Molecular basis for interactions between an acyl carrier protein and a ketosynthase

Supplementary Information

Jacob C. Milligan^{1,5}, D. John Lee^{2,5}, David R. Jackson^{3,5}, Andrew J. Schaub³, Joris Beld², Jesus F. Barajas¹, Joseph J. Hale², Ray Luo¹, Michael D. Burkart^{2*}, Shiou-Chuan Tsai^{1,3,4*}

Author affiliation: ¹Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. ²Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA. ³Department of Chemistry, University of California, Irvine, CA, USA. ⁴Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA. ⁵These authors contributed equally to this work. *email sctsai@uci.edu or mburkart@ucsd.edu.

Manuscript information:

Formatted for re-submission to Nature Chemical Biology as a Brief Communication.

Supplementary Information contents:

SUPPLEMENTARY TABLES	2
SUPPLEMENTARY FIGURES	6
SUPPLEMENTARY MOVIES	29

1

SUPPLEMENTARY TABLES

	AcpP-FabB
	(5KOF)
Data collection	
Wavelength (Å)	1.0
Total reflections	72648 (7131)
Unique reflections	37073 (3680)
Space group	P 1 2 ₁ 1
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	59.33, 103.92, 83.4001
α, β, γ (°)	90, 110.61, 90
Resolution (Å)	$39.2 - 2.4 (2.486 - 2.4)^{a}$
Rmerge	0.04978 (0.3953)
R _{meas}	0.0704 (0.559)
Ι/σ(Ι)	7.27 (1.76)
	0 996 (0 824)
CC*	0.999 (0.95)
Completeness (%)	100 (100)
Redundancy	20(10)
Wilson B-factor	40.87
	10.07
Refinement	
Resolution (Å)	39.2 - 2.4 (2.486 - 2.4)
No. reflections	37044 (3669)
Rwork	0.2080
Rfree	0.2254
No. atoms	
Protein	7110
Ligands	50
B factors	
Protein	61.77
Ligands	75.55
Water	54.44
Ramachandran	
Favored (%)	93.4
Allowed (%)	6.0
Outliers (%)	0.6
<u>R.m.s</u> . deviations	
Bond lengths (Å)	0.006
Bond angles (°)	1.46

Supplementary Table 1. Crystallographic data collection and refinement statistics.

Statistics for the highest resolution shell are shown in parentheses.

	wt C ₈	-АсрР	D38A (
Assignment	δ¹H	δ ¹⁵ N	δ¹H	δ ¹⁵ N	CSP	
031	8.696	121.850	8.546	122.170	0.111 *	
04E	8.656	118.955	8.435 114.847		0.436 *	
05E	7.896	117.827	7.910	117.618	0.023	
06R	8.395	120.275	8.360	120.145	0.028	
07V	8.965	119.456	9.023	119.418	0.041	
08K	8.271	117.389	8.245	117.303	0.020	
09K	8.318	120.854	8.247	121.267	0.065	
101	7.659	119.721	7.760	119.822	0.072	
111	8.356	119.228	8.436	119.181	0.057	
12G	8.503	105.573	8.421	105.325	0.063	
13E	8.244	120.501	8.237	120.547	0.007	
14Q	8.463	117.753	8.669	117.155	0.157 *	
15L	8.136	113.771	8.264	113.924	0.092	
16G	7.849	110.235	7.800	110.242	0.035	
17V	7.924	114.922	7.903	114.493	0.045	
18K	8.589	123.293	8.594	123.126	0.017	
19Q	8.835	123.095	8.831	123.109	0.003	
20E	9.445	116.889	9.466	116.943	0.016	
21E	7.919	117.279	7.940	117.229	0.016	
22V	7.576	122.757	7.596	122.659	0.017	
23T	7.371	115.887	7.352	115.721	0.021	
24N	8.629	119.086	8.642	119.048	0.010	
25N	8.147	112.280	8.150	112.200	0.008	
26A	7.349	123.231	7.372	123.299	0.018	
27S	9.987	117.289	9.993	117.280	0.004	
28F	7.595	125.331	7.587	125.421	0.011	
29V	8.817	117.002	8.800	117.013	0.012	
30E	8.342	117.098	8.326	117.066	0.012	
31D	7.826	114.280	7.831	114.336	0.007	
32L	7.411	115.707	7.428	115.600	0.016	
33G	7.270	106.818	7.259	106.727	0.012	
34A	8.512	123.052	8.566	123.064	0.038	
35D	9.370	123.501	7.934	123.393	1.015 *	
36S	8.691	113.447	8.775	114.168	0.093	
37L	8.218	123.919	8.324	122.338	0.174 *	
38D	8.379	120.014	7.586	121.092	0.571 **	
39T	8.228	112.167	8.312	111.067	0.124 *	
40V	7.272	121.431	7.359	122.051	0.087	
41E	7.860	119.358	7.813	119.381	0.033	
42L	8.450	121.751	8.340	121.838	0.078	
43V	8.020	119.376	8.072	119.709	0.049	
44M	7.792	117.246	7.801	117.266	0.007	
45A	8.181	121.772	8.157	121.955	0.025	

46L	8.430	120.866	8.432	120.820	0.005
47E	8.743	120.243	8.715	120.149	0.022
48E	7.896	117.285	7.904	117.193	0.011
49E	7.990	120.008	8.038	119.533	0.058
50F	7.840	111.805	7.843	111.827	0.003
51D	7.909	122.744	7.923	122.880	0.017
52T	8.083	112.548	8.093	112.754	0.022
53E	8.156	122.920	8.087	122.596	0.058
541	10.406	129.131	10.382	129.154	0.017
55P					
56D	8.950	125.628	8.961	125.533	0.012
57E	9.299	116.557	9.311	116.572	0.009
58E	7.259	116.260	7.260	116.260	0.001
59A	8.219	123.159	8.284	123.274	0.047
60E	7.609	112.545	7.626	112.655	0.016
61K	7.064	114.423	7.085	114.498	0.017
621	7.672	123.047	7.688	123.118	0.013
63T	8.083	112.548	8.021	112.375	0.047
64T	7.272	110.705	7.237	110.633	0.026
65V	8.040	121.757	8.023	121.648	0.016
66Q	8.735	118.250	8.723	118.148	0.013
67A	7.823	119.611	7.814	119.572	0.007
68A	7.997	123.042	8.004	122.981	0.008
691	8.166	119.500	8.167	119.481	0.002
70D	9.163	119.401	9.144	119.297	0.017
71Y	8.203	122.028	8.204	121.890	0.014
721	8.239	121.178	8.180	121.275	0.043
73N	8.880	118.545	8.849	118.456	0.024
74G	7.884	105.384	7.838	105.132	0.041
75H	7.692	119.015	7.656	118.397	0.066

Supplementary Table 2. Chemical Shift Tables for wt and D38A C₈-AcpP. Chemical shift assignments are reported for wt C₈-AcpP and D38A C₈-AcpP (amide replacement of the phosphopantetheine thioester). CSP values between these two species are reported, indicating good chemical shift agreement between the two. * denotes residues with a > 0.100 CSP. ** indicates the mutation site. 21E and 48E are aliased with each other in both species, and omitted in Figure 3.

	K NMR Titratio	n with FabB		Complementation UFA Fraction, 17 °C		Complementation UFA Fraction, 25 °C		Complementation UFA Fraction, 37 °C	
AcpP	wt	D38A	AcpP	wt	D38A	wt	D38A	wt	D38A
Mкd	37.6 µM	167 µM	MUFA	0.519	0.428	0.473	0.393	0.417	0.400
SDKd	6.6 µM	15 µM	SDUFA	0.019	0.016	0.005	0.010	0.002	0.004
Ν	10 observa	tions each	Ν	4 cultures each		4 cultures each 4 cultures each		4 cultur	es each
Two-tailed unpaired t-test (Student's test)									
t	24.9	697	97 t 7.4589		14.6946		7.2843		
DF	1	18 DF 6		6		(6	(6
P value	< 0.0	0001	P value 0.0003		0.0003		0001	0.0	003
Cohen's <i>d</i> for independent groups $d = (M_2 - M_1)/SD_{pooled}$									
Cohen's d	11.1	670	Cohen's d	5.2744		10.3	3914	5.1	517

Supplementary Table 3. Statistical analysis of K_d and fatty acid extraction values.

SUPPLEMENTARY FIGURES

Supplementary Figure 1. Biosynthesis of fatty acids in *E. coli* and mechanism-based **crosslinking.** (a) Overview of biosynthetic pathway. FabA and FabB, in blue, produce and elongate unsaturated fatty acids. FabZ and FabF, in red, produce and elongate saturated fatty acids. FabG and FabI, in white, perform appropriate reductions to complete the cycle. These cycles are iterated to produce full-length fatty acid chains. R = even length acyl chains between 0 and 14 carbons (yielding final products 16 and 18 carbons long) varying in length based on how many upstream iterations of the cycle have already occurred. (b) mechanism for ketosynthase reaction and enzyme turnover. (c) mechanism-based crosslinking reaction.

Supplementary Figure 2. Protein purification and AcpP loading. (a)(b) SDS-PAGE gels showing fractions from FabB Ni2+ affinity column (a) and AcpP Ni2+ affinity column (b). MALDI-TOF mass spectrum of *apo* AcpP (calculated molecular weight of 9052 Da). (d) MALDI-TOF mass spectrum of *crypto* AcpP (calculated molecular weight of 9466 Da).

Supplementary Figure 3. AcpP-FabB crosslinking reaction. SDS-PAGE gel confirming covalent crosslinking of *crypto* AcpP and FabB. DTT was added to the reaction to maintain an ideal oxidative state for crosslinking.

Supplementary Figure 4. Composite omit maps at 1.0 sigma. (a) crosslinker in the FabB active site with AcpP shown in light cyan and FabB shown in dark green and light tan. (b) crosslinker connection with AcpP, with AcpP shown in dark blue. (c) AcpP-FabB interface residues.

Supplementary Figure 5. Stereo images of AcpP-FabB structure. (a) overall structure of the AcpP-FabB complex, with the FabB monomers shown in green and tan, the AcpPs shown in dark blue and cyan, and the crosslinker shown in colored spheres. (b) FabB active site interactions with the crosslinker. (c) AcpP-FabB interface salt bridges. (d) AcpP-FabB interface hydrophobic interactions. (e) overlay of interfaces. (f) overlay of interfaces with helix III shown in ribbon

representation to highlight differences in backbone structure.

Supplementary Figure 6. FabB surface changes upon AcpP binding. Overlay of AcpP-FabB

complex structure (green, light tan, and dark blue) with the apo FabB structure (orange).

Supplementary Figure 7. Alternate conformations of Trp 49 in one monomer of FabB. a,

conformation deposited in the PDB. **b**, alternate conformation.

Supplementary Figure 8. Surface electrostatics of AcpP-FabB and AcpP-FabA. (a) AcpP-FabB. (b) AcpP-FabB surface charges. (c) surfaces charges at the AcpP-FabB interface. (d) AcpP-FabA. (e) AcpP-FabA surface charges. (f) surfaces charges at the AcpP-FabA interface.

Supplementary Figure 9. Comparison of AcpP-FabB and AcpP-FabA complex structures. (a) Overall AcpP-FabB complex structure, with the FabB monomers shown in dark green and light tan, the AcpP monomers shown in dark blue and light cyan, and the crosslinker in pink. (b) FabB active site interactions with the crosslinker. (c) AcpP-FabB interface. (d) Overall AcpP-FabA complex structure, with the FabA monomers shown in light green and light yellow, the AcpP monomers shown in dark blue and light cyan, and the crosslinker in pink. (e) FabA active site interactions with the crosslinker. (f) AcpP-FabA interface

Supplementary Figure 10. AcpP comparison between AcpP-FabB and AcpP-FabA. (a) Overlay of AcpP from AcpP-FabA (red) and from AcpP-FabB (green). (b)(c) B-factor putty representation of AcpP-FabB (b) and AcpP-FabA (c) where thin, blue tubes correspond to low Bfactors and thicker, darker red tubes correspond to higher B-factors.

Supplementary Figure 11. AcpP substrate pocket comparison between AcpP-FabA, AcpP-FabB, and octanoyl-AcpP (2FAE) shows chain flipping and substrate delivery. (a) AcpP substrate pocket from AcpP-FabA. (b) AcpP substrate pocket from AcpP-FabB. (c) AcpP substrate pocket from octanoyl-AcpP.

FAS II FAS I PKS II PKS I NRPS	E.coli_AcpP E.coli_AcpP S.coelicolor_AcpP M.tuberculosis_AcpP R.norvegicus_AcpP S.coelicolor_actinorhodinACP S.roseofulvus_frenolicinACP S.erythraea_DEBS_ACP2 A.parasiticus_aflatoxinACP B.brevis_PCP	al yl 200000000000 ; 10 20 20 30 30 30 30 30 30 30 30 30 3
FAS II FAS I PKS II PKS I NRPS	E.coli_AcpP E.coli_AcpP S.coelicolor_AcpP M.tuberculosIs_AcpP R.norvegicus_AcpP S.coelicolor_actinorhodinACP S.rossofulvus frenolicinACP S.erythraea_DEBS_ACP2 A.parasiticus_aflatoxinACP B.brevis_PCP	a2 a3 a4 00000000000 000.0 0000000000 40 50 60 70 DTVELVMALEEEFDTEIFDEE. AEKITTVQAAIDYINGHQA. SMVENVVAAEERPDVKIPDDD. VKNLKTVGDATKYILDHQA. SMVELVVAAEERPDVKIPDDD VKNLKTVGDATKYILDHQA. SMVELVRQILEREHDLVLPIRE. VRQLTLRKL. OEMSSKAGSDT. MGVEVVQQILEREHDLVLPIRE. VRQLTLRKL.
FAS II FAS I PKS II PKS I NRPS	E.coli_AcpP E.coli_AcpP S.coelicolor AcpP M.tuberculosis_AcpP R.norvegicus_AcpP S.coelicolor_actinorhodinACP S.roseofulvus_frenolicinACP S.erythraea_DEBS_ACP2 A.parasiticus_aflatoxinACP B.brevis_PCP	DAVANVQARLEAESK KSEN

Supplementary Figure 12. Sequence alignment of carrier proteins. Red star: PPT attachment

site. Black Triangle: AcpP-FabA interface residues. Blue triangle: AcpP-FabB interface residues.

Supplementary Figure 13. Sequence alignment of ketosynthases. Red star: Active site. Blue

triangle: AcpP-FabB interface residues.

Supplementary Figure 14. NMR studies of the AcpP-FabB complex. ¹H,¹⁵N-HSQC titration experiments of wt AcpP (at left) and D38A AcpP (at right) against increasing concentrations of FabB.

Supplementary Figure 15. CSP Derived K_d Curves. Top: CSP curves for 10 non-aliased residues with the largest observed CSPs for wt and D38A AcpP titrated with FabB. Mid: Normalized CSP curves (Observed CSP/MaxCSP - determined via fitting described in Online Methods). Bottom: Average Normalized CSP curves. Error bars are +/- one standard deviation for normalized CSP value. Observed wt AcpP concentration: 0.21 mM; K_d calculated to be 37.6 \pm

6.6 $\mu M.$ Observed D38A AcpP concentration: 0.17 mM; K_d calculated to be 167 ± 15 $\mu M,$ P < 0.0001.

Supplementary Figure 16. Assigned ${}^{1}H, {}^{15}N-HSQC$ spectra for wt C₈-AcpP (top) and D38A C₈-AcpP (bottom) with amide replacement of the phosphopantetheine thioester.

Supplementary Figure 17. Salt bridge duration in MD simulations of AcpP-FabB

complexes. (a) holo-ACP. (b) octanoyl-ACP, "substrate". (c) 3-oxodecyl-ACP, "product". These acetyl and N-methyl capped structures were used for force field generation using the R.E.D. Server and Gaussian. (d) The duration of MD-observed salt bridges between different AcpP species and FabB. Contact durations are colored on a spectrum from persisting for 0% of the simulation (blue) to 100% of the simulation (red).

Supplementary Figure 18. A comparison of MD derived RMSFs and crystallographic Bfactors. All the above structures are displayed as putty, with higher RMSF/ B-factor values shown in red with increased thickness, and lower values shown in blue with decreased thickness. All MD structures are the average structure generated from the 1000 frames representing 140 to 150 ns. The RMSF MD structures are normalized with the crystallographic B-factors for comparison purposes. (a) Crystallographic structure for reference. Higher disorder is observed in FabB2 of the homodimer. (b) Both AcpPs in apo state. (c) Both AcpPs loaded with C8-substrate. (d) AcpP1

(left) and AcpP2 (right) loaded with C8-substrate and C8-product, respectively. (e) Both AcpPs in holo state. (f) Both AcpPs loaded with C8-product. (g) AcpP1 (left) and AcpP2 (right) loaded with C8-product and C8-substrate, respectively.

Supplementary Figure 19. Porcupine figures showing the symmetric rocking motion obtained from the trajectory of the first mode from the principal component analysis. The vectors were generated using the beginning and final structures of the first mode trajectories, and the vectors were overlaid on the crystal structure for ease of visualization.

Supplementary Figure 20. (a) Specific isolated fatty acids reported in figure 3c. Averages are over four replicates for each condition. (b) Unsaturated fatty acid fraction, including cyclopropyl-C17 (derived from C16:1).

SUPPLEMENTARY MOVIES

Movie S1. Principal component analysis of AcpP-FabB molecular dynamics simulations. The movie shows the first three modes from the principal component analysis. Mode 1 is a twisting of the AcpPs along the center axis of the FabB homodimer. Mode 2 is a scissoring of the AcpPs along the same axis. Mode 3 is wagging of the AcpPs along the same axis. The two FabB monomers are shown in dark green and light tan, and the two AcpPs are shown in light cyan and dark blue.

Movie S2. Principal component analysis of AcpP-FabB molecular dynamics simulations.

The same results shown in Movie S1 are shown again from a perpendicular viewing angle.