Supporting Information

Structure of silkworm *Bombyx mori* sucrose hydrolase and substrate specificity of GH13 subfamily 17 *exo*-α-glucosidases

Takatsugu Miyazaki*, and Enoch Y. Park

Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.

*To whom correspondence should be addressed: Takatsugu Miyazaki, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka,

422-8529, Japan; Tel & Fax: +81-54-238-4886; E-mail: miyazaki.takatsugu@shizuoka.ac.jp

This file includes:

Supplementary Table S1. Enzymes structurally homologous to BmSUH.
Supplementary Table S2. Sequences of oligonucleotides used in this study.
Supplementary Table S3. GH13_17 proteins used in the phylogenetic analysis in Figure 6.
Supplementary Figure S1. Effects of pH and temperature on the recombinant BmSUH hydrolysis of sucrose.
Supplementary Figure S2. Structures of *exo*-acting GH13 enzymes homologous to BmSUH.
Supplementary Figure S3. Metal binding sites of BmSUH.
Supplementary Figure S4. Dimeric structures of BmSUH and Cqm1.
Supplementary Figure S5. Sequence alignment of GH13_17 enzymes.
Supplementary Figure S6. Sequence alignment of *exo*-acting enzymes belonging to GH13_16, 17, 23, 29, 31, and 40 subfamilies.

Supplementary Table S1. Enzymes structurally homologous to BmSUH.

Enzyme	GH family	PDB	Z score	RMSD	Sequence
y		code		(Å)	identity (%)
Culex quinquefasciatus maltase Cqm1	GH13 17	6K5P	54.1	1.3	44
Listeria monocytogenes a-1,6-glucosidase	GH13 31	5DO8	47.5	2.4	33
Pseudomonas mesoacidophila sucrose isomerase	GH13 31	2PWH	47.2	2.2	32
Bacillus subtilis oligo- α -1,6-glucosidase	GH13 31	4M56	46.3	2.3	32
Xanthomonas campestris α-glucosyltransferase	GH13_23	6AAV	44.6	2.3	33
Bacillus sp. AHU2216 α-glucosidase	GH13_31	5ZCD	44.4	2.1	33
Halomonas sp. H11 α-glucosidase	GH13_23	3WY1	44.2	2.3	33
Lactobacillus acidophilus glucan α-1,6-glucosidase	GH13_31	4AIE	43.8	2.1	32
Deinococcus radiodurans trehalose synthase	GH13_16	4WF7	43.7	2.6	29
Streptococcus mutans dextran a-1,6-glucosidase	GH13_31	4WLC	43.5	2.2	32
Klebsiella sp. LX3 isomaltulose synthase	GH13_31	1M53	42.4	2.3	31
Protaminobacter rubrum sucrose isomerase	GH13_31	3GBE	41.8	2.3	32
Mycolicibacterium smegmatis trehalose synthase	GH13_16	5JY7	41.7	2.7	29
Bacillus cereus oligo-α-1,6-glucosidase	GH13_31	1UOK	41.4	2.2	33
Erwinia rhapontici isomaltulose synthase	GH13_31	4HP5	41.2	2.3	31
Thermomonospora curvata trehalose synthase	GH13_16	5H2T	41.1	2.7	30
Bacillus licheniformis trehalose-6-phosphate hydrolase	GH13_29	5BRP	41.0	2.6	32
Thermobaculum terrenum trehalose synthase	GH13_16	5X7U	40.7	2.5	28
Geobacillus sp. HTA-462 α-glucosidase	GH13_31	2ZE0	40.4	2.4	32
Saccharomyces cerevisiae oligo-α-1,6-glucosidase	GH13_40	3AXH	39.8	2.7	29
Bacteroides thetaiotaomicron α-amylase	GH13_36	3K8I	39.8	2.5	24
Arthrobacter globiformis cyclic maltosyl-maltose hydrolase	GH13_20	5ZXG	38.4	2.5	23
Thermoactinomyces vulgaris α-amylase TVAII	GH13_20	1JIB	38.1	2.5	25
Thermotoga maritima 4-α-glucanotransferase	GH13_NC ^a	1LWJ	37.1	2.6	24
Anoxybacillus sp. SK3-4 α-amylase	GH13_NC	5A2A	36.9	2.5	23
Neisseria polysaccharea amylosucrase	GH13_4	1MW1	36.8	2.5	21
Geobacillus stearothermophilus neopullulanase	GH13_20	1J0I	36.6	2.4	24
Thermus sp. IM6501 maltogenic α-amylase	GH13_20	1GVI	36.3	2.5	23
Thermus thermophilus HB8 TTHA1563	GH13_20	2Z1K	35.8	2.7	20
Bacillus sp. I-5 cyclomaltodextrinase	GH13_20	1EA9	35.4	2.5	22
Thermoactinomyces vulgaris α-amylase TVAI	GH13_21	2D0G	35.2	2.8	21
Lactobacillus plantarum α-amylase	GH13_NC	3DHU	34.2	2.4	20
Pyrococcus furiosus α-amylase	GH13_20	4AEF	33.9	2.5	24
Streptomyces coelicolor α-1,4-glucan: phosphate	GH13_3	3ZSS	33.7	2.8	16
α-maltosyltransferase		5051	<u></u>		22
Thermococcus kodakarensis amylopullulanase	GH13_20	5011	33.4	2.6	23
Mycobacterium tuberculosis α -1,4-glucan: phosphate	GH13_3	4033	33.2	2.9	13
u-manosymansiciase Thermotoga petrophila α-amvlase	GH13 36	5M99	33.1	2.9	23
Xanthomonas axonopodis pv. glvcines sucrose hydrolase	GH13 4	3CZL	31.3	2.6	19
Bifidobacterium adolescentis sucrose phosphorylase	GH13 18	6FME	29.7	2.5	18
Xanthomonas campestris pv. campestris sucrose hydrolase	GH13 4	2WPG	27.7	2.7	20

^{*a*} Not classified into any subfamilies according to the CAZy database.

Supplementary Table S2. Sequences of oligonucleotides used in this study.

Oligonucleotide	Sequence $(5' \rightarrow 3')^a$
BmSUH_F	TTTT <u>CATATG</u> TCAAATCAAAATGCGCCAAC
BmSUH_R	TTTT <u>CTCGAG</u> TTATATAGGTTGGGCTTTCA
Q191V_F	GGTCAGTGTGTTCGGAGGTTCGGCCTGGGA
Q191V_R	TCCGAACACACTGACCCAATTAGAAGGAGG
D247N_F	TCAGACTAAATGCTCTACCGTATTTGATTG
D247N_R	TAGAGCATTTAGTCTGAAGCCGTCAGCTCC
Y251H_F	TCTACCGCATTTGATTGAAGCTGATCCAGC
Y251H_R	ATCAAATGCGGTAGAGCATCTAGTCTGAAG
E322Q_F	TGTTCTCACAAGGGTATGCCAACGTGTCTA
E322Q_R	ATACCCTTGTGAGAACACCACTCTGGTATC
E440A_F	GGACATAGCAGCCTGTAACCGGGGAGACC
E440A_R	TACAGGCTGCTATGTCCACAGTGTCTTCC

^{*a*} Restriction sites are underlined.

Supplementary Table S3. GH13_17 proteins used in the phylogenetic analysis in Figure 6.

Name ^{<i>a</i>}	Species	GenBank accession number
APS1	Acyrthosiphon pisum	ABB55878.1
AAEL000392-PA	Aedes aegypti	EAT48590.1
AAEL000667-PA	Aedes aegypti	EAT48296.1
AAEL003434-PA	Aedes aegypti	EAT45278.1
AAEL009524-PA	Aedes aegypti	EAT38606.1
AAEL010532-PA	Aedes aegypti	EAT37483.1
AAEL010536-PA	Aedes aegypti	EAT37482.1
Aam1 (AAEL010537-PA)	Aedes aegypti	EAT37485.1
AAEL014710-PA	Aedes aegypti	EAT33036.1
AtSUH	Amyelois transitella	XP_013192965.1
AtMal1	Amyelois transitella	XP_013201068.1
AtMal2	Amyelois transitella	XP_013201277.1
AtMal3_1	Amyelois transitella	XP_013201279.1
AtMal3_2	Amyelois transitella	XP_013201280.1
AtMal4	Amyelois transitella	XP_013201278.1
alpha-amylase	Anopheles albimanus	ADD81256.1
alpha-amylase	Anopheles darlingi	ETN61169.1
alpha-amylase	Anopheles darlingi	ETN63249.1
alpha-glucosidase	Anopheles darlingi	ETN63250.1
alpha-glucosidase	Anopheles darlingi	ETN65874.1
alpha-amylase	Anopheles darlingi	ETN65875.1
alpha-amylase	Anopheles darlingi	ETN67705.1
Agml	Anopheles gambiae	CAA60857.1
Agm2	Anopheles gambiae	CAA60858.1
Agm3	Anopheles gambiae	ABW98683.1
alpha-amylase	Antheraea pernyi	AJR29308.1
AciHBG-I	Apis cerana indica	AGE11865.1
AciHBG-II	Apis cerana indica	AFR59339.1
AciHBG-III	Apis cerana indica	ABO27432.1
JBgI	Apis cerana japonica	BAF44218.1
JBgII	Apis cerana japonica	ACN63343.1
JBgIII	Apis cerana japonica	ACQ45697.1
AdMal	Apis dorsata	ADB11049.1
HBG-I	Apis mellifera	BAE86926.1
HBG-II	Apis mellifera	BAE86927.1
HBG-III	Apis mellifera	BAA11466.1
BdMalA1	Bactrocera dorsalis	AIT38256.1
alpha-glucosidase	Bombus ignitus	BAI44030.1
alpha-glucosidase	Bombus diversus diversus	BAI44029.1
BmaSUH	Bombyx mandarina	XP_028038901.1
BmaSUH2	Bombyx mandarina	XP_028038902.1
BmaMal3	Bombyx mandarina	XP_028034157.1

BmaMal4	Bombyx mandarina	XP_028034158.1
BmSUH	Bombyx mori	BAP18683.1
BmSUH2	Bombyx mori	BBE00602.1
BmMal2	Bombyx mori	XP_012549946.2
BmMal3	Bombyx mori	BBD49474.1
BmMal4	Bombyx mori	BBD13387.1
alpha-glucosidase	Camponotus japonicus	BAO48210.1
Cpm1	Culex pipiens	AAL05443.1
Cqm1	Culex quinquefasciatus	ASO96882.1
maltase	Culicoides nubeculosus	ACM40914.1
Cul o 1 allergen	Culicoides obsoletus	AGI16774.1
maltase	Culicoides sonorensis	AAU06480.1
venom polypeptide	Dolopus genitalis	AYV99560.1
DpSUH1	Danaus plexippus plexippus	OWR49826.1
DpSUH2	Danaus plexippus plexippus	OWR49828.1
DpMal1	Danaus plexippus plexippus	OWR49357.1
DpMal2	Danaus plexippus plexippus	OWR49126.1
DpMal3	Danaus plexippus plexippus	OWR49124.1
DpMal4	Danaus plexippus plexippus	OWR49125.1
DbMalA1	Drosophila busckii	ALC40924.1
DbMalA2	Drosophila busckii	ALC40926.1
DbMalA3	Drosophila busckii	ALC40927.1
DbMalA4	Drosophila busckii	ALC40928.1
DbMalA5	Drosophila busckii	ALC40929.1
DbMalA6	Drosophila busckii	ALC40930.1
DbMalA7	Drosophila busckii	ALC40931.1
DbMalA8	Drosophila busckii	ALC40932.1
DbMalB1	Drosophila busckii	ALC39348.1
DmMalA1	Drosophila melanogaster	AAF59089.3
DmMalA2	Drosophila melanogaster	AAF59088.1
DmMalA3	Drosophila melanogaster	AAM50308.1
DmMalA4	Drosophila melanogaster	AAF59086.1
DmMalA5	Drosophila melanogaster	AAV36953.1
DmMalA6	Drosophila melanogaster	AAM68846.2
DmMalA7	Drosophila melanogaster	AAF59084.2
DmMalA8	Drosophila melanogaster	AAF59083.2
DmMalB1	Drosophila melanogaster	AAF53127.1
DmMalB2	Drosophila melanogaster	AAF53128.4
DvMalB1	Drosophila virilis	AAB82327.1
DvMalB2	Drosophila virilis	AAB82328.1
maltase 1-like protein	Habrobracon hebetor	AXY94681.1
HaSUH1	Helicoverpa armigera	XP_021191332.1
HaSUH2	Helicoverpa armigera	XP_021191328.1
HaMal1_1	Helicoverpa armigera	XP_021188630.1
HaMal1_2	Helicoverpa armigera	XP_021188631.1

HaMal2	Helicoverpa armigera	XP_021193832.1
HaMal3	Helicoverpa armigera	XP_021193831.1
HaMal4	Helicoverpa armigera	XP_021193829.1
MsSUH	Manduca sexta	XP_030027415.1
MsSUH2	Manduca sexta	XP_030027440.1
MsMal1	Manduca sexta	XP_030034371.1
MsMal2	Manduca sexta	XP_030035809.1
MsMal3	Manduca sexta	XP_030031300.1
MsMal4	Manduca sexta	XP_030035812.1
MdMalA1	Musca domestica	AFP60283.1
MdMalA2	Musca domestica	AFP59562.1
MdMalA4	Musca domestica	AFP62365.1
MdMalA7	Musca domestica	AFP62166.1
MdMalB1	Musca domestica	AFP61790.1
alpha-amylase	Musca domestica	AFP62021.1
sucrase	Myzus persicae	AKM95031.1
NlMalA1	Nilaparvata lugens	AQW43009.1
NlMalA2	Nilaparvata lugens	ANJ04656.1
NISUH	Nilaparvata lugens	AEO89448.1
PmSUH1	Papilio machaon	XP_014360940.1
PmSUH2	Papilio machaon	XP_014360941.1
PmMal1	Papilio machaon	XP_014371748.1
PmMal2	Papilio machaon	XP_014368521.1
PmMal3_1	Papilio machaon	XP_014368517.1
PmMal3_2	Papilio machaon	XP_014368519.1
PmMal4	Papilio machaon	XP_014368518.1
PpSUH1	Papilio polytes	XP_013147169.1
PpSUH2	Papilio polytes	XP_013147171.1
PpMal1	Papilio polytes	XP_013137112.1
PpMal3_1	Papilio polytes	XP_013136071.1
PpMal3_2	Papilio polytes	XP_013136068.1
PpMal4	Papilio polytes	XP_013136069.1
PxSUH1	Papilio xuthus	XP_013161261.1
PxSUH2	Papilio xuthus	XP_013161263.1
PxMal1	Papilio xuthus	XP_013177984.1
PxMal2	Papilio xuthus	XP_013168325.1
PxMal3_1	Papilio xuthus	XP_013168326.1
PxMal3_2	Papilio xuthus	XP_013168328.1
PxMal4	Papilio xuthus	XP_013168327.1
alpha-glucosidase	Periplaneta americana	AIA09343.1
alpha-amylase	Pristhesancus plagipennis	ATU82842.1
alpha-amylase	Riptortus pedestris	BAN20159.1
predicted protein	Riptortus pedestris	BAN20192.1
ScSUH	Samia cynthia ricini	BAP18685.1
ScMal1	Samia cynthia ricini	BBD13389.1

ScMal2	Samia cynthia ricini	BBD49476.1
SISUH1	Spodoptera litura	XP_022821249.1
SISUH2	Spodoptera litura	XP_022821250.1
SlMal1_1	Spodoptera litura	XP_022816388.1
SlMal1_2	Spodoptera litura	XP_022816674.1
SlMal3	Spodoptera litura	XP_022820326.1
SlMal4	Spodoptera litura	XP_022820325.1
TvSUH	Trilocha varians	BAP18684.1
TvMal1	Trilocha varians	BBD13388.1
TvMal2	Trilocha varians	BBD49475.1

^{*a*} Enzymatically characterized proteins (except for partially purified enzymes) are highlighted in bold.

Supplementary Figure S1. Effects of pH and temperature on the recombinant BmSUH hydrolysis of sucrose.

pH dependence (A), temperature dependence (B), pH stability (C), and thermostability of BmSUH. pH dependence was measured at 30 °C using Britton-Robinson buffer (pH 2.0–12), and temperature dependence was measured at 15 °C–70 °C using 50 mM HEPES-NaOH buffer (pH 8.0). pH stability was measured at 30 °C using enzymes after incubation in buffer with varying pH for 24 h at 4 °C. Thermostability was measured at 30 °C using enzymes pre-incubated at varying temperature for 30 min. All experiments were performed in triplicate.

Supplementary Figure S2. Structures of exo-acting GH13 enzymes homologous to BmSUH.

(A) *B. mori* GH13_17 sucrose hydrolase BmSUH (this study), (B) *C. quinquefasciatus* GH13_17 maltase Cqm1, (C) *D. radiodurans* GH13_16 trehalose synthase, (D) *Halomonas* sp. H11 GH13_23 α -glucosidase HaG, (E) *B. licheniformis* GH13_29 trehalose-6-phosphate hydrolase, (F) *Bacillus* sp. AHU2216 GH13_31 α -glucosidase, (G) *P. mesoacidophila* GH13_31 sucrose isomerase, (H) *S. cerevisiae* GH13_40 oligo- α -1,6-glucosidase. Colors and symbols used are as follows: domain A, *red*; domain B, *green*; domain B', *cyan*; domain C, *yellow*; calcium ion, *slate blue sphere*; magnesium ion, *light green sphere*; cadmium ion, *light brown sphere*; ligands in the active centers, *black stick*.

Supplementary Figure S3. Metal binding sites of BmSUH.

The amino acid residues that coordinate magnesium ion (*light green sphere*) in site I (*left* panel) and calcium ion (*slate blue sphere*) in site II (*right* panel) are shown in *stick* models.

Supplementary Figure S4. Dimeric structures of BmSUH (A) and Cqm1 (B).

Two monomers are shown in *green* and *cyan*. In (A), amino acid residues located at the dimer interfaces are shown as *stick* models and hydrogen bonds are shown as *dashed lines*.

Supplementary Figure S5. Sequence alignment of GH13_17 enzymes.

The sequences of GH13_17 enzymes were aligned using Clustal Omega [x] and the figure generated by ESPript 3.0. Sequences used are BmSUH (GenBank BAP18683.1), *Samia cynthia ricini* sucrose hydrolase (ScSUH, BAP18685.1), *Trilocha varians* sucrose hydrolase (TvSUH, BAP18684.1), Cqm1 (ASO96882.1), honeybee (*Apis mellifera*) α -glucosidase II (HBG-II, BAE86927.1), and honeybee α -glucosidase III (HBG-II, BAE86927.1), and honeybee α -glucosidase III (HBG-II, BAA11466.1). Secondary structures and domain architecture of BmSUH are described above and under sequences, respectively. Colors for the domains are as follows: domain A, *red*; domain B, *green*; domain B', *cyan*; domain C, *yellow*. The predicted transmembrane region is underlined with a *dashed* line. Identical residues are shown in *white* with a red background and conservative changes in *red* with a white background. The amino acid residues mutated in this study (Gln191, Tyr251, and Glu440) and their conserved residues are highlighted in *cyan*. Catalytic residues are marked with *blue stars*, and residues that interact with glucose and *magenta triangles* indicate the magnesium- and calcium-binding residues of BmSUH, respectively.

Supplementary Figure S6. Sequence alignment of *exo*-acting enzymes belonging to GH13_16, 17, 23, 29, 31, and 40 subfamilies.

The alignment was prepared and described in the same manner as Figure S5. Sequences used are BmSUH (GenBank BAP18683.1), Cqm1 (ASO96882.1), *D. radiodurans* GH13_16 trehalose synthase (DrTS, AAF11586.1), *Halomonas* sp. H11 GH13_23 α-glucosidase (HaG, BAL49684.1), *B. licheniformis* GH13_29

trehalose-6-phosphate hydrolase (BlTreA, AAU39732.1), *P. mesoacidophila* GH13_31 sucrose isomerase (PmMutB, ABC33903.1), *Bacillus* sp. AHU2216 GH13_31 α-glucosidase (BspAG13_31A, BBB94188.1), and *S. cerevisiae* GH13_40 oligo-α-1,6-glucosidase (ScIMA1, BAA07818.1).