Supplemental Table

 Table S1: Assigned numeral representation for the synthetic substrates, prenyltransferase and the Stig cyclases involved in the biosynthesis of natural and unnatural hapalindole/fischerindole are shown.

Synthesis/			Assigned	
Designated Protein	Substrate	Product	Number	
Natural hapalindole/fischerindole system				
Synthesized	geranyl pyrophosphate (GPP)		1	
Synthesized	cis-indole isonitrile		2	
Enzymes				
Prenyltransferase (FamD2)	1 and 2	cis-indole isonitrile-GPP (3GC)	3	
Sig cyclases				
FamC1	3	12-epi-hapalindole U	4	
FamC1 and FamC4	3	Hapalindole U	5	
FamC3 and FamC4	3	Hapalindole H	6	
FisC	3	12-epi-fischerindole U	7	
Unnatural hapalindole/fischerindole system				
Synthesized	5-fluoro-cis-indole isonitrile		9	
Synthesized	6-fluoro-cis-indole isonitrile		10	
Enzymes				
FamC1	1 and 9	5-fluoro-12-epi-hapalindole U	15	
FamC1	1 and 10	6-fluoro-12-epi-hapalindole U	16	
FisC	1 and 9	5-fluoro-12-epi-fischerindole U	17	
FisC	1 and 10	6-fluoro-12-epi-fischerindole U	18	

Table S2: Proteomics analysis of FamD2 expression in the TT-assay containing exogenous plasmids FamD2, and the substrates 1 and 2 during *cis*-indole isonitrile-GPP intermediate 3 synthesis. The sequence highlighted in yellow showed the coverage of the synthesized protein. Note: Please see attached Excel Sheet 1

FamD2				
Total peptide	25			
Unique peptide	25			
Total PSM	906			
Coverage (%)	72.49			
Annotated Peptide Sequence	Sequence	PSM		
	Positions	FamD2		
[-].MNDVNR.[I]	FamD2[1-6]	1		
[R].IRTDIINVAK.[T]	FamD2 [7-16]	30		
[R].TDIINVAK.[T]	FamD2 [9-16]	11		
[K].TFGAEYSEK.[V]	FamD2 [17-25]	14		
[K].VLDEVFQVFGEQFADNSFMIR.[T]	FamD2 [26-46]	155		
[R].TSNKQPDK.[L]	FamD2 [47-54]	10		
[R].TSNKQPDKLGCYFR.[Y]	FamD2 [47-60]	2		
[K].QPDKLGCYFR.[Y]	FamD2 [51-60]	7		
[K].LGCYFR.[Y]	FamD2 [55-60]	16		
[R].YHEEDESQLGLAWDIAR.[K]	FamD2 [61-77]	335		
[R].KSGLLSDQGRPVDQLIPEICETFPI	FamD2 [78-112]	45		
MADGVDFDVK.[H]				
[K].SGLLSDQGRPVDQLIPEICETFPIM	FamD2 [79-112]	28		
ADGVDFDVK.[H]				
[K].IWQSIK.[G]	FamD2 [118-123]	12		
[K].GVVPVQDAFK.[L]	FamD2 [124-133]	22		
[K].LSLPASVTTHSDFLK.[N]	FamD2 [134-148]	42		
[K].HHTSEYYK.[N]	FamD2 [178-185]	1		
[R].LCFYLPFLNR.[E]	FamD2 [224-233]	5		
[R].EAVPQNLLNPLLK.[K]	FamD2 [234-246]	42		
[R].EAVPQNLLNPLLKK.[Y]	FamD2 [234-247]	14		
[K].KYINEAPALVDNPGFILGWSFGPQ	FamD2 [247-273]	10		
GGK.[G]				
[K].YINEAPALVDNPGFILGWSFGPQG	FamD2 [248-273]	16		
GK.[G]				
[K].VDVDYHGR.[T]	FamD2 [279-286]	3		
[R].TVPLFMK.[V]	FamD2 [287-293]	64		
[R].TVPLFMKVHSQPLPK.[A]	FamD2 [287-301]	1		
[K].VHSQPLPK.[A]	FamD2 [294-301]	6		
FamD2		1		
MNDVNRIRTDIINVAKTFGAEYSEKVLDEVFQVFGEQFADNSFMIRTSN				
KQPDKLGCYFRYHEEDESQLGLAWDIARKSGLLSDQGRPVDQLIPEICE				
TFPIMADGVDFDVKHGLAKIWQSIKGVVPVQDAFKLSLPASVTTHSDF				
LKNHHLDALYAFGIDYHHSSVNLYFDTYHPKHHTSEYYKNLLQDLQF				
QPPSDELLELLTNNGEIALTFNFASPRIERLCFYLPFLNREAVPQNLLNPL				
LKKYINEAPALVDNPGFILGWSFGPQGGKGTYTKVDVDYHGRTVPLF				
MKVHSQPLPKAADFALAQ, 309 residues				

Table S3: NMR characterization of 5-fluoro-12-epi-hapalindole U (15) $[\alpha]_D^{25}$ =+7.7 (c=0.07, CH₂Cl₂)

Position	¹³ C shift (ppm)	¹ H shift (ppm),	COSY	НМВС
	(Fluorine	multi (J) C ₆ D ₆		
	coupling) C ₆ D ₆			
1		6.55, bs	2	
2	118.03	6.35, s	1	3, 4, 8, 9
3	113.75			
4	124.13, d, (13.1)			
5	154.29, d, (236.7)			
6	112.75, d, (29.2)	7.01, dd, (12.9, 4.4)	6	4,5,8
7	109.71, d, (10.1)	6.69, dd, (3.0, 8.7)	7	4,5,9
8	130.96			
9	127.08, d, (8.6)			
10	34.58	2.90, d, (11.5)	15	
11	63.35	3.90, s	10	10,12,13,15
12	39.73			
13	31.27	1.66, d, (3.7) &	14	12,14,15,21
		1.44, m		
14	21.17	1.48, d, (3.7) &	13,15	13, 15,21
		1.27, m		
15	43.98	1.98, td, (12.0,	10,14	10,11,13,14,16,17,18
		3.4)		
16	37.27			
17	23.07	1.11, s	18	9, 15, 16, 18
18	25.05	1.63, s	17	9, 15, 16, 17
19	142.17	5.39, dd, (17.7,	20	11,12,13,21
		11.0)		
20	114.47	(cis) 4.91, d,	19	12, 19,21
		(11.0)		
		(trans), 4.84, d,		
		(17.7)		
21	28.35	1.18, s		11, 12, 13, 19
22	160.84			

Table S4: NMR characterization of 6-fluoro-12-epi-hapalindole U (16) $[\alpha]_D^{25}$ =+12.9 (c=0.04, CH₂Cl₂)

Position	¹³ C shift (ppm)	¹ H shift (ppm),	COSY	НМВС
	(Fluorine	multi (J) C ₆ D ₆		
	coupling) C ₆ D ₆			
1		6.51, bs		
2	116.62, d, (3.2)	6.29, s		3, 8, 9
3	113.12			
4	142.37, d, (8.7)			
5	102.96, d, (25.9)	6.93, dd, (11.0, 1.8)		6,7,9
6	162.10, d, (236.5)			
7	95.36, d, (27.4)	6.69, d, (9.8)		5,6,9
8	134.02			
9	122.36			
10	34.88	2.95, d, (11.5)	15	3,15
11	63.45	3.88, s	10	10,12,13,15
12	39.81			
13	31.08	1.66, m & 1.43, m	14	11,15
14	21.66	1.41, d, (3.7) & 1.26, m	13,15	19
15	43.57	1.93, td, (11.9, 3.5)	10,14	
16	37.44			
17	24.26	1.14, s	18	4, 15, 16, 18
18	24.96	0.89, s	17	4, 15, 16, 17, 19
19	142.55	5.40, dd, (17.7,	20	11, 12, 13
		11.0)		
20	114.49	(cis) 4.92, d, (11.0) (trans), 4.85, d, (17.7)	19	12,19
21	28.27	1.17, s		11, 12, 13, 19
22	160.88			

Table S5: NMR characterization of 5-fluoro-12-epi-fischerindole U (17) $[\alpha]_D^{25}$ =+12.0 (c=0.15, CH₂Cl₂)

Position	¹³ C shift (ppm)	¹ H shift (ppm),	COSY	НМВС
	(Fluorine	multi (J) C ₆ D ₆		
	coupling) C ₆ D ₆			
1		6.43, bs		2,3,8,9
2	153.90			
3	115.16			
4	103.93, d, (23.1)	7.27, dd (9.4,2.5)	6	3,5,6,8
5	159.42, d, (233.5)			
6	109.07, d, (26.3)	6.99, td, (9.0, 2.6)	7	4,5,8
7	112.55, d, (10.1)	6.81, dd, (8.8, 4.4)	6	4,5,9
8	136.53			
9	124.63, d, (10.1)			
10	42.37	2.88, m	11,15	3,9,14,15
11	62.21	3.95, d (3.0)	11	3,12,13,15,17,22
12	41.04			
13	31.82	1.55, m	14	11,12,14,15,17
14	20.81	1.34, ddd (13.1,	13,15	12,13,15
		6.8, 4.0) & 1.23, m		
15	55.21	2.36, ddd (13.3,	10, 14	10,14,16,19
		10.6, 3.3)		
16	40.18			
17	143.02	5.31, dd (17.6,	18	11,13,12,21
		11.0)		
18	114.16	(cis) 4.87, d (11.1)	17	12,17,21
		(trans) 4.84, d		
		(17.7)		
19	24.93	1.01, s		2,15,16,20
20	20.78	0.74 <i>,</i> s		2,15,16,19
21	28.15	1.13, s		11,1213,17
22	161.39			

Table S6: NMR characterization 6-Fluoro-12-epi-Fischerindole U (18) $[\alpha]_D^{25}$ =+10.8 (c=0.16, CH₂Cl₂)

Position	¹³ C shift (ppm),	¹ H shift (ppm),	COSY	НМВС
	(Fluorine	multi (J) C ₆ D ₆		
	coupling) C ₆ D ₆			
1		6.38, bs		
2	152.16, d, (3.5)			
3	114.88			
4	119.18, d, (10.1)	7.20, dd, (8.6, 5.3)	5	3,8,9
5	108.67, d, (24.2)	6.99, td, (9.1, 2.4)	4	6,7,9
6	159.78, d, (235.6)			
7	98.80, d, (25.9)	6.85, dd, (9.8, 2.3)		5,6,8,9
8	139.95, d, (12.0)			
9	121.08			
10	42.51	2.89, m	11, 15	15
11	62.44	4.03, s	10	10,12,13,15,22
12	41.03			
13	31.87	1.56, m	14	11,12,14,15,21
14	20.82	1.35, m & 1.24, m	13	10,13,15
15	55.21	2.36, ddd, (13.4,	10, 14	14,19
		10.6, 3.2)		
16	40.25			
17	143.08	5.34, dd, (17.5,	18	11,12,13
		11.0)		
18	114.16	Cis 4.89, d, (11.0)	17	12,17
		Trans 4.87, d,		
		(17.5)		
19	25.07	1.02, s	20	2,15,16,20
20	20.70	0.74, s	19	2,15,16,19
21	28.17	1.15, s		11,12,13,17
22	161.26			

 Table S7: Amino acid sequences of cyclases

 Protein Sequences

FamC1

MKRKLIVAVVFLIFICLGINTPAHATSAVSIPINNAGFENPFMDVVDDYTIDTPPGWTTYDPNNLVPEKRTT WTSNNGVGYVGPGTQFYNQLAPEGRNIGYIYLSQNPGSGVAGFEQILDATLEPDTKYTLTVDVGNLAGTF KGLSFAGFPGYRVELLAGDTVLAADHNNLFIKEGEFKTSTVTYTSTAKDLHLGQKLGIRLVNLLQDKFSGL DFDNVRLTTEPTET

FamC2

MKRNLIVAAIVLLIYICSGINTPANAAVTTSIPIKNPGFEEPILKVEGDYTIDAPPGWTTYNPNGLIPEKRTKW TSNNGVGHVGPNYGQLFYNQQLPEGKNIGFVYLAQKTGSGIAGFEQTLDAVLEPNTSYKLIVDIGNFGGMF KGVSFAGFPGYRVELLAGDTVLAADHNNLYIKDGEFKTSTVTFTSAANNPYLGQKLGIRLINLLQGKFSGL DFDNVRLITETVDT

FamC3

MKLKSIVAVVFLIFICLGINTPANATGAVSIPIKNAGFEDPFLEVKDYYTVNTPPGWSTYDPNGLIPEQPTVQ TSYVGVTNATPSSAFYDQKVPEGRNMGSVYLAHEPGSGIAGLEQTLDTVLESNKNYTLLVDIGNSADGYK DISLADFPGYRVELLAGDKVIAVDHNSVYIKEGEFKTSMIKFTAKPDSPYLGQKLGIRLINSLQTLSGNIDFD NVRLSVESAVI

FisC

MKRNFIIAAIVLLVYICFGISISANAASAVSIPIKNAGFEEPSLTVEDYYTIDTPPGWITYDPNGLVPAKRTRIT SNNGVGYTGPNSAYYNHKAPEGRNVAYVYLAQEIGSGIAGLEQTLDAVLKPNTKYTLTVDIGNSGGSFQG FPLDGFPGYRVELLAGDTVLAADQNNLYIKEKDFKTTTVTFIATPESPYLGQHLGIRLINPLQGKFSGVDFD NVRLTAEPAET

FimC5

MKRNFIIAAIVLLVYIFSGINVFANAASAVCIPIKNAGFEEPILQIEDDYTIDTPPGWITYDPGGLVPAKRTRIT SNNGVGYTGSNSEFYNHKAPEGRNVAFVYLAQEIGSGIAGLEQTLDAVLKPNTKYTLTVDIGNSGGSFQGK TLDGFPGYRIELLAGDTVLAADHNTLYIKEKDFKSTTVTFTATPESPYLGQHLGIRLINPLQGKFSGVDFDN VRLTAEPAET