Sel1L-Hrd1 ER-associated degradation maintains β -cell identity via TGF β signaling

Neha Shrestha¹, Tongyu Liu², Yewei Ji¹, Rachel B. Reinert³, Mauricio Torres¹, Xin Li⁴, Maria Zhang⁵, Chih-Hang Anthony Tang⁶, Chih-Chi Andrew Hu⁶, Chengyang Liu⁷, Ali Naji⁷, Ming Liu^{3,4}, Jiandie D. Lin², Sander Kersten⁸, Peter Arvan^{1,3}, Ling Qi^{1,3*}

Materials and methods

9 Supplementary figures with figure legends and one table

MATERIALS AND METHODS

Pulse labelling of islets. Around one hundred islets from wild-type and knockout mice were washed twice in prewarmed Met/Cys-deficient medium plus 1% BSA and 10 mM Hepes (pH 7.35). Islets were then metabolically labeled with ³⁵S-labeled amino acids in the same medium for 12 min. Labeled islets were briefly washed once with RPMI medium 1640 containing 10% FBS and either directly immersed in lysis buffer or chased for 1 hour or 2 hour at 37°C in RPMI medium 1640 (11.1 mM glucose plus 10% FBS). The media were collected, and the islets were lysed in RIPA buffer. Lysate aliquots were evaluated for trichloroacetic acid-precipitable radioactivity to normalize the immunoprecipitations.

Transfection and immunoprecipitation. HEK293T cells were transfected with plasmids within 16-22 hr after plating with lipofectamine 2000 and harvested around 24 hr after. HRD1-/- HEK cells were generated as previously described (1). For immunoprecipitation, cells were lysed in a buffer containing 150 mM NaCl, 50 mM Tris–HCl pH 7.5, 1 mM EDTA, 1% NP-40, protease inhibitors and phosphatase inhibitors, and 10 mM N-ethylmaleimide. A total of 1-2 mg protein lysates was incubated with antibody coated agarose beads overnight with gentle rocking at 4°C. Immuno-complexes were washed in a buffer containing 137 mM NaCl, 20 mM Tris–HCl pH 7.5, 2 mM EDTA, and 10% glycerol and eluted by boiling at 95°C for 5 min in SDS sample buffer.

In vitro glucose stimulated insulin secretion. Insulin secretion from isolated islets were monitored using batch incubation methods. 10 similar sized islets were pre-cultured at 37°C in 1X KRH (Alfa Aesar, #J67795AP) containing 0.5% BSA and 2 mM glucose for 1 hour. Islets were then incubated in 1X KRH containing 2 mM glucose and 16.7 mM glucose for 1 hour each and supernatant was collected to determine insulin secretion levels. Islets were then recovered and sonicated in acid-ethanol to obtain total insulin content. Insulin levels were determined using insulin ELISA kit (Crystal Chem #90080).

1. Sun S, Shi G, Sha H, Ji Y, Han X, Shu X, et al. IRE1a is an endogenous substrate of endoplasmic-reticulum-associated degradation. *Nat Cell Biol.* 2015;17(12):1546-55.

	HPAP Identifier	Sex/Age	BMI	Medical History	HbA1c	GSIR
1	HPAP-001	M/47yo	32.2	T2DM 18 yrs	5.7	1.3
2	HPAP-007	F/65yo	42.6	T2DM 4 yrs	5.9	1.41
3	HPAP-010	F/42yo	36.8	T2DM 2yrs	6	1.11
4	HPAP-013	F/28yo	41.6	T2DM >5 yrs	6.3	1.46
5	ICRH114	F/57yo	32	No HX DIAB	5	1.35
6	ICRH120	66	22.5	No HX DIAB	NA	1.27
7	HPAP-006	46	19.1	No HX DIAB	5.3	1.41
8	HPAP-022	39	34.7	No HX DIAB	4.7	1.31

Table S1. Patient information for human pancreas donors.

GSIR: glucose-stimulated insulin release.

SUPPLEMENTARY FIGURES AND FIGURE LEGENDS

Figure S1. Sel1L-Hrd1 expression in pancreatic islets. (A-B) ScRNA-seq analysis of mouse islets (7-week-old, males) showing the expression, expressed as unique molecular identifiers (UMI), of *Sel1L* and *Hrd1* in distinct islet cell populations. (C-D) Representative confocal images of Sel1L (C) and Hrd1 (D) with insulin on WT mouse pancreas sections.

Figure S2. Sel1L^{Ins1} mice developed impaired glucose tolerance as early as 5 weeks, preceding $Atg7^{Ins1}$ mice. Glucose tolerance test for $Sel1L^{Ins1}$ (A, C) and $Atg7^{Ins1}$ (B, D) at indicated ages (n=5-6 per group) with quantitation of area-under-curve shown on the right. Values, mean ± SEM; n.s., not significant; *, p<0.05; **, p<0.01 by unpaired Student's t-test.

Figure S3. Histologically, peripheral tissues appeared largely normal in *Sel1L^{Ins1}* and *Atg7^{Ins1}* mice. Representative H&E images of (A) liver, (B) white (WAT) and (C) brown adipose tissue (BAT) obtained from 8-week-old WT, *Sel1L^{Ins1}* and *Atg7^{Ins1}* mice (n=2 per group).

Figure S4. Loss of Sel1L had no effect on β proliferation, death, or size. Representative confocal images of Ki67 (A), TUNEL (B) (n=5-6 per genotype) and E-cadherin (C) (two independent repeats) staining in pancreatic sections.

Figure S5. Loss of Sel1L did not impair proinsulin maturation and insulin secretion. (A) Western blot of $Sel1L^{lns1}$ and $Atg7^{lns1}$ islets (n=2 mice per group). Tubulin, a loading control. (B) Phos-tag-based western blot analysis of Ire1 α phosphorylation in *WT* and $Sel1L^{lns1}$ islets (n=2 mice per group). (C) RT-PCR analyses of percent of spliced *Xbp1s* to unspliced *Xbp1u* mRNA in islets (n=2 mice per group). Tunicamycin (Tm)-injected liver, a positive control. L32, a loading control. (D) Pulse chase analysis of islets isolated from 7-week old mice (2 independent repeats). (E) Representative immunofluorescence images of BiP and proinsulin (n=3 mice each) in pancreatic sections. (F) Total insulin content in isolated primary islets from *WT* and *Sel1L^{lns1}* mice (6 weeks). (G-H) GSIS in *WT* and *Sel1L^{lns1}* islets in medium containing low (2.8 mM) or high (16.7 mM) glucose. Secretion shown before (G) and after normalization to total content (H). Values, mean ± SEM. n.s., not significant; *, p<0.05; ****, p<0.0001 by unpaired Student's t-test.

Figure S7. Sel1L deficiency reduced Ucn3 expression in β -cells. Representative confocal images of Ucn3 and insulin in pancreatic sections (n=2 mice each for each genotype).

Figure S8. Sel1L-Hrd1 ERAD regulated TGF β signaling in β cells. (A) GSEA analysis of top upregulated pathways from microarray analysis. (B) Heatmap representation of a set of genes associated with TGF β signaling in β cell clusters. (C) Western blot of His-immunoprecipitates of His-TGF β R1-transfected HEK293T cells expressing a combination of plasmids as indicated, showing ubiquitination of TGF β receptor I (TGF β RI). C2A Hrd1, an Hrd1 E3-ligase dead mutant. Two independent repeats.

Figure S9. Inhibition of TGF β signaling rescued MafA expression in Sel1L^{-/-} islets. (A) Western blot analysis of total and phosphorylated Smad2/3 in primary islets treated with DMSO or 10 μ M TGF β RI for 24 hr (two independent repeats). (B) Representative immunofluorescence images of MafA in dispersed primary islets treated with DMSO or 10 μ M TGF β RI for 24 hr (two independent repeats).

