

Supplementary Information for

O-GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity

Eunah Kim, Jeong Gu Kang, Min Jueng Kang, Jae Hyung Park, Yeon Jung Kim, Tae Hyun Kweon, Han-Woong Lee, Eek-hoon Jho, Yong-ho Lee, Seung-II Kim, Eugene C. Yi, Hyun Woo Park, Won Ho Yang, Jin Won Cho

Corresponding author: Jin Won Cho Email: chojw311@yonsei.ac.kr

This PDF file includes:

Supplementary text Figures S1 to S7

Supplementary Information Text

SI Materials and Methods

Antibodies

anti-HA (Sigma, #H3663), anti-c-Myc (Santa Cruz Biotechnology, Santa Cruz, CA, USA, #sc-47694), anti-Flag (MBL, Woburn, MA, USA, #M185-3L), anti-MST1 (Abcam, Hong Kong, China, #ab76822), anti-p-T183-MST1 (Cell Signaling Technology (CST), Boston, MA, USA, #3681S), anti-LATS1(CST, #3477S), anti-LATS2 (Bethyl Laboratories Inc., Montgomery, AL, USA, #A300-479A or Abnova, Taipei, Taiwan, #MAB0019 or Proteintech Group, Chicago, IL, USA, #20276-1-AP), anti-p-hydrophobic motif-LATS (CST, #8654), anti-p-activation loop-LATS (CST, #9157), anti-YAP (Santa Cruz Biotechnology, #sc-15407 or Abnova, #H00010413-M01 or CST, #14074), anti-p-S127-YAP (CST, #4911), anti-p-S109-YAP (CST, #46931), anti-TAZ (CST, #4883 or BD pharmigen, BD PharMingen, San Diego, CA, USA, #560235), anti-p-S89-TAZ (CST, #59971), anti-O-GIcNAc (CTD110.6: Covance, Princeton, NJ, USA, #MMS-248R or RL2: Thermo Fisher Scientific, #MA1-072), anti-OGT (Sigma, #O6264), anti-CTGF (Santa Cruz Biotechnology, #sc-365970 or #sc-14939), anti-CYR61 (Santa Cruz Biotechnology, #sc-374129 or sc-13100), anti-RHAMM (Santa Cruz Biotechnology, #sc-515221), anti-ERK2 (Santa Cruz Biotechnology, #sc-1647), anti-phospho-ERK1 (pThr²⁰²/pTyr²⁰⁴) and ERK2 (pThr¹⁸⁵/pTyr¹⁸⁷) (Sigma, #E7028), anti-βactin (CST, #4970), anti-α-tubulin (Santa Cruz Biotechnology, #sc-8035), anti-lamin A/C (CST, #2032), and anti-GAPDH (Santa Cruz Biotechnology, #sc-32233 or Millipore, Burlington, MA, USA, #M171-3). The results acquired by Western blotting were quantified using Multi Gauge Ver 3.1 software (Fuji Film Corp., Tokyo, Japan).

siRNA sequences

siOGT sense: 5'-UAAUCAUUUCAAUAACUGCUUCUGC (dTdT)-3', siOGT antisense: 5'-GCAGAAGCAGUUAUUGAAA UGAUUA (dTdT)-3'. siLATS2 sense: 5-'CACACACACACACAGAGAU (dTdT)-3' siLATS2 antisense:5'-AUCUCUGUGUGUGUGUGUG (dTdT)-3'

Quantitative RT-PCR primer sequences

CTGF, forward 5'-GTTTGGCCCAGACCCAACT-3' CTGF, reverse 5'-GGAACAGGCGCTCCACTCT-3' CYR61, forward 5'-AGCCTCGCATCCTATACAAC-3' CYR61, reverse 5'-TTCTTTCACAAGGCGGCATC-3' RHAMM, forward 5'-AGAACCAACTCAAGCAACAGG-3' RHAMM, reverse 5'-AGGAGACGCCACTTGTTAATTTC-3' LATS2, forward 5'-GTAGGACGCAAACGAAT-3' LATS2, reverse 5'-CAGAAGTGAACCGGCA-3' NF2, forward 5'-AGCTTCAACCTCATTGGTGACAGC-3' NF2, reverse 5'-TGAGTTCATTGAGCTGCTCCTGC-3' GAPDH, forward 5'-AGGGCTGCTTTTAACTCTGGT-3' GAPDH, reverse 5'-CCCCACTTGATTTTGGAGGGGA-3'

Fig. S1. Cellular O-GlcNAcylation and YAP/TAZ expression level in breast cancer cells are higher than those in normal breast cells. Normal breast cells (MCF10A) and three breast cancer cell lines (MCF7, MDA-MB-468, and MDA-MB-231) were incubated for 3 days. Their respective cell lysates were stained with Coomassie Blue G250 and immunoblotted with the relevant antibodies. A CBB-stained gel was used as a loading control.

Fig. S2. Mass spectrometry analysis reveals the minor LATS2 *O*-GlcNAc sites. (*A*) *O*-GlcNAcylation was detected at LATS2 Ser342. This peptide corresponds to residues 335–352, SQVFASDSPPQSLLTPSR. Ser342 is bolded and underlined in the sequence. The *O*-GlcNAc oxonium ions (m/z, 204.09, 186.08) were also assigned. (*B*) *O*-GlcNAcylation was detected at LATS2 Ser346. This peptide corresponds to residues 335–352, SQVFASDSPPQSLLTPSR. Ser346 is bolded and underlined in the sequence. The *O*-GlcNAc oxonium ions (m/z, 204.09, 186.08) were also assigned. (*C*) *O*-GlcNAcylation was detected at LATS2 Thr431. This peptide corresponds to residues 422–445, AEPSLPAPNTVTAVTAAHILHPVK. Thr431 is bolded and underlined. The *O*-GlcNAc oxonium ions (m/z, 204.09, 186.08) were also assigned. (*D*) *O*-GlcNAcylation was detected at LATS2 Thr433. This peptide corresponds to residues 422–445, AEPSLPAPNTVTAVTAAHILHPVK. Thr433 is bolded and underlined in the sequence. The *O*-GlcNAc oxonium ions (m/z, 204.09, 186.08) were also assigned to residues 422–445, AEPSLPAPNTV TAVTAAHILHPVK. Thr433 is bolded and underlined in the sequence. The *O*-GlcNAc oxonium ions (m/z, 204.09, 186.08) were also assigned to residues 422–445, AEPSLPAPNTV TAVTAAHILHPVK. Thr433 is bolded and underlined in the sequence. The *O*-GlcNAc oxonium ions (m/z, 204.09, 186.08) were also assigned.

Fig. S3. LATS2 O-GlcNAcylation inhibits its phosphorylation in LATS1/2-dKO HEK293A cells. (A) LATS1/2 are knocked out in LATS1/2-dKO HEK293A cells. (B) Flag-tagged wild-type LATS2 or LATS2 mutants was stably expressed in LATS1/2-dKO HEK293A cells, and immunoprecipitated Flag-LATS2 was detected with phospho-specific LATS antibodies. Abbreviations: HM (hydrophobic motif), AL (Activation loop)

Fig. S4. Lack of O-GlcNAcylation at LATS2 Thr436 increased phosphorylation at YAP Ser109. Wild-type LATS2 or LATS2 mutants were stably expressed in LATS1/2-dKO HEK293A cells. Phosphorylation at YAP Ser109 was detected by anti-p-S109-YAP antibody. The phosphorylation level at YAP Ser109 was normalized to total YAP level. Data are presented as mean \pm SEM from three independent experiments. Statistical significance was determined by one-way ANOVA (*p < 0.05, ***p < 0.005).

Fig. S5. Transcription and expression levels of CTGF and CYR61 decreased upon OGT knockdown, and mRNA levels of LATS2 and NF2 also decreased. (*A*–*C*) MDA-MB-231 cells were transfected with OGT siRNA for 48 h. (*A*) Relative mRNA levels of CTGF and CYR61 in MDA-MB-231 cells were determined by quantitative real-time PCR. All values were normalized to the GAPDH mRNA level. (*B*) CTGF and CYR61 levels were determined by immunoblotting. (*C*) Relative mRNA levels of NF2 and LATS2 were determined by quantitative real-time PCR. All values were normalized to GAPDH mRNA level. (*A*, *C*) Data are presented as mean ± SEM from at least three independent experiments. Differences were detected by the two-tailed Student's *t*-test (*p < 0.05, ***p < 0.005).

Fig. S6. LATS2 *O*-GlcNAcylation at Thr436 is affected by extracellular glucose status. MDA-MB-231 cells transfected with wild-type or T436A mutant LATS2 were grown in 5 mM or 25 mM glucose containing media. Each immunoprecipitated LATS2 wild-type and T436A mutant was immunoblotted with anti-O-GlcNAc antibody.

Fig. S7. A decrease in global O-GlcNAcylation reduced RHAMM and phosphorylation of ERK in MDA-MB-231 cells. (*A*–*C*) MDA-MB-231 cells were transfected with OGT siRNA for 48 h. (*A*) The relative RHAMM mRNA level was determined by qRT-PCR. The RHAMM mRNA level was normalized to that of GAPDH. (*B*,*C*) Respective cell lysates were immunoblotted with the relevant antibodies. The amount of RHAMM was normalized to that of GAPDH (*B*) and the phosphorylation level of ERK was normalized to that of ERK2 (*C*). (*A*–*C*) Data are presented as mean ± SEM from at least three independent experiments. Statistical significance was determined by the two-tailed Student's *t*-test (*p < 0.05, ***p < 0.005).