Supplemental Table 1

Combination in Clinical Trials	Pre-clinical Data	Current Clinical Trials in Children	Current Clinical Trials in Adults
Anti-PD-1 and/or anti-CTLA-4 + anti- VEGF	Anti-VEGF reverses T cell exhaustion and shows synergistic treatment effects when combined with anti-PD-L1 in preclinical testing (1)	■ No trials in children	 Glioblastoma (NCT03452579) HGG (NCT02829931) NSCLC (NCT02574078) Brain metastases (NCT02681549) CRC (NCT03396926) Ovarian cancer (NCT03596281) Nasopharyngeal carcinoma (NCT03813394) RCC (NCT02210117) Melanoma (NCT01950390, NCT00790010)
Anti-PD-1 and/or anti-CTLA-4 + anti-RANKL	Anti-RANKL disrupts T cell negative selection in the thymus, allowing for the rescue of tumor-specific clones and the enhanced efficacy of anti-PD-1 in preclinical testing (2, 3)	■ No trials in children	 Melanoma (NCT03620019, NCT03161756) NSCLC (NCT03669523, ACTRN12618001121257)
Anti-PD-1 + anti-TGF	Anti-TGF-β promotes T cell penetration into tumors, stimulates anti-tumor immunity and tumor regression when combined with anti-PD-1 in preclinical testing (25)	■ No trials in children	Advanced malignancies (NCT02947165)
Anti-PD-1 and/or anti-CTLA-4 + IDOi	IDOi promotes T cell infiltration and proliferation in tumors and improves tumor control when combined with anti-PD-1 or anti-CTLA-4 in pre-clinical testing (4)	■ No trials in children	 Solid tumors (NCT03491631, NCT02959437, NCT03085914, NCT03459222, NCT03347123) Gastrointestinal tumors (NCT03291054) NSCLC (NCT03322540) Melanoma (NCT04007588, NCT02073123) Head and neck carcinomas (NCT03358472, NCT03854032) Pancreatic cancer (NCT03006302) Glioblastoma (NCT03707457, NCT04047706) RCC (NCT03260894) Liver cancer (NCT03695250)

Anti-PD-1 and/or anti-CTLA-4 + HDACi	Entinostat neutralises MDSCs and	■ High-risk cancers (NCT03838042)	, , ,
(entinostat)	enhances T cell anti-tumor		• NSCLC (NCT01928576)
	responses when combined with anti-PD-1 in pre-clinical testing (5,		 Cholangiocarcinoma and pancreatic adenocarcinoma (NCT03250273) RCC (NCT03552380)
	6)		Bladder cancer (NCT03978624)
			 Melanoma (NCT03765229, NCT02697630)
			■ Breast Cancer (NCT02453620)
			NSCLC, CRC, Melanoma (NCT02437136)
Anti-PD-1 and/or anti-CTLA-4 + HDACi	Panobinostat upregulates PD-L1	No trials in children	 Melanoma and NSCLC (NCT03982134)
(panobinostat)	expression by tumor cells, and		 CRC, NSCLC, TBBC, RCC (NCT02890069)
	controls tumor progression and		■ Melanoma (NCT02032810)
	improves survival when		
	combined with anti-PD-1 in pre-		
	clinical testing (7)		
Anti-PD-1 and/or anti-CTLA-4 + HDACi	Vorinostat upregulates PD-L1 and	No trials in children	RCC and urothelial cell carcinoma (NCT02619253)
(vorinostat)	MHC expression by tumor cells,		Glioblastoma (NCT03426891)
	increases T cell infiltration and		■ NSCLC (NCT02638090)
	controls tumor progression and improves survival when		
	combined with anti-PD-1 in pre-		
	clinical testing (8)		
Anti-PD-1 and/or anti-CTLA-4 + BRAFi	BRAFi + MEKi enhances T cell	No trials in children	 Melanoma (NCT02130466, NCT01940809, NCT02967692,
(dabrafenib) + MEKi (trametinib)	infiltration into tumors, increases		NCT02858921)
	tumor antigen expression and is		■ CRC (NCT03668431)
	very effective when combined		
	with anti-PD-1 in pre-clinical		
A 11 22 4 27(1/4 111 11)	testing (9)		(1/2722277224)
Anti-PD-1 + RTKi (sunitinib)	Sunitinib reduces MDSC,	No trials in children	Sarcomas (NCT03277924) POS (NCT032730245, NCT03060006, NCT03075422)
	increases CD8+ T cell infiltration, and in combination with anti-PD-		 RCC (NCT03729245, NCT02960906, NCT03075423) GIST (NCT03609424)
	1, induces complete tumor		- GIST (NCT03009424)
	regression in pre-clinical testing		
	(10)		
Anti-PD-1 and/or anti-CTLA-4 + RTKi	No preclinical testing of	 No trials in children 	■ RCC (NCT03729245, NCT03793166, NCT03937219, NCT03635892,
(cabozantinib)	cabozantinib with immune		NCT03141177)
	checkpoint inhibitors reported		■ TNBC (NCT03316586)
			■ Endometrial Cancer (NCT03367741)
			• Genitourinary Tumors (NCT03866382, NCT02496208)
			Thyroid cancer (NCT03914300)HCC (NCT01658878, NCT03299946)
			- 1100 (140101030070, 140103233340)

Anti-PD-1 and/or anti-CTLA-4 + RTKi (axitinib)	Axitinib reduces MDSCs and significantly improves survival when combined with anti-PD-1 in pre-clinical testing (11)	RCC (NCT03595124), soft tissue sarcomas (NCT02636725)	■ RCC (NCT03595124, NCT02853331, NCT03172754)
Anti-PD-1 + RTKi (regorafenib)	Regorafenib limits tumor growth, decreases MDSC numbers and increases IFN-γ production when combined with anti-PD-1 in preclinical testing (12)	■ No trials in children	■ CRC (NCT03657641) ■ HCC (NCT03347292)
Anti-PD-1 + RTKi (nintedanib)	Nintedanib significantly improves anti-tumor responses when combined with anti-PD-1 in preclinical testing (13)	■ No trials in children	■ NSCLC (NCT03377023)
Anti-PD-1 and/or anti-CTLA-4 + RTKi (lenvatinib)	Lenvatinib decreases MDSC and increases T cell infiltration in tumors, and significantly improves anti-tumor responses when combined with anti-PD-1 in pre-clinical testing (14, 15)	■ No trials in children	 Solid tumors (NCT03797326) Gastroesophageal Cancer (NCT03321630) NSCLC (NCT03976375, NCT03829332, NCT03829319, NCT03516981) Liver cancers (NCT03895970, NCT03779100, NCT03951597, NCT04042805, NCT03713593) Endometrial cancers (NCT03517449) Urothelial cancers (NCT03898180) Melanoma (NCT03820986)
Anti-PD-1 + RTKi (apatinib)	Apatinib decreases MDSC and increases T cell infiltration in tumors, and significantly improves survival when combined with anti-PD-L1 in preclinical testing (16)	Soft tissue sarcoma (NCT03711279), sarcoma (NCT04126993), osteosarcoma (NCT03359018)	 Solid tumors (NCT03491631) Gastric Cancer (NCT03954756, NCT03878472, NCT04006821) CRC (NCT03912857) TNBC (NCT03945604, NCT03394287) SCLC (NCT03417895) Oesophageal cancer (NCT03736863, NCT03603756) NSCLC (NCT03777124) Cervical cancer (NCT03816553) Liver cancer (NCT03092895) HCC (NCT03839550, NCT03793725, NCT04014101, NCT03722875) Ovarian cancer (NCT04068974) Sarcomas (NCT03711279, NCT03359018) Melanoma (NCT03955354)
Anti-PD-1 + RTKi (anlotinib)	No preclinical testing of Anlotinib with immune checkpoint inhibitors reported	Soft tissue sarcomas (NCT03946943)	 SCLC (NCT04055792) NSCLC (NCT03765775) HCC (NCT04052152)

Anti-PD-1 + RTKi (fruquintinib)	Fruquintinib improves anti-tumor response when combined with anti-PD-L1 in pre-clinical testing (17)	 No trials in children 	Solid tumors (NCT03903705)
Anti-PD-1 + RTKi (imatinib)	Imatinib improves anti-tumor T cell responses when combined with anti-PD-1 in pre-clinical testing (18)	 No trials in children 	■ GIST (NCT03609424)

Supplemental Table 1: Immune checkpoint inhibitors in combination with other immunomodulatory drugs in clinical trials for adult and pediatric cancers. BRAFi, BRAF inhibitor; CRC, colorectal cancer; GIST, Gastrointestinal stromal tumors; HCC, hepatocellular carcinoma; HDACi, histone deacetylase inhibitor; HGG, high-grade gliomas; IDO, indoleamine 2, 3 dioxygenase; MDSC, myeloid-derived suppressor cell; MEKi, mitogen-activated protein kinase inhibitor; NSCLC, non-small cell lung cancer; PD-1, programmed death-1; PD-L1, programmed death ligand-1; RANKL, receptor activator of nuclear factor kappa-B ligand; RCC, renal cell carcinoma; RTKi, receptor tyrosine kinase inhibitor; TNBC, triple-negative breast cancer; VEGF, vascular endothelial growth factor.

Supplemental References

- 1. Meder L, Schuldt P, Thelen M, Schmitt A, Dietlein F, Klein S, et al. Combined VEGF and PD-L1 Blockade Displays Synergistic Treatment Effects in an Autochthonous Mouse Model of Small Cell Lung Cancer. *Cancer Research*. 2018;78(15):4270-81.
- 2. Ahern E, Harjunpaa H, O'Donnell JS, Allen S, Dougall WC, Teng MWL, et al. RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer. *Oncoimmunology*. 2018;7(6):e1431088.
- 3. Su MA, and Anderson MS. Pulling RANK on Cancer: Blocking Aire-Mediated Central Tolerance to Enhance Immunotherapy. *Cancer Immunol Res.* 2019;7(6):854-9.
- 4. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, and Gajewski TF. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. *J Immunother Cancer*. 2014;2:3.
- 5. Orillion A, Hashimoto A, Damayanti N, Shen L, Adelaiye-Ogala R, Arisa S, et al. Entinostat Neutralizes Myeloid-Derived Suppressor Cells and Enhances the Antitumor Effect of PD-1 Inhibition in Murine Models of Lung and Renal Cell Carcinoma. *Clin Cancer Res.* 2017;23(17):5187-201.
- 6. Christmas BJ, Rafie CI, Hopkins AC, Scott BA, Ma HS, Cruz KA, et al. Entinostat Converts Immune-Resistant Breast and Pancreatic Cancers into Checkpoint-Responsive Tumors by Reprogramming Tumor-Infiltrating MDSCs. *Cancer Immunology Research*. 2018;6(12):1561-77.
- 7. Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM, and Weber J. HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 Blockade. *Cancer Immunology Research*. 2015;3(12):1375-85.
- 8. Terranova-Barberio M, Thomas S, Ali N, Pawlowska N, Park J, Krings G, et al. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. *Oncotarget*. 2017;8(69):114156-72.
- 9. Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. *Clin Cancer Res.* 2013;19(5):1225-31.

- 10. Rayman P, Diaz-Montero CM, Yang Y, Rini B, Elson P, and Finke J. Modulation of immune cell infiltrate with sunitinib to improve anti-PD1 therapy in preclinical tumor model. *Journal for ImmunoTherapy of Cancer*. 2015;3(2):P310.
- 11. Läubli H, Müller P, D'Amico L, Buchi M, Kashyap AS, and Zippelius A. The multi-receptor inhibitor axitinib reverses tumor-induced immunosuppression and potentiates treatment with immune-modulatory antibodies in preclinical murine models. *Cancer Immunology, Immunotherapy.* 2018;67(5):815-24.
- 12. Hoff S, Grünewald S, Röse L, and Zopf D. 1198Plmmunomodulation by regorafenib alone and in combination with anti PD1 antibody on murine models of colorectal cancer. *Annals of Oncology*. 2017;28(suppl_5).
- 13. Hilberg F, Reschke M, Hofmann M, and Kraut N. P2.01-045 Nintedanib Improves Anti-Tumor Efficacy in Combination with Anti PD-1 in Syngeneic Tumor Models Sensitive and Refractory to IO Inhibition: Topic: Immune Mechanisms in Thoracic Cancer and Targeted Therapy. *Journal of Thoracic Oncology*. 2017;12(1):S813.
- 14. Kimura T, Kato Y, Ozawa Y, Kodama K, Ito J, Ichikawa K, et al. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. *Cancer Sci.* 2018;109(12):3993-4002.
- 15. Gunda V, Gigliotti B, Ashry T, Ndishabandi D, McCarthy M, Zhou Z, et al. Anti-PD-1/PD-L1 therapy augments lenvatinib's efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. *International Journal of Cancer*. 2019;144(9):2266-78.
- 16. Zhao S, Ren S, Jiang T, Zhu B, Li X, Zhao C, et al. Low-Dose Apatinib Optimizes Tumor Microenvironment and Potentiates Antitumor Effect of PD-1/PD-L1 Blockade in Lung Cancer. *Cancer Immunology Research*. 2019;7(4):630-43.
- 17. Ren Y, Sun Q, Long J, Fan S, Tang R, Zhang W, et al. Abstract 2089: Evaluation of fruquintinib, a potent and selective oral VEGFR inhibitor, in combination with targeted therapies or immune checkpoint inhibitors in preclinical tumor models. *Cancer Research*. 2017;77(13 Supplement):2089-

.

18. Seifert AM, Zeng S, Zhang JQ, Kim TS, Cohen NA, Beckman MJ, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clinical Cancer Research. 2017;23(2):454-65.