Associations of ficolins and mannose-binding lectin with acute myeloid leukaemia in adults

Anna Sokołowska¹. Anna S. Świerzko¹. Gabriela Gajek¹. Aleksandra Gołos². Mateusz Michalski¹. Mateusz Nowicki³. Agnieszka Szala-Poździej¹. Anna Wolska-Washer⁴. Olga Brzezińska^{5.6}. Agnieszka Wierzbowska⁴. Krzysztof Jamroziak². Marek L. Kowalski⁵. Steffen Thiel⁷. Misao Matsushita⁸. Jens C. Jensenius⁷. Maciej Cedzyński^{1*}

¹Laboratory of Immunobiology of Infections. Institute of Medical Biology. Polish Academy of Sciences. Lodowa 106. 93-232 Łódź. Poland; ²Department of Hematology. Institute of Hematology and Transfusion Medicine, I. Gandhi 14. 02-776. Warsaw. Poland; ³Department of Hematology. Copernicus Memorial Hospital in Łódź Comprehensive Cancer Center and Traumatology. Pabianicka 62. 93-513 Łódź. Poland ; ⁴Department of Hematology. Medical University of Łódź. Ciołkowskiego 2. 93-510 Łódź. Poland; ⁵Department of Immunology and Allergy. Medical University of Łódź. Pomorska 251. 92-213 Łódź. Poland; ⁶Department of Rheumatology. Medical University of Łódź. Pieniny 30. 92-003 Łódź. Poland; ⁷Department of Biomedicine. Aarhus University. Høegh-Guldbergs Gade 10. 8000 Aarhus C. Denmark; ⁸Department of Applied Biochemistry. Tokai University. 4-1-1 Kitakaname. Hiratsuka. Kanagawa 259-1292. Japan

* - corresponding author (mcedzynski@cbm.pan.pl)

Supplementary Table 1. Estimated frequency of reconstructed *FCN1* haplotypes (with EM maximum likelihood method) in patients and controls. C: controls; AML-A: patients who experienced infections with proven bacteremia and/or fungaemia; AML-B: patients who experienced infections with no bacteremia; AML-C: patients who experienced febrile neutropenia; AML-D: patients who experienced none of afore-mentioned complications within 4 weeks of hospital stay. Single nucleotide polymorphisms: -542 *G>A*, -144 *C>A* and +6658 *G>A* were used for reconstruction. *P* values are given when <0.05; results significant after correction for multiple comparisons are displayed in bold.

Haplotype	Group					
	С	AML	AML-A	AML-B	AML-C*	AML-D
GCG	0.593	0.554	0.436 ²	0.581	0.417	0.639
AAG	0.357	0.251 ¹	0.302	0.293	0.417	0.188 ³
ACG	0.028	0.080 ⁴	0.076 ⁵	0.063	0	0.106 ⁶
GAG	0.020	0.112 ⁷	0.186 ⁸	0.055	0.167	0.067 ⁹
AAA	0.002	0	0	0	0	0
GCA	0	0.003	0	0.008	0	0

¹-p=0.0018, OR=0.61, 95% CI (0.44-0.83) vs. C

²- p=0.0094, OR=0.54, 95% CI (0.34-0.86) *vs.* C; p=0.0077, OR=0.45, 95% CI (0.25-0.81) *vs.* AML-D

³-p=0.0011, OR=0.41, 95% CI (0.24-0.7) vs. C

⁴-p=0.001, OR=3.09, 95% CI (1.58-6.04) *vs.* C

⁵ – p=0.039, OR=2.82, 95% CI (1.05-7.56) *vs.* C

⁶-p=0.0005, OR=4.32, 95% CI (1.9-9.81) *vs.* C

⁷ - p<0.0001, OR=6.32, 95% CI (3.08-12.96) vs. C

⁸- p<0.0001, OR=11.28, 95% CI (4.87-26.13) *vs.* C; p=0.0048, OR=4.18, 95% CI (1.55-1.29)

vs. AML-B; p=0.022, OR=3.04, 95% CI (1.18-7.86) vs. AML-D

⁹- p=0.0094 OR=3.71, 95% CI (1.38-10) *vs.* C

* - AML-C group was not used for statistical analysis due to low number of patients in whom full genotypes were established (n=6)

Supplementary Table 2. Estimated frequency of reconstructed *FCN2* haplotypes (with EM maximum likelihood method) in patients and controls. C: controls; AML-A: patients who experienced infections with proven bacteremia and/or fungaemia; AML-B: patients who experienced infections with no bacteremia; AML-C: patients who experienced febrile neutropenia; AML-D: patients who experienced none of afore-mentioned complications within 4 weeks of hospital stay. Single nucleotide polymorphisms: -64 *A*>*C*, -4 *A*>*G*, +6359 *C*>*T* and +6424 *G*>*T* were used for reconstruction.

	Group					
Haplotype	С	AML	AML-A	AML-B	AML-C*	AML-D
AACG	0.461	0.513	0.458	0.515	0.583	0.580 ¹
AGTG	0.311	0.295	0.339	0.313	0	0.254
CACG	0.055	0.013	0.039	0	0	0
CACT	0.044	0.078	0.066	0.044	0.083	0.092
AACT	0.032	0.007	0	0.017	0.083	0
AATG	0.035	0.045	0.056	0.046	0	0.032
AATT	0.004	0	0	0	0	0
AGTT	0.030	0.003	0	0	0	0
AGCG	0.020	0.040	0.042	0.038	0	0.042
CGTG	0.005	0	0	0.009	0	0
CGCT	<0.001	0.005	0	0.017	0	0
CATT	0.003	0	0	0	0.083	0
CGTT	0	0	0	0	0.167	0

¹- p=0.0291, OR=1.63, 95% CI (1.05-2.52) vs. C

* - AML-C group was not used for statistical analysis due to low number of patients in whom full genotypes were established (n=6)

Cor	ot	Group			
Gen	lotype	C (n=256)	AML (n=153)		
	HYA/HYA	36 (14.1)	15 (9.8)		
	HYA/LYA	50 (19.5)	26 (17)		
A /A	HYA/LXA	34 (13.3)	28 (18.3)		
A/A	LYA/LYA	21 (8.2)	9 (5.9)		
	LYA/LXA	24 (9.4)	14 (9.2)		
	LXA/LXA	14 (5.5)	6 (3.9)		
	HYA/HYD	5 (2)	3 (2)		
	HYA/LYD	1 (0.4)	0		
	HYA/LYB	29 (11.3)	8 (5.2)		
VA/0	HYA/LYC	2 (0.8)	0		
IA/O	LYA/HYD	3 (1.2)	3 (2)		
	LYA/LYB	10 (3.9)	11 (7.2)		
	LYA/LYC	1 (0.4)	1 (0.7)		
	LYA/LYD	1 (0.4)	2 (1.3)		
	LXA/HYD	6 (2.3)	6 (3.9)		
	LXA/LYB	13 (5.1)	8 (5.2)		
	LXA/LYC	0	3 (2)		
	LXA/LYD	1 (0.4)	0		
XA/U + U/U	LYB/HYD	0	3 (2)		
	LYB/LYB	4 (1.6)	4 (2.6)		
	LYB/LYC	1 (0.4)	2 (1.3)		
	LYB/LYD	0	1 (0.7)		

Supplementary Table 3. Frequency of *MBL2* genotypes in patients (AML) and controls (C). Percentages are shown in parentheses

Supplementary Table 4. Frequency of *MBL2* haplotypes in patients and controls. C: controls; AML-A: patients who experienced infections with proven bacteremia and/or fungaemia; AML-B: patients who experienced infections with no bacteremia; AML-C: patients who experienced febrile neutropenia; AML-D: patients who experienced none of aforementioned complications within 4 weeks of hospital stay.

Haplotype	Group					
	С	AML	AML-A	AML-B	AML-C*	AML-D
НҮА	0.377	0.314	0.333	0.362	0.100	0.265 ¹
LYA	0.256	0.248	0.256	0.241	0.400	0.235
LXA	0.207	0.234	0.269	0.190	0.200	0.255
HYD	0.027	0.050	0.013	0.043	0.100	0.059
LYD	0.006	0.010	0	0.017	0.100	0.010
LYB	0.119	0.135	0.128	0.129	0	0.167
LYC	0.008	0.020	0	0.017	0.100	0.010

¹- p=0.032, OR=0.6, 95% CI (0.37-0.96) vs. C

* - AML-C group was not used for statistical analysis due to low number of patients in whom full genotypes were established (n=6)

Supplementary Figure 1. Differentiation (ROC analysis) between patients suffering from acute myeloid leukaemia and healthy controls (A), multiple myeloma (B), lymphoma (C) and multiple myeloma plus lymphoma patients (D), using determination of ficolin-1 serum concentration.

Supplementary Figure 2. Differentiation (ROC analysis) between patients suffering from acute myeloid leukaemia and healthy controls (A), multiple myeloma (B), lymphoma (C) and multiple myeloma plus lymphoma patients (D), using determination of ficolin-2 serum concentration.

Supplementary Figure 3. Differentiation (ROC analysis) between patients suffering from acute myeloid leukaemia and healthy controls (A), multiple myeloma (B), lymphoma (C) and multiple myeloma plus lymphoma patients (D), using determination of ficolin-3 serum concentration.

Supplementary Figure 4. Differentiation (ROC analysis) between patients suffering from acute myeloid leukaemia and healthy controls (A), multiple myeloma (B), lymphoma (C) and multiple myeloma plus lymphoma patients (D), using determination of mannose-binding lectin serum concentration.