, Nallasura V, El Dinali M, Yala S, Kanteti R, Cohen EE, Lingen MW: The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer research 2009, 69(7):3021-3031.
- 200. Overman J, Fontaine F, Moustaqil M, Mittal D, Sierecki E, Sacilotto N, Zuegg J, Robertson AA, Holmes K, Salim AA: Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. *Elife* 2017, 6:e21221.
- 201. Jethon A, Pula B, Olbromski M, Werynska B, Muszczynska-Bernhard B, Witkiewicz W, Dziegiel P, Podhorska-Okolow M: Prognostic significance of SOX18 expression in non-small cell lung cancer. *International journal of oncology* 2015, 46(1):123-132.
- 202. Tőkés A-M, Szász AM, Juhász É, Schaff Z, Harsányi L, Molnár IA, Baranyai Z, Besznyák I, Zaránd A, Salamon F: Expression of tight junction molecules in breast carcinomas analysed by array PCR and immunohistochemistry. Pathology & Oncology Research 2012, 18(3):593-606.
- 203. Paschoud S, Bongiovanni M, Pache J-C, Citi S: Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. *Modern pathology* 2007, **20**(9):947.
- 204. Li X-L, Chen X-Q, Zhang M-N, Chen N, Nie L, Xu M, Gong J, Shen P-F, Su Z-Z, Weng X: SOX9 was involved in TKIs resistance in renal cell carcinoma via Raf/MEK/ERK signaling pathway. International journal of clinical and experimental pathology 2015, 8(4):3871.
- 205. Sun L, Mathews LA, Cabarcas SM, Zhang X, Yang A, Zhang Y, Young MR, Klarmann KD, Keller JR, Farrar WL: Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells. *Stem cells* 2013, **31**(8):1454-1466.
- 206. Fergelot P, Bernhard J-C, Soulet F, Kilarski WW, Léon C, Courtois N, Deminière C, Herbert JM, Antczak P, Falciani F: **The experimental renal cell carcinoma model in the chick embryo**. *Angiogenesis* 2013, **16**(1):181-194.
- 207. Schmielau J, Nalesnik MA, Finn OJ: Suppressed T-cell receptor ζ chain expression and cytokine production in pancreatic cancer patients. *Clinical cancer research* 2001, 7(3):933s-939s.
- 208. Lin R-K, Wu C-Y, Chang J-W, Juan L-J, Hsu H-S, Chen C-Y, Lu Y-Y, Tang Y-A, Yang Y-C, Yang P-C: Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. *Cancer research* 2010, 70(14):5807-5817.
- 209. Chiefari E, Brunetti A, Arturi F, Bidart J-M, Russo D, Schlumberger M, Filetti S: Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? *BMC cancer* 2002, **2**(1):35.
- 210. Boonstra R, Timmer-Bosscha H, van Echten-Arends J, van der Kolk D, van Den Berg A, De Jong B, Tew K, Poppema S, De Vries E: Mitoxantrone resistance in a small cell lung cancer cell line is associated with ABCA2 upregulation. British journal of cancer 2004, 90(12):2411.
- 211. Kucerova L, Feketeova L, Kozovska Z, Poturnajova M, Matuskova M, Nencka R, Babal
 P: In Vivo 5FU-Exposed Human Medullary Thyroid Carcinoma Cells Contain a Chemoresistant CD133+ Tumor–Initiating Cell Subset. *Thyroid* 2014, 24(3):520-532.

- 212. Krishnan V, Wang X, Safe S: Estrogen receptor-Sp1 complexes mediate estrogeninduced cathepsin D gene expression in MCF-7 human breast cancer cells. *Journal* of Biological Chemistry 1994, 269(22):15912-15917.
- 213. Hu B, Meng X, Zhang Y, Hossain MM, Wu L, Zhang Y, Peng X, Zhang X: Short hairpin RNA-mediated gene silencing of ADAM17 inhibits the growth of breast cancer MCF7 cells in vitro and in vivo and its mechanism of action. Oncol Rep 2018, 39(4):1640-1648.
- 214. Miccichè F, Da Riva L, Fabbi M, Pilotti S, Mondellini P, Ferrini S, Canevari S, Pierotti MA, Bongarzone I: Activated leukocyte cell adhesion molecule expression and shedding in thyroid tumors. *PLoS One* 2011, 6(2):e17141.
- 215. Ahmed M, Rahman N: **ATM and breast cancer susceptibility**. *Oncogene* 2006, **25**(43):5906-5911.
- 216. Gu Y, Yu Y, Ai L, Shi J, Liu X, Sun H, Liu Y: Association of the ATM gene polymorphisms with papillary thyroid cancer. *Endocrine* 2014, **45**(3):454-461.
- 217. Zhao P, Ma W, Hu Z, Zang L, Tian Z, Zhang K: Filamin A (FLNA) modulates chemosensitivity to docetaxel in triple-negative breast cancer through the MAPK/ERK pathway. *Tumor Biology* 2016, **37**(4):5107-5115.
- 218. Uramoto H, Akyuerek LM, Hanagiri T: A positive relationship between filamin and VEGF in patients with lung cancer. *Anticancer research* 2010, **30**(10):3939-3944.
- 219. Kasaian K, Wiseman SM, Walker BA, Schein JE, Zhao Y, Hirst M, Moore RA, Mungall AJ, Marra MA, Jones SJ: **The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy**. *BMC cancer* 2015, **15**(1):984.
- 220. Garrett PA, Hulka BS, Kim YL, Farber RA: **HRAS protooncogene polymorphism and breast cancer**. *Cancer Epidemiology and Prevention Biomarkers* 1993, **2**(2):131-138.
- 221. Schulten H-J, Al-Maghrabi J, Al-Ghamdi K, Salama S, Al-Muhayawi S, Chaudhary A, Hamour O, Abuzenadah A, Gari M, Al-Qahtani M: Mutational screening of RET, HRAS, KRAS, NRAS, BRAF, AKT1, and CTNNB1 in medullary thyroid carcinoma. *Anticancer research* 2011, **31**(12):4179-4183.
- 222. Mardente S, Mari E, Massimi I, Fico F, Faggioni A, Pulcinelli F, Antonaci A, Zicari A: HMGB1-induced cross talk between PTEN and miRs 221/222 in thyroid cancer. *BioMed research international* 2015, 2015.
- 223. Gjerstorff MF, Benoit VM, Laenkholm A-V, Nielsen O, Johansen LE, Ditzel HJ: Identification of genes with altered expression in medullary breast cancer vs. ductal breast cancer and normal breast epithelia. International journal of oncology 2006, 28(6):1327-1335.
- 224. Chakrabarti G: Mutant KRAS associated malic enzyme 1 expression is a predictive marker for radiation therapy response in non-small cell lung cancer. *Radiation Oncology* 2015, **10**(1):145.
- 225. Leo JC, Wang SM, Guo CH, Aw SE, Zhao Y, Li JM, Hui KM, Lin VC: Gene regulation profile reveals consistent anticancer properties of progesterone in hormoneindependent breast cancer cells transfected with progesterone receptor. *International journal of cancer* 2005, 117(4):561-568.
- 226. Straight AM, Oakley K, Moores R, Bauer AJ, Patel A, Tuttle RM, Jimeno J, Francis GL: Aplidin reduces growth of anaplastic thyroid cancer xenografts and the expression

of several angiogenic genes. Cancer chemotherapy and pharmacology 2006, 57(1):7-14.

- 227. Dong X-Y, Guo P, Boyd J, Sun X, Li Q, Zhou W, Dong J-T: **Implication of snoRNA U50** in human breast cancer. *Journal of genetics and genomics* 2009, **36**(8):447-454.
- 228. Li Y, Huang J, Zhao Y, He J, Wang W, Davies K, Nose V, Xiao S: **UTRN on chromosome** 6q24 is mutated in multiple tumors. *Oncogene* 2007, 26(42):6220.
- 229. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL: HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHLdeficient renal cell carcinoma by repression of C-MYC activity. *Cancer cell* 2007, 11(5):407-420.
- 230. Lin S-F, Yu Z, Riedl C, Woo Y, Zhang Q, Yong AY, Timiryasova T, Chen N, Shah JP, Szalay AA: Treatment of anaplastic thyroid carcinoma in vitro with a mutant vaccinia virus. Surgery 2007, 142(6):976-983.
- 231. Williams SA, Riel-Mehan M, Ostroff RM: Pancreatic Cancer Biomarkers and Uses Thereof. In.: Google Patents; 2014.
- 232. Zou M, Baitei EY, BinEssa HA, Al-Mohanna FA, Parhar RS, St-Arnaud R, Kimura S, Pritchard C, Alzahrani AS, Assiri AM: Cyp24a1 attenuation limits progression of BrafV600E-induced papillary thyroid cancer cells and sensitizes them to BRAFV600E inhibitor PLX4720. Cancer research 2017, 77(8):2161-2172.
- 233. Scott GK, Daniel JC, Xiong X, Maki RA, Kabat D, Benz CC: **Binding of an ETS-related** protein within the DNase I hypersensitive site of the HER2/neu promoter in human breast cancer cells. *Journal of Biological Chemistry* 1994, **269**(31):19848-19858.
- 234. Jiang H, Yang T, Lu P, Ma Y: Gene expression profiling of gastric cancer. *Eur Rev Med Pharmacol Sci* 2014, **18**(15):2109-2115.
- 235. Futagami S, Tatsuguchi A, Hiratsuka T, Shindo T, Horie A, Hamamoto T, Ueki N, Kusunoki M, Miyake K, Gudis K: Monocyte chemoattractant protein 1 and CD40 ligation have a synergistic effect on vascular endothelial growth factor production through cyclooxygenase 2 upregulation in gastric cancer. Journal of gastroenterology 2008, 43(3):216-224.
- 236. Eissa S, Zaki SA, El-Maghraby SM, Kadry DY: Importance of serum IL-18 and RANTES as markers for breast carcinoma progression. J Egypt Natl Canc Inst 2005, 17(1):51-55.
- 237. Abdolahi F, Dabbaghmanesh MH, Haghshenas MR, Ghaderi A, Erfani N: A gene-disease association study of IL18 in thyroid cancer: genotype and haplotype analyses. *Endocrine* 2015, **50**(3):698-707.
- Blake ML, Tometsko M, Miller R, Jones JC, Dougall WC: RANK expression on breast cancer cells promotes skeletal metastasis. *Clinical & experimental metastasis* 2014, 31(2):233-245.
- Italiano D, Lena AM, Melino G, Candi E: Identification of NCF2/p67phox as a novel p53 target gene. *Cell cycle* 2012, 11(24):4589-4596.
- 240. Khodarev N, Ahmad R, Rajabi H, Pitroda S, Kufe T, McClary C, Joshi MD, MacDermed D, Weichselbaum R, Kufe D: Cooperativity of the MUC1 oncoprotein and STAT1 pathway in poor prognosis human breast cancer. Oncogene 2010, 29(6):920.
- 241. Hwang ES, Kim DW, Hwang JH, Jung HS, Suh JM, Park YJ, Chung HK, Song JH, Park KC, Park SH: Regulation of signal transducer and activator of transcription 1

(STAT1) and STAT1-dependent genes by RET/PTC (rearranged in transformation/papillary thyroid carcinoma) oncogenic tyrosine kinases. *Molecular Endocrinology* 2004, **18**(11):2672-2684.

- 242. Fujieda S, Sugimoto C, Seki M, Sunaga H, Saito H: **CD40 stimulation inhibits cell** growth and Fas-mediated apoptosis in a thyroid cancer cell line. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 1998, **10**(9):433-439.
- 243. Jiang Y-Z, Liu Y-R, Xu X-E, Jin X, Hu X, Yu K-D, Shao Z-M: Transcriptome analysis of triple-negative breast cancer reveals an integrated mRNA-lncRNA signature with predictive and prognostic value. *Cancer research* 2016, **76**(8):2105-2114.
- 244. Zhao Y, Zhao L, Mao T, Zhong L: Assessment of risk based on variant pathways and establishment of an artificial neural network model of thyroid cancer. *BMC medical genetics* 2019, **20**(1):92.
- 245. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A: Molecular characterization of the tumor microenvironment in breast cancer. Cancer cell 2004, 6(1):17-32.
- 246. Mancikova V, Buj R, Castelblanco E, Inglada-Pérez L, Diez A, de Cubas AA, Curras-Freixes M, Maravall FX, Mauricio D, Matias-Guiu X: DNA methylation profiling of well-differentiated thyroid cancer uncovers markers of recurrence free survival. International journal of cancer 2014, 135(3):598-610.
- 247. Kachroo P, Lee M-H, Zhang L, Baratelli F, Lee G, Srivastava MK, Wang G, Walser TC, Krysan K, Sharma S: IL-27 inhibits epithelial-mesenchymal transition and angiogenic factor production in a STAT1-dominant pathway in human non-small cell lung cancer. Journal of Experimental & Clinical Cancer Research 2013, 32(1):97.
- 248. Marangoni E, Laurent C, Coussy F, El-Botty R, Château-Joubert S, Servely J-L, de Plater L, Assayag F, Dahmani A, Montaudon E: Capecitabine efficacy is correlated with TYMP and RB1 expression in PDX established from triple-negative breast cancers. Clinical Cancer Research 2018, 24(11):2605-2615.
- 249. Airoldi I, Tupone MG, Esposito S, Russo MV, Barbarito G, Cipollone G, Di Carlo E: Interleukin-27 re-educates intratumoral myeloid cells and down-regulates stemness genes in non-small cell lung cancer. Oncotarget 2015, 6(6):3694.
- 250. Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E, Zhang Y: Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proceedings of the National Academy of Sciences 2007, 104(41):16158-16163.
- 251. Couto JP, Daly L, Almeida A, Knauf JA, Fagin JA, Sobrinho-Simões M, Lima J, Máximo V, Soares P, Lyden D: STAT3 negatively regulates thyroid tumorigenesis. *Proceedings of the National Academy of Sciences* 2012, 109(35):E2361-E2370.
- 252. Zheng W, Long J, Gao Y-T, Li C, Zheng Y, Xiang Y-B, Wen W, Levy S, Deming SL, Haines JL: Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25. 1. Nature genetics 2009, 41(3):324.
- 253. Shiozaki A, Lodyga M, Bai X-H, Nadesalingam J, Oyaizu T, Winer D, Asa SL, Keshavjee S, Liu M: XB130, a novel adaptor protein, promotes thyroid tumor growth. The American journal of pathology 2011, 178(1):391-401.
- 254. Zhang X, Yue P, Page BD, Li T, Zhao W, Namanja AT, Paladino D, Zhao J, Chen Y,

Gunning PT: Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. *Proceedings of the National Academy of Sciences* 2012, **109**(24):9623-9628.

- 255. Liu CC, Lin JH, Hsu TW, Su K, Li AFY, Hsu HS, Hung SC: IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. International Journal of Cancer 2015, 136(3):547-559.
- 256. Arakawa Y, Watanabe M, Inoue N, Sarumaru M, Hidaka Y, Iwatani Y: Association of polymorphisms in DNMT1, DNMT3A, DNMT3B, MTHFR and MTRR genes with global DNA methylation levels and prognosis of autoimmune thyroid disease. *Clinical & Experimental Immunology* 2012, **170**(2):194-201.
- 257. Kanda N, Seno H, Konda Y, Marusawa H, Kanai M, Nakajima T, Kawashima T, Nanakin A, Sawabu T, Uenoyama Y: STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene 2004, 23(28):4921.
- 258. Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF, Sjostrom SK, Garraway LA, Weremowicz S, Richardson AL: Integrative genomic approaches identify IKBKE as a breast cancer oncogene. *Cell* 2007, 129(6):1065-1079.
- 259. Ali Z, Deng Y, Tang Y, Zheng S, Ma N, He N: **Epigenetic deregulations in gastric cancer**. *Journal of nanoscience and nanotechnology* 2013, **13**(1):40-51.
- 260. Arce C, Pérez-Plasencia C, González-Fierro A, de la Cruz-Hernández E, Revilla-Vázquez A, Chávez-Blanco A, Trejo-Becerril C, Pérez-Cárdenas E, Taja-Chayeb L, Bargallo E: A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. *PloS one* 2006, 1(1):e98.
- 261. Katoh H, Yamashita K, Enomoto T, Watanabe M: Classification and general considerations of thyroid cancer. *Ann Clin Pathol* 2015, **3**(1):1045.
- 262. Zhang Q, Sturgill JL, Kmieciak M, Szczepanek K, Derecka M, Koebel C, Graham LJ, Dai Y, Chen S, Grant S: **The role of Tyk2 in regulation of breast cancer growth**. *Journal of Interferon & Cytokine Research* 2011, **31**(9):671-677.
- 263. Jin S, Borkhuu O, Bao W, Yang Y-T: **Signaling pathways in thyroid cancer and their therapeutic implications**. *Journal of clinical medicine research* 2016, **8**(4):284.
- 264. Rasheed BA, McLendon RE, Herndon JE, Friedman HS, Friedman AH, Bigner DD, Bigner SH: Alterations of the TP53 gene in human gliomas. *Cancer research* 1994, 54(5):1324-1330.
- 265. Rogounovitch TI, Saenko VA, Ashizawa K, Sedliarou IA, Namba H, Abrosimov AY, Lushnikov EF, Roumiantsev PO, Konova MV, Petoukhova NS: TP53 codon 72 polymorphism in radiation-associated human papillary thyroid cancer. Oncology reports 2006, 15(4):949-956.
- 266. Yang CH, Yue J, Pfeffer SR, Fan M, Paulus E, Hosni-Ahmed A, Sims M, Qayyum S, Davidoff AM, Handorf CR: MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). Journal of Biological Chemistry 2014, 289(36):25079-25087.
- 267. Siegel G, Tomer Y: Is there an association between acromegaly and thyroid carcinoma? A critical review of the literature. *Endocrine research* 2005, **31**(1):51-58.
- 268. Gemmill RM, Roche J, Potiron VA, Nasarre P, Mitas M, Coldren CD, Helfrich BA,

Garrett-Mayer E, Bunn PA, Drabkin HA: **ZEB1-responsive genes in non-small cell lung** cancer. *Cancer letters* 2011, **300**(1):66-78.

- 269. Yang J, Zhang X, Zhang Y, Zhu D, Zhang L, Li Y, Zhu Y, Li D, Zhou J: HIF-2α promotes epithelial-mesenchymal transition through regulating Twist2 binding to the promoter of E-cadherin in pancreatic cancer. Journal of Experimental & Clinical Cancer Research 2016, 35(1):26.
- 270. Leidinger P, Keller A, Backes C, Huwer H, Meese E: MicroRNA expression changes after lung cancer resection: a follow-up study. *RNA biology* 2012, 9(6):900-910.
- 271. Bommer GT, Jäger C, Dürr E-M, Baehs S, Eichhorst ST, Brabletz T, Hu G, Fröhlich T, Arnold G, Kress DC: DRO1, a gene down-regulated by oncogenes, mediates growth inhibition in colon and pancreatic cancer cells. *Journal of Biological Chemistry* 2005, 280(9):7962-7975.
- 272. Landa I, Ruiz-Llorente S, Montero-Conde C, Inglada-Pérez L, Schiavi F, Leskelä S, Pita G, Milne R, Maravall J, Ramos I: The variant rs1867277 in FOXE1 gene confers thyroid cancer susceptibility through the recruitment of USF1/USF2 transcription factors. *PLoS genetics* 2009, **5**(9):e1000637.
- 273. Wallrarr C, MÜLLER-PILLASCH F, Micha A, Wenger C, Geng M, Solinas-Toldo S, Lichter P, Frohme M, Hoheisel J, Adler G: Strategies for the detection of disease genes in pancreatic cancer. Annals of the New York Academy of Sciences 1999, 880(1):122-146.
- 274. Jeong S, Lee J, Kim D, Seol M-Y, Lee WK, Jeong JJ, Nam K-H, Jung SG, Shin DY, Lee EJ: Relationship of focally amplified long noncoding on chromosome 1 (FAL1) IncRNA with E2F transcription factors in thyroid cancer. *Medicine* 2016, 95(4).

Table S4. miRNAs targeted by H19

miRNA	Description	Reference
let-7a	> The H19/let-7 double-negative feedback loop contributes to glucose	[1]
	metabolism in muscle cells.	[2]
	The imprinted H19 lncRNA antagonizes let-7 microRNAs.	[3]
	▶ H19 lncRNA alters stromal cell growth via IGF signaling in the	[4]
	endometrium of women with endometriosis.	
	Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia.	
let-7b	➤ The imprinted H19 lncRNA antagonizes let-7 microRNAs.	[2]
	➢ Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells	[4]
	under hypoxia.	[5]
	The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let- 7b.	
let-7g	The imprinted H19 lncRNA antagonizes let-7 microRNAs.	[2]
	H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis.	[3]
let-7i	H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance.	[6]
miR-106a	miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19- miR-106a interaction.	[7]
miR-130b-3p	H19 lncRNA regulates keratinocyte differentiation by targeting miR- 130b-3p.	[8]
miR-138-5p	 Decreased Expression of MiR-138-5p by LncRNA H19 in Cervical Cancer Promotes Tumor Proliferation. 	[9]
miR-139	> H19 lncRNA alters stromal cell growth via IGF signaling in the	[3]
	endometrium of women with endometriosis.	[10]
	Long Non-Coding RNA H19 Protects H9c2 Cells against Hypoxia- Induced Injury by Targeting MicroRNA-139.	
miR-141	H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA.	[11]
miR-152-3p	 Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR 152 	[12]
$miR_{-152}5n$	Long non-coding PNA H10 promotes the proliferation and investor	[10]
шк-152-эр	of breast cancer through upregulating DNMT1 expression by sponging miR-152.	[12]
miR-17-5p	Long noncoding RNA H19 competitively binds miR-17-5p to	[13]
*	regulate YES1 expression in thyroid cancer.	[14]
	Long non-coding RNA H19 suppresses retinoblastoma progression	

		via counteracting miR-17-92 cluster.	
miR-181d-3p		Hypoxia induces H19 expression through direct and indirect Hif-1 α activity, promoting oncogenic effects in glioblastoma.	[15]
miR-181d-5p		Hypoxia induces H19 expression through direct and indirect Hif-1 α	[15]
miR-18a	۶	Long non-coding RNA H19 suppresses retinoblastoma progression	[14]
		via counteracting miR-17-92 cluster.	
miR-194-5p		Long noncoding RNA H19 contributes to gallbladder cancer cell proliferation by modulated miR-194-5p targeting AKT2.	[16]
miR-196a	۶	The lncRNA H19 Mediates Pulmonary Fibrosis by Regulating the miR-196a/COL1A1 Axis.	[17]
miR-19a	۶	Long non-coding RNA H19 suppresses retinoblastoma progression via counteracting miR-17-92 cluster.	[14]
miR-19b-1	۶	Long non-coding RNA H19 suppresses retinoblastoma progression via counteracting miR-17-92 cluster	[14]
miR-200b		The lncRNA H19 mediates breast cancer cell plasticity during EMT	[5]
		and MET plasticity by differentially sponging miR-200b/c and let- 7b.	
miR-200c		The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-	[5]
		7b.	
miR-20a		Long non-coding RNA H19 suppresses retinoblastoma progression	[14]
miP 22	Ν	H10 activates Wat signaling and promotes astachlast differentiation	[11]
IIIIK-22		by functioning as a competing endogenous RNA.	[11]
miR-29a		Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a.	[18]
miR-29b		Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGE-61 signaling	[19]
miR-342-3p	4	Long non-coding RNA H19 regulates FOXM1 expression by competitively binding endogenous miR-342-3p in gallbladder	[20]
miR-630		cancer. Long noncoding RNA H19 regulates EZH2 expression by interacting with miR-630 and promotes cell invasion in nasopharyngeal	[21]
:D 074	~	carcinoma.	[22]
m1K-8/4	*	AQP3 expression by sponging miR-874 in the intestinal barrier.	[22]
miR-92a-1		Long non-coding RNA H19 suppresses retinoblastoma progression via counteracting miR-17-92 cluster.	[14]

Reference

1. Gao Y, Wu F, Zhou J, Yan L, Jurczak MJ, Lee H-Y, Yang L, Mueller M, Zhou X-B, Dandolo L:

The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. *Nucleic acids research* 2014, **42**(22):13799-13811.

- Kallen AN, Zhou X-B, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi J-S, Zhang H: The imprinted H19 IncRNA antagonizes let-7 microRNAs. *Molecular cell* 2013, 52(1):101-112.
- Ghazal S, McKinnon B, Zhou J, Mueller M, Men Y, Yang L, Mueller M, Flannery C, Huang Y, Taylor HS: H19 IncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. *EMBO molecular medicine* 2015, 7(8):996-1003.
- Peng F, Wang J-H, Fan W-J, Meng Y-T, Li M-M, Li T-T, Cui B, Wang H-F, Zhao Y, An F: Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 2018, 37(8):1062.
- 5. Zhou W, Ye X-l, Xu J, Cao M-G, Fang Z-Y, Li L-Y, Guan G-H, Liu Q, Qian Y-H, Xie D: The IncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci Signal 2017, 10(483):eaak9557.
- Peng F, Li T-T, Wang K-L, Xiao G-Q, Wang J-H, Zhao H-D, Kang Z-J, Fan W-J, Zhu L-L, Li M: H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. *Cell death & disease* 2017, 8(1):e2569.
- Imig J, Brunschweiger A, Brümmer A, Guennewig B, Mittal N, Kishore S, Tsikrika P, Gerber AP, Zavolan M, Hall J: miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19– miR-106a interaction. *Nature chemical biology* 2015, 11(2):107.
- Li C-x, Li H-g, Huang L-t, Kong Y-w, Chen F-y, Liang J-y, Yu H, Yao Z-r: H19 lncRNA regulates keratinocyte differentiation by targeting miR-130b-3p. *Cell death & disease* 2017, 8(11):e3174.
- Ou L, Wang D, Zhang H, Yu Q, Hua F: Decreased expression of MiR-138-5p by LncRNA H19 in cervical cancer promotes tumor proliferation. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 2018, 26(3):401-410.
- Gong L-C, Xu H-M, Guo G-L, Zhang T, Shi J-W, Chang C: Long non-coding rna h19 protects h9c2 cells against hypoxia-induced injury by targeting microrna-139. *Cellular Physiology* and Biochemistry 2017, 44(3):857-869.
- Liang W-C, Fu W-M, Wang Y-B, Sun Y-X, Xu L-L, Wong C-W, Chan K-M, Li G, Waye MM-Y, Zhang J-F: H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Scientific reports 2016, 6:20121.
- 12. Li Z, Li Y, Li Y, Ren K, Li X, Han X, Wang J: Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. *Journal of biochemical and molecular toxicology* 2017, **31**(9):e21933.
- Liu L, Yang J, Zhu X, Li D, Lv Z, Zhang X: Long noncoding RNA H19 competitively binds miR-17-5p to regulate YES1 expression in thyroid cancer. *The FEBS journal* 2016, 283(12):2326-2339.
- Zhang A, Shang W, Nie Q, Li T, Li S: Long non-coding RNA H19 suppresses retinoblastoma progression via counteracting miR-17-92 cluster. *Journal of cellular biochemistry* 2018, 119(4):3497-3509.
- Wu W, Hu Q, Nie E, Yu T, Wu Y, Zhi T, Jiang K, Shen F, Wang Y, Zhang J: Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma. Scientific reports 2017, 7:45029.
- 16. Wang S-H, Wu X-C, Zhang M-D, Weng M-Z, Zhou D, Quan Z-W: Long noncoding RNA H19

contributes to gallbladder cancer cell proliferation by modulated miR-194-5p targeting AKT2. *Tumor Biology* 2016, **37**(7):9721-9730.

- 17. Lu Q, Guo Z, Xie W, Jin W, Zhu D, Chen S, Ren T: The IncRNA H19 Mediates Pulmonary Fibrosis by Regulating the miR-196a/COL1A1 Axis. *Inflammation* 2018, 41(3):896-903.
- 18. Jia P, Cai H, Liu X, Chen J, Ma J, Wang P, Liu Y, Zheng J, Xue Y: Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer letters 2016, 381(2):359-369.
- Lu Y-F, Liu Y, Fu W-M, Xu J, Wang B, Sun Y-X, Wu T-Y, Xu L-L, Chan K-M, Zhang J-F: Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-β1 signaling. *The FASEB Journal* 2016, 31(3):954-964.
- Wang S-H, Ma F, Tang Z-h, Wu X-C, Cai Q, Zhang M-D, Weng M-Z, Zhou D, Wang J-D, Quan Z-W: Long non-coding RNA H19 regulates FOXM1 expression by competitively binding endogenous miR-342-3p in gallbladder cancer. *Journal of Experimental & Clinical Cancer Research* 2016, 35(1):160.
- Li X, Lin Y, Yang X, Wu X, He X: Long noncoding RNA H19 regulates EZH2 expression by interacting with miR-630 and promotes cell invasion in nasopharyngeal carcinoma. Biochemical and biophysical research communications 2016, 473(4):913-919.
- 22. Su Z, Zhi X, Zhang Q, Yang L, Xu H, Xu Z: Lnc RNA H19 functions as a competing endogenous RNA to regulate AQP 3 expression by sponging miR-874 in the intestinal barrier. *FEBS letters* 2016, **590**(9):1354-1364.

Table S5. Regulation of 29 miRNAs in eight triplets.

miRNAs	miR-106a	miR_130b_	3nmiR_138_5	n miR-139	miR_141	miR_152_3r	miR_152_5
Prodicted to	mate	IIIIX-1300	5µmk-158-5	p mik-139	IIIIK-141	1111X-152-5) mik-152-5
of miRNAs	gets						
TFs	RUNX1	FOSL2	EZH2	ETS1	CREBBP	KLF6	KLF6
	E2F1	MYB	POU2F1		POU2F1	KLF4	E2F3
	PPARA	STAT3	RELA				KLF4
	RB1	~~~~~	SP1				
	SP1						
	STAT3						
	KAT2B						
Genes	CALD1	FMR1	HIF1A	FMR1	FMR1	CHUK	DNMT1
	CCNG2	MET	KLF11	MAPK8		DNMT1	FBN1
	E2F1	TGFBR2		ZEB1		FBN1	FMR1
	HIF1A					FMR1	SOS1
	SMAD4					SOS1	
	MMP2						
	MAPK8						
	SOS1						
	TGFBR2						
	KLF11						
	TXNIP						
of miknas TFs	E2F1	AHR	EZH2	NFKB1	E2F3	KLF4	
	MYB	E2F1	NFKB1		PPARA		
	RB1	NR3C1	SNAI2		HDGF		
	RUNX1	PPARA	SOX9				
	STAT3	RB1	TWIST2				
		STAT3					
Genes	E2F1	E2F1	HIF1A	HRAS	ZEB1	DNMT1	
	FAS	KLF11	SNAI2	MET	EIF4E	ADAM17	
	TGFBR2	SMAD4			KLF11		
	ATM	TGFBR2			ZEB1		
	HIF1A	ZEB1					
		FMR1					
		MMP2					

H19-ETS1-TGFBR2

Notes: In the H19-ETS1-TGFBR2 sheet, we list all the 29 miRNAs and their targets (TFs and genes). Some of the targets were predicted and then verified. In the H19-ETS1-TGFBR2 table, TFs are marked in yellow if miRNAs target them, and genes are marked in red if miRNAs target them.

miRNAs	miR-17	miR-181d-3p	miR-181d-5p	miR-18a	miR-194-5p	miR-196a	miR-19a
Predicted targets							

of miRNAs

TFs	RUNX1	RUNX1	RUNX1	E2F3	ERG	
	E2F1	KLF6	KLF6	FLI1	FLI1	
	RB1	ETS1	NR3C1	SP3		
	STAT3	NR3C1	POU2F1			
	KAT2B	KAT2B				
Genes	CALD1	ATM	ATM	ACP5	FAS	FMR1
	CCNG2	SOS1	CTGF	FMR1	COL1A1	IL18
	E2F1	VCAM1	HIF1A	SP3	MAPK8	
	HIF1A	EPB41L3	HMGCS1	RSF1	ZEB1	
	MMP2		MAPK8			
	SOS1					
	TGFBR2					
	KLF11					
	TXNIP					

Validated targets

of miRNAs

TFs	E2F1		NR3C1	FOXM1	FOXO1	KAT2B
	E2F3		RUNX1			
	KAT2B					
	MYC					
	RB1					
	RUNX1					
	STAT3					
Genes	E2F1	HRAS	CTGF		FLNA	CTGF
	MMP2		EDF1		TGFBR2	SMAD4
	MYC		ATM			TGFBR2
	SMAD4		HIF1A			DNMT1
	TGFBR2		HMGCS1			
	HIF1A		SMAD4			
	DNMT1		TGFBR2			
	IGFBP3		DNMT1			

miRNAs	miR-19b-1	miR-200b	miR-200c	miR-20a	miR-22	miR-29a	miR-29b
Predicted targets							

of miRNAs

TFs	KLF6	E2F1	FOXO1	ETS1	MYBL2
	SP3	E2F3	HNRNPK	KAT2B	
		EZH2			
		PPARA			
		RB1			
		STAT3			
		KAT2B			
Genes	NCF2	CALD1	CD68		DNMT1
	MAPK8	CCNG2	SOS1		FBN1
	SP3	E2F1	UTRN		EDF1
		HIF1A	VCAM1		
		SMAD4	WRN		
		MMP2			
		MAPK8			
		SOS1			
		TGFBR2			
		KLF11			
		TXNIP			

Validated targets

of miRNAs

TFs	KAT2B	E2F3	MYB	E2F1	PPARA	KLF4	SP1
	NR3C1	ETS1	ETS1	E2F3		AHR	STAT3
		MYB	SP1	MYC		MYC	SP1
		SP1	E2F3	RB1			STAT3
		EZH2	FOXO1	RUNX1			MYC
			E2F3	STAT3			
Genes	CTGF	CREB1	FLNA	CCNB1	HIF1A	MMP2	COL1A1
	FMR1	FN1	FN1	E2F1		DNMT1	DNMT1
	ATM	KLF11	KLF11	FLNA		FBN1	MMP2
	HMGCS1	ZEB1	ZEB1	HIF1A		MYC	FBN1
	SMAD4	DNMT1	NCAM1	MYC			MYC
	TGFBR2		CYP1B1	SMAD4			
	DNMT1			TGFBR2			
				DNMT1			

miRNAs	miR-342-3p	miR-630	miR-874	miR-92a-1	let-7a	let-7b	let-7g
Predicted targets							

of miRNAs

TFs	E2F3	KLF6	POU2F1		EZH2	EZH2	EZH2
		EZH2	STAT3		POU2F1	POU2F1	POU2F1
					RB1	RB1	RB1
					TP53	TP53	TP53
Genes	DNMT1		FBN1	COL1A1	FAS	FAS	FAS
	ZEB1		FMR1	DACT3	COL1A1	COL1A1	COL1A1
			SIGIRR		IL6	IL6	IL6
					MAPK8	MAPK8	MAPK8
					UTRN	UTRN	UTRN

Validated targets

of miRNAs

TFs	FOSL2	SNAI2	PARP1	HDAC1	E2F1	CTCF	MYC
	E2F1	FOXM1	HDAC1	HDGF	EZH2	E2F3	
			STAT3	KAT2B	MYC	EZH2	
			E2F3	MYBL2	NFKB1	MYC	
				NFKB1	PARP1	SOX9	
				STAT3	SP1	SP1	
				HDAC2	STAT3		
				KLF4			
				IKZF1			
Genes	DNMT1	SNAI2		ATM	MYC	BIRC5	MYC
	E2F1			CCNB1	HRAS	CCNB1	FN1
				EPB41L3	E2F1	EPB41L3	
				FLNA	IL6	FLNA	
				HMGCS1		HIF1A	
				SMAD4		HMGCS1	
				TGFBR2		MYC	
				TYMP		UTRN	
				MAPK8		HRAS	
				DNMT1			

miRNAs let-7i Predicted targets of miRNAs

TFs	EZH2
	POU2F1
	RB1
	TP53
Genes	FAS
	CHUK
	COL1A1
	IL6
	MAPK8
	UTRN

Validated targets of miRNAs

TFs	
Genes	
H19-FLI1-TGFBR2

miRNAs	miR-106a	miR-130b-3p	miR-138-5p	miR-139	miR-141	miR-152-3p	miR-152-5p	miR-17
--------	----------	-------------	------------	---------	---------	------------	------------	--------

Predicted targets

of miRNAs

TFs	RUNX1	FOSL2	EZH2	ETS1	CREBBP	KLF6	KLF6	RUNX1
	E2F1	MYB	POU2F1		POU2F1	KLF4	E2F3	E2F1
	PPARA	STAT3	RELA				KLF4	RB1
	RB1		SP1					STAT3
	SP1							KAT2B
	STAT3							
	KAT2B							
Genes	CALD1	FMR1	HIF1A	FMR1	FMR1	CHUK	DNMT1	CALD1
	CCNG2	MET	KLF11	MAPK8		DNMT1	FBN1	CCNG2
	E2F1	TGFBR2		ZEB1		FBN1	FMR1	E2F1
	HIF1A					FMR1	SOS1	HIF1A
	SMAD4					SOS1		MMP2
	MMP2							SOS1
	MAPK8							TGFBR2
	SOS1							KLF11
	TGFBR2							TXNIP
	KLF11							
	TXNIP							

Validated targets

TFs	E2F1	AHR	EZH2	NFKB1	E2F3	KLF4	E2F1
	MYB	E2F1	NFKB1		PPARA		E2F3
	RB1	NR3C1	SNAI2		HDGF		KAT2B
	RUNX1	PPARA	SOX9				MYC
	STAT3	RB1	TWIST2				RB1
		STAT3					RUNX1
							STAT3
Genes	E2F1	E2F1	HIF1A	HRAS	ZEB1	DNMT1	E2F1
	FAS	KLF11	SNAI2	MET	EIF4E	ADAM17	MMP2
	TGFBR2	SMAD4			KLF11		MYC
	ATM	TGFBR2			ZEB1		SMAD4
	HIF1A	ZEB1					TGFBR2
		FMR1					HIF1A
		MMP2					DNMT1
							IGFBP3

miRNAs miR-181d-3 miR-181d-5 miR-18a	miR-194-5p miR-196a	miR-19a	miR-19b-1	miR-200b
--------------------------------------	---------------------	---------	-----------	----------

TFs	RUNX1	RUNX1	E2F3	ERG		KLF6
	KLF6	KLF6	FLI1	FLI1		SP3
	ETS1	NR3C1	SP3			
	NR3C1	POU2F1				
	KAT2B					
Genes	ATM	ATM	ACP5	FAS	FMR1	NCF2
	SOS1	CTGF	FMR1	COL1A1	IL18	MAPK8
	VCAM1	HIF1A	SP3	MAPK8		SP3
	EPB41L3	HMGCS1	RSF1	ZEB1		
		MAPK8				

TFs		NR3C1	FOXM1	FOXO1	KAT2B	KAT2B	E2F3
		RUNX1				NR3C1	ETS1
							MYB
							SP1
							EZH2
Genes	HRAS	CTGF		FLNA	CTGF	CTGF	CREB1
		EDF1		TGFBR2	SMAD4	FMR1	FN1
		ATM			TGFBR2	ATM	KLF11
		HIF1A			DNMT1	HMGCS1	ZEB1
		HMGCS1				SMAD4	DNMT1
		SMAD4				TGFBR2	
		TGFBR2				DNMT1	
		DNMT1					

miRNAs	miR-200c	miR-20a	miR-22	miR-29a	miR-29b	miR-342-3p	miR-630	miR-874

TFs	E2F1	FOXO1	ETS1	MYBL2	E2F3	KLF6	POU2F1
	E2F3	HNRNPK	KAT2B			EZH2	STAT3
	EZH2						
	PPARA						
	RB1						
	STAT3						
	KAT2B						
Genes	CALD1	CD68		DNMT1	DNMT1		FBN1
	CCNG2	SOS1		FBN1	ZEB1		FMR1
	E2F1	UTRN		EDF1			SIGIRR
	HIF1A	VCAM1					
	SMAD4	WRN					
	MMP2						
	MAPK8						
	SOS1						
	TGFBR2						
	KLF11						
	TXNIP						

TFs	MYB	E2F1	PPARA	KLF4	SP1	FOSL2	SNAI2	PARP1
	ETS1	E2F3		AHR	STAT3	E2F1	FOXM1	HDAC1
	SP1	MYC		MYC	SP1			STAT3
	E2F3	RB1			STAT3			E2F3
	FOXO1	RUNX1			MYC			
	E2F3	STAT3						
Genes	FLNA	CCNB1	HIF1A	MMP2	COL1A1	DNMT1	SNAI2	
	FN1	E2F1		DNMT1	DNMT1	E2F1		
	KLF11	FLNA		FBN1	MMP2			
	ZEB1	HIF1A		MYC	FBN1			
	NCAM1	MYC			MYC			
	CYP1B1	SMAD4						
		TGFBR2						
		DNMT1						

miRNAs	miR-92a-1	let-7a	let-7b	let-7g	let-7i
Predicted targets					

of miRNAs

TFs		EZH2	EZH2	EZH2	EZH2
		POU2F1	POU2F1	POU2F1	POU2F1
		RB1	RB1	RB1	RB1
		TP53	TP53	TP53	TP53
Genes	COL1A1	FAS	FAS	FAS	FAS
	DACT3	COL1A1	COL1A1	COL1A1	CHUK
		IL6	IL6	IL6	COL1A1
		MAPK8	MAPK8	MAPK8	IL6
		UTRN	UTRN	UTRN	MAPK8
					UTRN

Validated targets

TFs	HDAC1	E2F1	CTCF	MYC
	HDGF	EZH2	E2F3	
	KAT2B	MYC	EZH2	
	MYBL2	NFKB1	MYC	
	NFKB1	PARP1	SOX9	
	STAT3	SP1	SP1	
	HDAC2	STAT3		
	KLF4			
	IKZF1			
Genes	ATM	MYC	BIRC5	MYC
	CCNB1	HRAS	CCNB1	FN1
	EPB41L3	E2F1	EPB41L3	
	FLNA	IL6	FLNA	
	HMGCS1		HIF1A	
	SMAD4		HMGCS1	
	TGFBR2		MYC	
	TYMP		UTRN	
	MAPK8		HRAS	
	DNMT1			

H19-FOXO1-TXNIP

miRNAs	miR-106a	miR-130b-3p	miR-138-5p	miR-139	miR-141	miR-152-3p	miR-152-5p

Predicted targets of miRNAs

TFs	RUNX1	FOSL2	EZH2	ETS1	CREBBP	KLF6	KLF6
	E2F1	MYB	POU2F1		POU2F1	KLF4	E2F3
	PPARA	STAT3	RELA				KLF4
	RB1		SP1				
	SP1						
	STAT3						
	KAT2B						
Genes	CALD1	FMR1	HIF1A	FMR1	FMR1	CHUK	DNMT1
	CCNG2	MET	KLF11	MAPK8		DNMT1	FBN1
	E2F1	TGFBR2		ZEB1		FBN1	FMR1
	HIF1A					FMR1	SOS1
	SMAD4					SOS1	
	MMP2						
	MAPK8						
	SOS1						
	TGFBR2						
	KLF11						
	TXNIP						

Validated targets

TFs	E2F1	AHR	EZH2	NFKB1	E2F3	KLF4	
	MYB	E2F1	NFKB1		PPARA		
	RB1	NR3C1	SNAI2		HDGF		
	RUNX1	PPARA	SOX9				
	STAT3	RB1	TWIST2				
		STAT3					
Genes	E2F1	E2F1	HIF1A	HRAS	ZEB1	DNMT1	
	FAS	KLF11	SNAI2	MET	EIF4E	ADAM17	
	TGFBR2	SMAD4			KLF11		
	ATM	TGFBR2			ZEB1		
	HIF1A	ZEB1					
		FMR1					
		MMP2					

TFs	RUNX1	RUNX1	RUNX1	E2F3	ERG	
	E2F1	KLF6	KLF6	FLI1	FLI1	
	RB1	ETS1	NR3C1	SP3		
	STAT3	NR3C1	POU2F1			
	KAT2B	KAT2B				
Genes	CALD1	ATM	ATM	ACP5	FAS	FMR1
	CCNG2	SOS1	CTGF	FMR1	COL1A1	IL18
	E2F1	VCAM1	HIF1A	SP3	MAPK8	
	HIF1A	EPB41L3	HMGCS1	RSF1	ZEB1	
	MMP2		MAPK8			
	SOS1					
	TGFBR2					
	KLF11					
	TXNIP					

TFs	E2F1		NR3C1	FOXM1	FOXO1	KAT2B
	E2F3		RUNX1			
	KAT2B					
	MYC					
	RB1					
	RUNX1					
	STAT3					
Genes	E2F1	HRAS	CTGF		FLNA	CTGF
	MMP2		EDF1		TGFBR2	SMAD4
	MYC		ATM			TGFBR2
	SMAD4		HIF1A			DNMT1
	TGFBR2		HMGCS1			
	HIF1A		SMAD4			
	DNMT1		TGFBR2			
	IGFBP3		DNMT1			

miRNAs	miR-19b-1	miR-200b	miR-200c	miR-20a	miR-22	miR-29a	miR-29b
D 11 4 1 4							

TFs	KLF6	E2F1	FOXO1	ETS1	MYBL2
	SP3	E2F3	HNRNPK	KAT2B	
		EZH2			
		PPARA			
		RB1			
		STAT3			
		KAT2B			
Genes	NCF2	CALD1	CD68		DNMT1
	MAPK8	CCNG2	SOS1		FBN1
	SP3	E2F1	UTRN		EDF1
		HIF1A	VCAM1		
		SMAD4	WRN		
		MMP2			
		MAPK8			
		SOS1			
		TGFBR2			
		KLF11			
		TXNIP			

Validated targets

TFs	KAT2B	E2F3	MYB	E2F1	PPARA	KLF4	SP1
	NR3C1	ETS1	ETS1	E2F3		AHR	STAT3
		MYB	SP1	MYC		MYC	SP1
		SP1	E2F3	RB1			STAT3
		EZH2	FOXO1	RUNX1			MYC
			E2F3	STAT3			
Genes	CTGF	CREB1	FLNA	CCNB1	HIF1A	MMP2	COL1A1
	FMR1	FN1	FN1	E2F1		DNMT1	DNMT1
	ATM	KLF11	KLF11	FLNA		FBN1	MMP2
	HMGCS1	ZEB1	ZEB1	HIF1A		MYC	FBN1
	SMAD4	DNMT1	NCAM1	MYC			MYC
	TGFBR2		CYP1B1	SMAD4			
	DNMT1			TGFBR2			
				DNMT1			

miRNAs	miR-342-3p	miR-630	miR-874	miR-92a-1	let-7a	let-7b	let-7g

01 11111 (115							
TFs	E2F3	KLF6	POU2F1		EZH2	EZH2	EZH2
		EZH2	STAT3		POU2F1	POU2F1	POU2F1
					RB1	RB1	RB1
					TP53	TP53	TP53
Genes	DNMT1		FBN1	COL1A1	FAS	FAS	FAS
	ZEB1		FMR1	DACT3	COL1A1	COL1A1	COL1A1
			SIGIRR		IL6	IL6	IL6
					MAPK8	MAPK8	MAPK8
					UTRN	UTRN	UTRN

Validated targets

TFs	FOSL2	SNAI2	PARP1	HDAC1	E2F1	CTCF	MYC
	E2F1	FOXM1	HDAC1	HDGF	EZH2	E2F3	
			STAT3	KAT2B	MYC	EZH2	
			E2F3	MYBL2	NFKB1	MYC	
				NFKB1	PARP1	SOX9	
				STAT3	SP1	SP1	
				HDAC2	STAT3		
				KLF4			
				IKZF1			
Genes	DNMT1	SNAI2		ATM	MYC	BIRC5	MYC
	E2F1			CCNB1	HRAS	CCNB1	FN1
				EPB41L3	E2F1	EPB41L3	
				FLNA	IL6	FLNA	
				HMGCS1		HIF1A	
				SMAD4		HMGCS1	
				TGFBR2		MYC	
				TYMP		UTRN	
				MAPK8		HRAS	
				DNMT1			

miRNAs	let-7i
Predicted targets	
of miRNAs	
TFs	EZH2
	POU2F1
	RB1
	TP53
Genes	FAS
	CHUK
	COL1A1
	IL6
	MAPK8
	UTRN

TFs	
a	
Genes	

H19-KLF6-TXNIP miR-130b-3p miR-138-5p miR-139 miRNAs miR-106a miR-141 miR-152-3p miR-152-5p Predicted targets of miRNAs

TFs	RUNX1	FOSL2	EZH2	ETS1	CREBBP	KLF6	KLF6
	E2F1	MYB	POU2F1		POU2F1	KLF4	E2F3
	PPARA	STAT3	RELA				KLF4
	RB1		SP1				
	SP1						
	STAT3						
	KAT2B						
Genes	CALD1	FMR1	HIF1A	FMR1	FMR1	CHUK	DNMT1
	CCNG2	MET	KLF11	MAPK8		DNMT1	FBN1
	E2F1	TGFBR2		ZEB1		FBN1	FMR1
	HIF1A					FMR1	SOS1
	SMAD4					SOS1	
	MMP2						
	MAPK8						
	SOS1						
	TGFBR2						
	KLF11						
	TXNIP						

Validated targets

TFs	E2F1	AHR	EZH2	NFKB1	E2F3	KLF4	
	MYB	E2F1	NFKB1		PPARA		
	RB1	NR3C1	SNAI2		HDGF		
	RUNX1	PPARA	SOX9		KLF6????		
	STAT3	RB1	TWIST2				
		STAT3					
Genes	E2F1	E2F1	HIF1A	HRAS	ZEB1	DNMT1	
	FAS	KLF11	SNAI2	MET	EIF4E	ADAM17	
	TGFBR2	SMAD4			KLF11		
	ATM	TGFBR2			ZEB1		
	HIF1A	ZEB1					
		FMR1					
		MMP2					

miRNAs miR-17 miR-181d-3p miR-181d-5p miR-18a	miR-194-5p miR-196a miR-19a
---	-----------------------------

RUNX1	RU	JNX1	RUNX1	E2F3	ERG	
E2F1	KL	.F6	KLF6	FLI1	FLI1	
RB1	ET	S1	NR3C1	SP3		
STAT3	NR	R3C1	POU2F1			
KAT2B	KA	T2B				
CALD1	AT	Ъ	ATM	ACP5	FAS	FMR1
CCNG2	SO	S1	CTGF	FMR1	COL1A1	IL18
E2F1	VC	CAM1	HIF1A	SP3	MAPK8	
HIF1A	EP	B41L3	HMGCS1	RSF1	ZEB1	
MMP2			MAPK8			
SOS1						
TGFBR2						
KLF11						
TXNIP						
	RUNX1 E2F1 RB1 STAT3 KAT2B Image: CALD1 CCNG2 E2F1 HIF1A MMP2 SOS1 TGFBR2 KLF11 TXNIP Image: Comparison of the second	RUNX1 RU E2F1 KI RB1 ET STAT3 NR KAT2B KA Image: Solution of the second seco	RUNX1 RUNX1 E2F1 KLF6 RB1 ETS1 STAT3 NR3C1 KAT2B KAT2B KAT2B KAT2B CALD1 ATM CCNG2 SOS1 E2F1 VCAM1 HIF1A EPB41L3 MMP2 SOS1 TGFBR2 KLF11 TXNIP I	RUNX1RUNX1RUNX1RUNX1E2F1KLF6KLF6RB1ETS1NR3C1STAT3NR3C1POU2F1KAT2BKAT2BIIIIIICALD1ATMATMCCNG2SOS1CTGFE2F1VCAM1HIF1AHIF1AEPB41L3HMGCS1MMP2IIKLF11IITXNIPIII	RUNX1RUNX1RUNX1E2F3E2F1KLF6KLF6FLI1RB1ETS1NR3C1SP3STAT3NR3C1POU2F1KAT2BKAT2BAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAA <td>RUNX1RUNX1RUNX1E2F3ERGE2F1KLF6KLF6FL11FL11RB1ETS1NR3C1SP3STAT3NR3C1POU2F1KAT2BKAT2BKAT2BKAT2BCALD1ATMATMACP5CCNG2SOS1CTGFFMR1COL1A1EPB41L3HMGCS1RSF1ZEF1VCAM1HIF1AZEB1MMP2MAPK8SOS1TGFBR2KLF11ATMACMTXNIPImage: Construction of the state of the state</td>	RUNX1RUNX1RUNX1E2F3ERGE2F1KLF6KLF6FL11FL11RB1ETS1NR3C1SP3STAT3NR3C1POU2F1KAT2BKAT2BKAT2BKAT2BCALD1ATMATMACP5CCNG2SOS1CTGFFMR1COL1A1EPB41L3HMGCS1RSF1ZEF1VCAM1HIF1AZEB1MMP2MAPK8SOS1TGFBR2KLF11ATMACMTXNIPImage: Construction of the state

Validated targets

TFs	E2F1		NR3C1	FOXM1	FOXO1	KAT2B
	E2F3		RUNX1			
	KAT2B					
	MYC					
	RB1					
	RUNX1					
	STAT3					
Genes	E2F1	HRAS	CTGF		FLNA	CTGF
	MMP2		EDF1		TGFBR2	SMAD4
	MYC		ATM			TGFBR2
	SMAD4		HIF1A			DNMT1
	TGFBR2		HMGCS1			
	HIF1A		SMAD4			
	DNMT1		TGFBR2			
	IGFBP3		DNMT1			

miRNAs	miR-19b-1	miR-200b	miR-200c	miR-20a	miR-22	miR-29a	miR-29b
D H i i i							

TFs	KLF6	E2F1	FOXO1	ETS1	MYBL2
	SP3	E2F3	HNRNPK	KAT2B	
		EZH2			
		PPARA			
		RB1			
		STAT3			
		KAT2B			
Genes	NCF2	CALD1	CD68		DNMT1
	MAPK8	CCNG2	SOS1		FBN1
	SP3	E2F1	UTRN		EDF1
		HIF1A	VCAM1		
		SMAD4	WRN		
		MMP2			
		MAPK8			
		SOS1			
		TGFBR2	2		
		KLF11			
		TXNIP			

Validated targets

TFs	KAT2B	E2F3	MYB	E2F1	PPARA	KLF4	SP1
	NR3C1	ETS1	ETS1	E2F3		AHR	STAT3
		MYB	SP1	MYC		MYC	SP1
		SP1	E2F3	RB1			STAT3
		EZH2	FOXO1	RUNX1			MYC
			E2F3	STAT3			
Genes	CTGF	CREB1	FLNA	CCNB1	HIF1A	MMP2	COL1A1
	FMR1	FN1	FN1	E2F1		DNMT1	DNMT1
	ATM	KLF11	KLF11	FLNA		FBN1	MMP2
	HMGCS1	ZEB1	ZEB1	HIF1A		MYC	FBN1
	SMAD4	DNMT1	NCAM1	MYC			MYC
	TGFBR2		CYP1B1	SMAD4			
	DNMT1			TGFBR2			
	DNMT1			TGFBR2 DNMT1			
	DNMT1			TGFBR2 DNMT1			

miRNAs	miR-342-3p	miR-630	miR-874	miR-92a-1	let-7a	let-7b	let-7g

TFs	E2F3	KLF6	POU2F1		EZH2	EZH2	EZH2
		EZH2	STAT3		POU2F1	POU2F1	POU2F1
					RB1	RB1	RB1
					TP53	TP53	TP53
Genes	DNMT1		FBN1	COL1A1	FAS	FAS	FAS
	ZEB1		FMR1	DACT3	COL1A1	COL1A1	COL1A1
			SIGIRR		IL6	IL6	IL6
					MAPK8	MAPK8	MAPK8
					UTRN	UTRN	UTRN

Validated targets

TFs	FOSL2	SNAI2	PARP1	HDAC1	E2F1	CTCF	MYC
	E2F1	FOXM1	HDAC1	HDGF	EZH2	E2F3	
			STAT3	KAT2B	MYC	EZH2	
			E2F3	MYBL2	NFKB1	MYC	
				NFKB1	PARP1	SOX9	
				STAT3	SP1	SP1	
				HDAC2	STAT3		
				KLF4			
				IKZF1			
Genes	DNMT1	SNAI2		ATM	MYC	BIRC5	MYC
	E2F1			CCNB1	HRAS	CCNB1	FN1
				EPB41L3	E2F1	EPB41L3	
				FLNA	IL6	FLNA	
				HMGCS1		HIF1A	
				SMAD4		HMGCS1	
				TGFBR2		MYC	
				TYMP		UTRN	
				MAPK8		HRAS	
				DNMT1			

miRNAs	let-7i

TFs	EZH2
	POU2F1
	RB1
	TP53
Genes	FAS
	CHUK
	COL1A1
	IL6
	MAPK8
	UTRN

Validated targets

H19-PPARA-KLF11

	miRNAs	miR-106a	miR-130b-3p	miR-138-5p	miR-139	miR-141	miR-152-3p	miR-152-5p	
--	--------	----------	-------------	------------	---------	---------	------------	------------	--

Predicted targets of miRNAs

TFs	RUNX1	FOSL2	EZH2	ETS1	CREBBP	KLF6	KLF6
	E2F1	MYB	POU2F1		POU2F1	KLF4	E2F3
	PPARA	STAT3	RELA				KLF4
	RB1		SP1				
	SP1						
	STAT3						
	KAT2B						
Genes	CALD1	FMR1	HIF1A	FMR1	FMR1	CHUK	DNMT1
	CCNG2	MET	KLF11	MAPK8		DNMT1	FBN1
	E2F1	TGFBR2		ZEB1		FBN1	FMR1
	HIF1A					FMR1	SOS1
	SMAD4					SOS1	
	MMP2						
	MAPK8						
	SOS1						
	TGFBR2						
	KLF11						
	TXNIP						

Validated targets

TFs	E2F1	AHR	EZH2	NFKB1	E2F3	KLF4	
	MYB	E2F1	NFKB1		PPARA		
	RB1	NR3C1	SNAI2		HDGF		
	RUNX1	PPARA	SOX9				
	STAT3	RB1	TWIST2				
		STAT3					
Genes	E2F1	E2F1	HIF1A	HRAS	ZEB1	DNMT1	
	FAS	KLF11	SNAI2	MET	EIF4E	ADAM17	
	TGFBR2	SMAD4			KLF11		
	ATM	TGFBR2			ZEB1		
	HIF1A	ZEB1					
		FMR1					
		MMP2					

miRNAs miR-17 miR-181d-3pmiR-181d-5pmiR-18a miR-194-5pmiR-196a miR-19a
--

RUNX1		RUNX1	RUNX1	E2F3	ERG	
E2F1		KLF6	KLF6	FLI1	FLI1	
RB1		ETS1	NR3C1	SP3		
STAT3		NR3C1	POU2F1			
KAT2B		KAT2B				
CALD1		ATM	ATM	ACP5	FAS	FMR1
CCNG2		SOS1	CTGF	FMR1	COL1A1	IL18
E2F1		VCAM1	HIF1A	SP3	MAPK8	
HIF1A		EPB41L3	HMGCS1	RSF1	ZEB1	
MMP2			MAPK8			
SOS1						
TGFBR2						
KLF11						
TXNIP						
	RUNX1 E2F1 RB1 STAT3 KAT2B CALD1 CCNG2 E2F1 HIF1A MMP2 SOS1 TGFBR2 KLF11 TXNIP	RUNX1 E2F1 RB1 STAT3 KAT2B Image: CALD1 CALD1 CCNG2 E2F1 HIF1A MMP2 SOS1 TGFBR2 KLF11 TXNIP Image: Comparison of the system	RUNX1 RUNX1 E2F1 KLF6 RB1 ETS1 STAT3 NR3C1 KAT2B KAT2B Image: State of the state	RUNX1RUNX1RUNX1RUNX1E2F1KLF6KLF6RB1ETS1NR3C1STAT3NR3C1POU2F1KAT2BKAT2B	RUNX1RUNX1RUNX1E2F3E2F1KLF6KLF6FLI1RB1ETS1NR3C1SP3STAT3NR3C1POU2F1KAT2BKAT2BII <td>RUNX1RUNX1RUNX1E2F3ERGE2F1KLF6KLF6FL11FL11RB1ETS1NR3C1SP3STAT3NR3C1POU2F1KAT2BKAT2BAAABAAAAAAAAAAAAAAAAA<td< td=""></td<></td>	RUNX1RUNX1RUNX1E2F3ERGE2F1KLF6KLF6FL11FL11RB1ETS1NR3C1SP3STAT3NR3C1POU2F1KAT2BKAT2BAAABAAAAAAAAAAAAAAAAA <td< td=""></td<>

Validated targets

TFs	E2F1		NR3C1	FOXM1	FOXO1	KAT2B
	E2F3		RUNX1			
	KAT2B					
	MYC					
	RB1					
	RUNX1					
	STAT3					
Genes	E2F1	HRAS	CTGF		FLNA	CTGF
	MMP2		EDF1		TGFBR2	SMAD4
	MYC		ATM			TGFBR2
	SMAD4		HIF1A			DNMT1
	TGFBR2		HMGCS1			
	HIF1A		SMAD4			
	DNMT1		TGFBR2			
	IGFBP3		DNMT1			

miRNAs miR-19b-1 miR-200b miR-200c miR-20a miR-22 miR-29a miR-29b

TFs	KLF6	E2F1	FOXO1	ETS1	MYBL2
	SP3	E2F3	HNRNPK	KAT2B	
		EZH2			
		PPARA			
		RB1			
		STAT3			
		KAT2B			
Genes	NCF2	CALD1	CD68		DNMT1
	MAPK8	CCNG2	SOS1		FBN1
	SP3	E2F1	UTRN		EDF1
		HIF1A	VCAM1		
		SMAD4	WRN		
		MMP2			
		MAPK8	3		
		SOS1			
		TGFBR	2		
		KLF11			
		TXNIP			

TFs	KAT2B	E2F3	MYB	E2F1	PPARA	KLF4	SP1
	NR3C1	ETS1	ETS1	E2F3		AHR	STAT3
		MYB	SP1	MYC		MYC	SP1
		SP1	E2F3	RB1			STAT3
		EZH2	FOXO1	RUNX1			MYC
			E2F3	STAT3			
Genes	CTGF	CREB1	FLNA	CCNB1	HIF1A	MMP2	COL1A1
	FMR1	FN1	FN1	E2F1		DNMT1	DNMT1
	ATM	KLF11	KLF11	FLNA		FBN1	MMP2
	HMGCS1	ZEB1	ZEB1	HIF1A		MYC	FBN1
	SMAD4	DNMT1	NCAM1	MYC			MYC
	TGFBR2		CYP1B1	SMAD4			
	DNMT1			TGFBR2			
				DNMT1			

miRNAs	miR-342-3p	miR-630	miR-874	miR-92a-1	let-7a	let-7b	let-7g

TFs	E2F3	KLF6	POU2F1		EZH2	EZH2	EZH2
		EZH2	STAT3		POU2F1	POU2F1	POU2F1
					RB1	RB1	RB1
					TP53	TP53	TP53
Genes	DNMT1		FBN1	COL1A1	FAS	FAS	FAS
	ZEB1		FMR1	DACT3	COL1A1	COL1A1	COL1A1
			SIGIRR		IL6	IL6	IL6
					MAPK8	MAPK8	MAPK8
					UTRN	UTRN	UTRN

TFs	FOSL2	SNAI2	PARP1	HDAC1	E2F1	CTCF	MYC
	E2F1	FOXM1	HDAC1	HDGF	EZH2	E2F3	
			STAT3	KAT2B	MYC	EZH2	
			E2F3	MYBL2	NFKB1	MYC	
				NFKB1	PARP1	SOX9	
				STAT3	SP1	SP1	
				HDAC2	STAT3		
				KLF4			
				IKZF1			
Genes	DNMT1	SNAI2		ATM	MYC	BIRC5	MYC
	E2F1			CCNB1	HRAS	CCNB1	FN1
				EPB41L3	E2F1	EPB41L3	
				FLNA	IL6	FLNA	
				HMGCS1		HIF1A	
				SMAD4		HMGCS1	
				TGFBR2		MYC	
				TYMP		UTRN	
				MAPK8		HRAS	
				DNMT1			

miRNAs	let-7i
Predicted targets	
of miRNAs	
TFs	EZH2
	POU2F1
	RB1
	TP53
Genes	FAS
	CHUK
	COL1A1
	IL6
	MAPK8
	UTRN

TFs	
Genes	

miRNAs	miR-106a	miR-130b-3p	miR-138-5p	miR-139	miR-141	miR-152-3p	miR-152-5p
Predicted targets							
of miRNAs							
TFs	RUNX1	FOSL2	EZH2	ETS1	CREBBP	KLF6	KLF6
	E2F1	MYB	POU2F1		POU2F1	KLF4	E2F3
	PPARA	STAT3	RELA				KLF4
	RB1		SP1				
	SP1						
	STAT3						
	KAT2B						
Genes	CALD1	FMR1	HIF1A	FMR1	FMR1	CHUK	DNMT1
	CCNG2	MET	KLF11	MAPK8		DNMT1	FBN1
	E2F1	TGFBR2		ZEB1		FBN1	FMR1
	HIF1A					FMR1	SOS1
	SMAD4					SOS1	
	MMP2						
	MAPK8						
	SOS1						
	TGFBR2						
	KLF11						
	TXNIP						

H19-SP1-TGFBR2

Validated targets

TFs	E2F1	AHR	EZH2	NFKB1	E2F3	KLF4	
	MYB	E2F1	NFKB1		PPARA		
	RB1	NR3C1	SNAI2		HDGF		
	RUNX1	PPARA	SOX9				
	STAT3	RB1	TWIST2				
		STAT3					
Genes	E2F1	E2F1	HIF1A	HRAS	ZEB1	DNMT1	
	FAS	KLF11	SNAI2	MET	EIF4E	ADAM17	
	TGFBR2	SMAD4			KLF11		
	ATM	TGFBR2			ZEB1		
	HIF1A	ZEB1					
		FMR1					
		MMP2					

	miRNAs mi	iR-17 miR-181d-3p	miR-181d-5p miR-18a	miR-194-5p	miR-196a	miR-19a
--	-----------	-------------------	---------------------	------------	----------	---------

TFs	RUNX1	RUNX1	RUNX1	E2F3	ERG	
	E2F1	KLF6	KLF6	FLI1	FLI1	
	RB1	ETS1	NR3C1	SP3		
	STAT3	NR3C1	POU2F1			
	KAT2B	KAT2B				
Genes	CALD1	ATM	ATM	ACP5	FAS	FMR1
	CCNG2	SOS1	CTGF	FMR1	COL1A1	IL18
	E2F1	VCAM1	HIF1A	SP3	MAPK8	
	HIF1A	EPB41L3	HMGCS1	RSF1	ZEB1	
	MMP2		MAPK8			
	SOS1					
	TGFBR2					
	KLF11					
	TXNIP					

Validated targets

TFs	E2F1		NR3C1	FOXM1	FOXO1	KAT2B
	E2F3		RUNX1			
	KAT2B					
	MYC					
	RB1					
	RUNX1					
	STAT3					
Genes	E2F1	HRAS	CTGF		FLNA	CTGF
	MMP2		EDF1		TGFBR2	SMAD4
	MYC		ATM			TGFBR2
	SMAD4		HIF1A			DNMT1
	TGFBR2		HMGCS1			
	HIF1A		SMAD4			
	DNMT1		TGFBR2			
	IGFBP3		DNMT1			

miRNAs	miR-19b-1	miR-200b	miR-200c	miR-20a	miR-22	miR-29a	miR-29b

Predicted targets

of	miRNAs	
----	--------	--

TFs	KLF6	E2F1	FOXO1	ETS1	MYBL2
	SP3	E2F3	HNRNPK	KAT2B	
		EZH2			
		PPARA			
		RB1			
		STAT3			
		KAT2B			
Genes	NCF2	CALD1	CD68		DNMT1
	MAPK8	CCNG2	SOS1		FBN1
	SP3	E2F1	UTRN		EDF1
		HIF1A	VCAM1		
		SMAD4	WRN		
		MMP2			
		MAPK8			
		SOS1			
		TGFBR2			
		KLF11			
		TXNIP			

TFs	KAT2B	E2F3	MYB	E2F1	PPARA	KLF4	SP1
	NR3C1	ETS1	ETS1	E2F3		AHR	STAT3
		MYB	SP1	MYC		MYC	SP1
		SP1	E2F3	RB1			STAT3
		EZH2	FOXO1	RUNX1			MYC
			E2F3	STAT3			
Genes	CTGF	CREB1	FLNA	CCNB1	HIF1A	MMP2	COL1A1
	FMR1	FN1	FN1	E2F1		DNMT1	DNMT1
	ATM	KLF11	KLF11	FLNA		FBN1	MMP2
	HMGCS1	ZEB1	ZEB1	HIF1A		MYC	FBN1
	SMAD4	DNMT1	NCAM1	MYC			MYC
	TGFBR2		CYP1B1	SMAD4			
	DNMT1			TGFBR2			
				DNMT1			

miRNAs miR-342-3p miR-630 miR-874 miR-92a-1 let-7a let-7b let-7g	
--	--

Predicted targets

of miRNAs	
-----------	--

TFs	E2F3	KLF6	POU2F1		EZH2	EZH2	EZH2
		EZH2	STAT3		POU2F1	POU2F1	POU2F1
					RB1	RB1	RB1
					TP53	TP53	TP53
Genes	DNMT1		FBN1	COL1A1	FAS	FAS	FAS
	ZEB1		FMR1	DACT3	COL1A1	COL1A1	COL1A1
			SIGIRR		IL6	IL6	IL6
					MAPK8	MAPK8	MAPK8
					UTRN	UTRN	UTRN

TFs	FOSL2	SNAI2	PARP1	HDAC1	E2F1	CTCF	MYC
	E2F1	FOXM1	HDAC1	HDGF	EZH2	E2F3	
			STAT3	KAT2B	MYC	EZH2	
			E2F3	MYBL2	NFKB1	MYC	
				NFKB1	PARP1	SOX9	
				STAT3	SP1	SP1	
				HDAC2	STAT3		
				KLF4			
				IKZF1			
Genes	DNMT1	SNAI2		ATM	MYC	BIRC5	MYC
	E2F1			CCNB1	HRAS	CCNB1	FN1
				EPB41L3	E2F1	EPB41L3	
				FLNA	IL6	FLNA	
				HMGCS1		HIF1A	
				SMAD4		HMGCS1	
				TGFBR2		MYC	
				TYMP		UTRN	
				MAPK8		HRAS	
				DNMT1			

miRNAs	let-7i
Predicted targets	
of miRNAs	
TFs	EZH2
	POU2F1
	RB1
	TP53
Genes	FAS
	CHUK
	COL1A1
	IL6
	MAPK8
	UTRN

TFs	
Genes	

H19-STAT3-KLF11

miRNAs	miR-106a	miR-130b-3p	miR-138-5p	miR-139	miR-141	miR-152-3p	miR-152-5p	miR-17	
									2

Predicted targets of miRNAs

TFs	RUNX1	FOSL2	EZH2	ETS1	CREBBP	KLF6	KLF6	RUNX1
	E2F1	MYB	POU2F1		POU2F1	KLF4	E2F3	E2F1
	PPARA	STAT3	RELA				KLF4	RB1
	RB1		SP1					STAT3
	SP1							KAT2B
	STAT3							
	KAT2B							
Genes	CALD1	FMR1	HIF1A	FMR1	FMR1	CHUK	DNMT1	CALD1
	CCNG2	MET	KLF11	MAPK8		DNMT1	FBN1	CCNG2
	E2F1	TGFBR2		ZEB1		FBN1	FMR1	E2F1
	HIF1A					FMR1	SOS1	HIF1A
	SMAD4					SOS1		MMP2
	MMP2							SOS1
	MAPK8							TGFBR2
	SOS1							KLF11
	TGFBR2							TXNIP
	KLF11							
	TXNIP							

Validated targets

TFs	E2F1	AHR	EZH2	NFKB1	E2F3	KLF4	E2F1
	MYB	E2F1	NFKB1		PPARA		E2F3
	RB1	NR3C1	SNAI2		HDGF		KAT2B
	RUNX1	PPARA	SOX9				MYC
	STAT3	RB1	TWIST2				RB1
		STAT3					RUNX1
							STAT3
Genes	E2F1	E2F1	HIF1A	HRAS	ZEB1	DNMT1	E2F1
	FAS	KLF11	SNAI2	MET	EIF4E	ADAM17	MMP2
	TGFBR2	SMAD4			KLF11		MYC
	ATM	TGFBR2			ZEB1		SMAD4
	HIF1A	ZEB1					TGFBR2
		FMR1					HIF1A
		MMP2					DNMT1
							IGFBP3

TFs	RUNX1	RUNX1	E2F3	ERG		
	KLF6	KLF6	FLI1	FLI1		
	ETS1	NR3C1	SP3			
	NR3C1	POU2F1				
	KAT2B					
Genes	ATM	ATM	ACP5	FAS	FMR1	
	SOS1	CTGF	FMR1	COL1A1	IL18	
	VCAM1	HIF1A	SP3	MAPK8		
	EPB41L3	HMGCS1	RSF1	ZEB1		
		MAPK8				

TFs		NR3C1	FOXM1	FOXO1	KAT2B	KAT2B
		RUNX1				NR3C1
Genes	HRAS	CTGF		FLNA	CTGF	CTGF
		EDF1		TGFBR2	SMAD4	FMR1
		ATM			TGFBR2	ATM
		HIF1A			DNMT1	HMGCS1
		HMGCS1				SMAD4
		SMAD4				TGFBR2
		TGFBR2				DNMT1
		DNMT1				

	miRNAs	miR-200b	miR-200c	miR-20a	miR-22	miR-29a	miR-29b	miR-342-3p
--	--------	----------	----------	---------	--------	---------	---------	------------

TFs	KLF6	E2F1	FOXO1	ETS1	MYBL2	E2F3
	SP3	E2F3	HNRNPK	KAT2B		
		EZH2				
		PPARA				
		RB1				
		STAT3				
		KAT2B				
Genes	NCF2	CALD1	CD68		DNMT1	DNMT1
	MAPK8	CCNG2	SOS1		FBN1	ZEB1
	SP3	E2F1	UTRN		EDF1	
		HIF1A	VCAM1			
		SMAD4	WRN			
		MMP2				
		MAPK8				
		SOS1				
		TGFBR2				
		KLF11				
		TXNIP				

TFs	E2F3	MYB	E2F1	PPARA	KLF4	SP1	FOSL2
	ETS1	ETS1	E2F3		AHR	STAT3	E2F1
	MYB	SP1	MYC		MYC	SP1	
	SP1	E2F3	RB1			STAT3	
	EZH2	FOXO1	RUNX1			MYC	
		E2F3	STAT3				
Genes	CREB1	FLNA	CCNB1	HIF1A	MMP2	COL1A1	DNMT1
	FN1	FN1	E2F1		DNMT1	DNMT1	E2F1
	KLF11	KLF11	FLNA		FBN1	MMP2	
	ZEB1	ZEB1	HIF1A		MYC	FBN1	
	DNMT1	NCAM1	MYC			MYC	
		CYP1B1	SMAD4				
			TGFBR2				
			DNMT1				

miRNAs	miR-630	miR-874	miR-92a-1	let-7a	let-7b	let-7g	let-7i

Predicted targets

of	miRNAs	

TFs	KLF6	POU2F1		EZH2	EZH2	EZH2	EZH2
	EZH2	STAT3		POU2F1	POU2F1	POU2F1	POU2F1
				RB1	RB1	RB1	RB1
				TP53	TP53	TP53	TP53
Genes		FBN1	COL1A1	FAS	FAS	FAS	FAS
		FMR1	DACT3	COL1A1	COL1A1	COL1A1	CHUK
		SIGIRR		IL6	IL6	IL6	COL1A1
				MAPK8	MAPK8	MAPK8	IL6
				UTRN	UTRN	UTRN	MAPK8
							UTRN

TFs	SNAI2	PARP1	HDAC1	E2F1	CTCF	MYC	
	FOXM1	HDAC1	HDGF	EZH2	E2F3		
		STAT3	KAT2B	MYC	EZH2		
		E2F3	MYBL2	NFKB1	MYC		
			NFKB1	PARP1	SOX9		
			STAT3	SP1	SP1		
			HDAC2	STAT3			
			KLF4				
			IKZF1				
Genes	SNAI2		ATM	MYC	BIRC5	MYC	
			CCNB1	HRAS	CCNB1	FN1	
			EPB41L3	E2F1	EPB41L3		
			FLNA	IL6	FLNA		
			HMGCS1		HIF1A		
			SMAD4		HMGCS1		
			TGFBR2		MYC		
			TYMP		UTRN		
			MAPK8		HRAS		
			DNMT1				

H19-NFYB-SP3 miR-106a miRNAs miR-130b-3p miR-138-5p miR-139 miR-141 miR-152-3p miR-152-5p **Predicted targets** of miRNAs TFs RUNX1 FOSL2 EZH2 ETS1 CREBBP KLF6 KLF6 E2F1 MYB POU2F1 POU2F1 KLF4 E2F3 PPARA STAT3 KLF4 RELA RB1 SP1 SP1 STAT3 KAT2B HIF1A Genes CALD1 FMR1 FMR1 FMR1 CHUK DNMT1 CCNG2 MET KLF11 MAPK8 DNMT1 FBN1 TGFBR2 ZEB1 E2F1 FBN1 FMR1 HIF1A FMR1 SOS1 SMAD4 SOS1 MMP2 MAPK8 SOS1 TGFBR2 KLF11

targets of

TXNIP

miRNAs

TFs	E2F1	AHR	EZH2	NFKB1	E2F3	KLF4	
	MYB	E2F1	NFKB1		PPARA		
	RB1	NR3C1	SNAI2		HDGF		
	RUNX1	PPARA	SOX9				
	STAT3	RB1	TWIST2				
		STAT3					
Genes	E2F1	E2F1	HIF1A	HRAS	ZEB1	DNMT1	
	FAS	KLF11	SNAI2	MET	EIF4E	ADAM17	
	TGFBR2	SMAD4			KLF11		
	ATM	TGFBR2			ZEB1		
	HIF1A	ZEB1					
		FMR1					
		MMP2					

miRNAs	miR-17	miR-181d-3p	miR-181d-5p	miR-18a	miR-194-5p	miR-196a	miR-19a
Predicted targets							

rge of miRNAs

TFs	RUNX1	RUNX1	RUNX1	E2F3	ERG	
	E2F1	KLF6	KLF6	FLI1	FLI1	
	RB1	ETS1	NR3C1	SP3		
	STAT3	NR3C1	POU2F1			
	KAT2B	KAT2B				
Genes	CALD1	ATM	ATM	ACP5	FAS	FMR1
	CCNG2	SOS1	CTGF	FMR1	COL1A1	IL18
	E2F1	VCAM1	HIF1A	SP3	MAPK8	
	HIF1A	EPB41L3	HMGCS1	RSF1	ZEB1	
	MMP2		MAPK8			
	SOS1					
	TGFBR2					
	KLF11					
	TXNIP					

targets of miRNAs

TFs	E2F1		NR3C1	FOXM1	FOXO1	KAT2B
	E2F3		RUNX1			
	KAT2B					
	MYC					
	RB1					
	RUNX1					
	STAT3					
Genes	E2F1	HRAS	CTGF		FLNA	CTGF
	MMP2		EDF1		TGFBR2	SMAD4
	MYC		ATM			TGFBR2
	SMAD4		HIF1A			DNMT1
	TGFBR2		HMGCS1			
	HIF1A		SMAD4			
	DNMT1		TGFBR2			
	IGFBP3		DNMT1			

miRNAs	miR-19b-1	miR-200b	miR-200c	miR-20a	miR-22	miR-29a	miR-29b
Predicted targets							

of miRNAs

TFs	KLF6	E2F1	FOXO1	ETS1	MYBL2
	SP3	E2F3	HNRNPK	KAT2B	
		EZH2			
		PPARA			
		RB1			
		STAT3			
		KAT2B			
Genes	NCF2	CALD1	CD68		DNMT1
	MAPK8	CCNG2	SOS1		FBN1
	SP3	E2F1	UTRN		EDF1
		HIF1A	VCAM1		
		SMAD4	WRN		
		MMP2			
		MAPK8			
		SOS1			
		TGFBR2			
		KLF11			
		TXNIP			

targets of miRNAs

TFs	KAT2B	E2F3	MYB	E2F1	PPARA	KLF4	SP1
	NR3C1	ETS1	ETS1	E2F3		AHR	STAT3
		MYB	SP1	MYC		MYC	SP1
		SP1	E2F3	RB1			STAT3
		EZH2	FOXO1	RUNX1			MYC
			E2F3	STAT3			
Genes	CTGF	CREB1	FLNA	CCNB1	HIF1A	MMP2	COL1A1
	FMR1	FN1	FN1	E2F1		DNMT1	DNMT1
	ATM	KLF11	KLF11	FLNA		FBN1	MMP2
	HMGCS1	ZEB1	ZEB1	HIF1A		MYC	FBN1
	SMAD4	DNMT1	NCAM1	MYC			MYC
	TGFBR2		CYP1B1	SMAD4			
	DNMT1			TGFBR2			
				DNMT1			

miRNAs	miR-342-3p	miR-630	miR-874	miR-92a-1	let-7a	let-7b	let-7g
Predicted tar	gets						
of miRNAs							
TFs	E2F3	KLF6	POU2F1		EZH2	EZH2	EZH2
		EZH2	STAT3		POU2F1	POU2F1	POU2F1
					RB1	RB1	RB1
					TP53	TP53	TP53
Genes	DNMT1		FBN1	COL1A1	FAS	FAS	FAS
	ZEB1		FMR1	DACT3	COL1A1	COL1A1	COL1A1
			SIGIRR		IL6	IL6	IL6
					MAPK8	MAPK8	MAPK8
					UTRN	UTRN	UTRN
targets of							
miRNAs					-		-

FOSL2	SNAI2	PARP1	HDAC1	E2F1	CTCF	MYC
E2F1	FOXM1	HDAC1	HDGF	EZH2	E2F3	
		STAT3	KAT2B	MYC	EZH2	
		E2F3	MYBL2	NFKB1	MYC	
			NFKB1	PARP1	SOX9	
			STAT3	SP1	SP1	
			HDAC2	STAT3		
			KLF4			
			IKZF1			
DNMT1	SNAI2		ATM	MYC	BIRC5	MYC
E2F1			CCNB1	HRAS	CCNB1	FN1
			EPB41L3	E2F1	EPB41L3	
			FLNA	IL6	FLNA	
			HMGCS1		HIF1A	
			SMAD4		HMGCS1	
			TGFBR2		MYC	
			TYMP		UTRN	
			MAPK8		HRAS	
			DNMT1			
	FOSL2 E2F1	FOSL2 SNAI2 E2F1 FOXM1 Image: Constraint of the system	FOSL2 SNAI2 PARP1 E2F1 FOXM1 HDAC1 STAT3 E2F3 - - -	FOSL2SNAI2PARP1HDAC1E2F1FOXM1HDAC1HDGFCSTAT3KAT2BCE2F3MYBL2MYBL2STAT3STAT3CSTAT3HDAC2CSTAT3HDAC2CSTAT3IKZF1CSTAT3STAT3DNMT1SNAI2ATME2F1CCNB1EPB41L3CSMAD4FLNASMAD4TGFBR2SMAPK8DNMT1	FOSL2SNAI2PARP1HDAC1E2F1E2F1FOXM1HDAC1HDGFEZH2E2F1FOXM1HDAC1HDGFEZH2Image: Constraint of the stress of t	FOSL2SNAI2PARP1HDAC1E2F1CTCFE2F1FOXM1HDAC1HDGFEZH2E2F3ISTAT3KAT2BMYCEZH2IE2F3MYBL2NFKB1MYCIISTAT3SP1SOX9IISTAT3SP1SP1IIIHDAC2STAT3IIIKLF4III

miRNAs let-7i Predicted targets of miRNAs

TFs	EZH2
	POU2F1
	RB1
	TP53
Genes	FAS
	CHUK
	COL1A1
	IL6
	MAPK8
	UTRN

targets of miRNAs

TFs	
Genes	

 Table S6. Primers for qRT-PCR experiment

Gene	Forward sequence	Reverse sequence
GAPDH	5'-CCACTCCTCCACCTTTGAC-3'	5'-ACCCTGTTGCTGTAGCCA-3'
H19	5'-GTGGACTTGGTGACGCTGTA-3'	5'-CACCATCCTCCTCCTGAGA-3'
SP1	5'-TGGCAGCAGTACCAATGGC-3'	5'-CCAGGTAGTCCTGTCAGAACTT-3'
ETS1	5'-GATAGTTGTGATCGCCTCACC-3'	5'-GTCCTCTGAGTCGAAGCTGTC-3'
STAT3	5'-ACCAGCAGTATAGCCGCTTC-3'	5'-GCCACAATCCGGGCAATCT-3'
TGFBR2	5'-GTAGCTCTGATGAGTGCAATGAC-3'	5'-CAGATATGGCAACTCCCAGTG-3'
KLF11	5'-GTTGCGGATAAGACCCCTCAC-3'	5'-TGGAATCTGTTACTTGGGGAGA-3'